BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa:

- 1. Katalis yang dimodifikasi memiliki komposisi H₃PO₄ 48%, γ-Al₂O₃ 31,3%, K₂CO₃ 14,6%, Ni 4,2%, Mo 2% berdasarkan analisa XRD, komposisi H₃PO₄ yang paling tinggi karna dapat memodifikasi keasaman permukaan γ-Al₂O₃, komposisi γ-Al₂O₃ kedua tertinggi karna proses ini menggunakan metode impregansi kering, K₂CO₃ yang paling efektif dalam menghilangkan mengurangi *deposit* karbon (*coke removal*), Ni dan Mo memiliki titik leleh yang tinggi sehingga dapat digunakan dalam kondisi operasi yang eksoterm.
- 2. Persentase *yield* maksimum yang diperoleh pada penelitian ini adalah 34,46% dengan pemakaian katalis sebesar 40g.
- 3. Green diesel yang diproduksi pada penelitian ini memiliki sifat fisik:

- Densitas : $773,94 - 778,26 \text{ kg/m}^3$

- Viskositas Kinematik : 2,41 - 2,58 mm²/s

- Kadar Air : 13194,87 – 16559,29 ppm

- Titik Nyala : 55,1 – 56,9°C

- Nilai Kalor sampel 5 : 40.9737 Mj/kg

- Cetane Number sampel 3 : 93,7

5.2 Saran

Dalam melaksanakan penelitian ini, penulis menemukan beberapa kekurangan. Maka dari itu penulis menyarankan:

- 1. Perlu dilakukan penelitian lebih lanjut mengenai komposisi dalam modifikasi katalis NiMo/ γ -Al₂O₃ sehingga katalis yang diperoleh dapat menghasilkan kinerja yang baik.
- 2. Produk harus dilanjutkan dengan proses distilasi untuk mendapatkan produk sesuai fraksi nya.