BAB V

PENUTUP

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan, baik pengambilan data, perhitungan, analisa perbandingan *Quality of Service* (QoS), hingga pengklasifikasian dengan menggunakan algoritma *Naive Bayes*, pada manajemen *bandwidth* menggunakan metode *Hierarchical Token Bucket* (HTB), dan *Peer Connection Queue* (PCQ), maka dapat disimpulkan bahwa:

- 1. Pada metode HTB, besar *Throughput* yang dihasilkan lebih besar bahkan meningkat namun tidak terlalu jauh berbeda dengan metode PCQ, karena pembatasan alokasi *bandwidth* yang diberi untuk setiap *client* yang menyebabkan *transfer rate* data yang di terima *client* berbeda.
- Pada manajemen bandwidth menggunakan metode PCQ, Delay dan Jiiter lebih besar dibandingkan dengan manajemen bandwidth menggunakan metode HTB, dikarenakan antian client pada metode HTB lebih sedikit daripada metode PCQ.
- 3. Besar nilai *Packet loss* pada manajemen *bandwidth* dengan menggunakan metode HTB dan metode PCQ hampir sama.
- 4. Algoritma *Naive Bayes* dapat digunakan untuk mengklasifikasikan status layanan jaringan internet berdasarkan parameter-parameter yang terdapat dalam metode QoS yaitu throughput, *delay, jitter* dan *packetloss* dengan tingkat akurasi sebesar 86,26% pada metode HTB dan 82,86% pada metode PCQ.
- 5. Waktu terbaik untuk menggunakan internet di Politeknik Negeri Sriwjaya adalah pada pukul 12.00 13.00 dan waktu penggunaan internet terbanyak pada pukul 13.30 16.30.

- Status jaringan internet di Politeknik Negeri Sriwijaya masuk ke dalam kategori Memuaskan dengan nilai dominan yaitu sebesar 56,33% pada metode HTB dan 52,83% pada metode PCQ.
- 7. Dapat disimpulkan bahwa kualitas jaringan dengan menggunakan metode Hierarchical Token Bucket (HTB) lebih baik, karena semua client alokasi bandwidth sesuai dengan rule yang diterapkan pada bandwidth management.

5.2 Saran

Adapun saran dalam penelitian ini, adalah sebagai berikut :

- Agar didapat hasil penelitian yang lebih baik, diharapkan dapat ditambah dengan menambahkan pengujian parameter QoS yang lain seperti *Mean Opinion Source* (MOS). MOS merupakan opini pendengar disisi penerima. Sehingga akan lebih terihat lebih jelas perbedaan menggunakan metode manajemen *bandwidth* baik dengan HTB atau PCQ.
- 2. Dapat diterapkan algoritma lain dengan timgkat akurasi yang lebih tinggi, sehingga dalam mengklasifikasikan status jaringan internet bisa didapatkan tingkat akurasi yang lebih tinggi.
- Dapat ditambahkan program pengklasifikasian data otomatis, sehingga dapat lebih mengefisienkan waktu dalam mengklasifikasikan setiap parameter.
- 4. Hasil penelitian dapat digunakan oleh bagian UPT sebagai sarana evaluasi keadaan koneksi internet di Politeknik Negeri Sriwijaya.