PROCEEDING SENTEN

Symposium of Emerging Nuclear Technology and Engineering Novelty (2018)

Palembang, July 4-5th 2018

National Nuclear Energy Agency Deputy for Nuclear Energy Technology

Sriwijaya University

IOP Publishing

Symposium of Emerging Nuclear Technology and Engineering Novelty (SENTEN 2018)

Discovery Science and Engineering Novelty for Improving Human Life Prosperity

Journal of Physics: Conference Series Volume 1198

Palembang, Indonesia 4 – 5 July 2018

Part 1 of 2

ISBN: 978-1-5108-8785-5 ISSN: 1742-6588

DEWAN EDITOR / PENILAI KARYA TULIS ILMIAH:

<u>KETUA:</u>

Dr. Geni Rina Sunaryo, M.Sc. (BATAN)

<u>Wakil Ketua:</u> Prof. Subriyer Nasir (Universitas Sriwijaya) Dr. Ir. P. Made Udiyani, M.Si (BATAN)

SEKRETARIS:

Syaiful Bakhri, Ph.D. (BATAN) Dr. Julwan Hendri Purba (BATAN)

ANGGOTA:

Ir. DT Sony Tjahyani, M.Eng (BATAN) Dr. Mulya Juarsa (BATAN) Dr. Arya Adhyaksa Waskita (BATAN) Dr. R. Muhammad Subekti (BATAN) Rafiuddin Syam, Ph.D. (Universitas Hassanuddin)

Tim Prosiding:

Suwoto, Ihda Husnayani, Farisy Yogatama, Wahid Luthfi, Muksin Aji Setiawan

Symposium of Emerging Nuclear Technology and Engineering Novelty (SENTEN 2018)

PREFACE

Following the previous successful of SENTEN-ICONETS 2015-2017, five research centers under the Deputy of Nuclear Energy Technology – National Nuclear Energy Agency of Indonesia (BATAN) in collaboration with Universitas Sriwijaya organize the First Symposium of Emerging Nuclear Technology and Engineering Novelty (SENTEN) with theme: "Discovering Science and Engineering Novelty for improving human life prosperity". SENTEN 2018 has been conducted in Horison Ultima Hotel, Palembang, South Sumatra, Indonesia, on 4-5 July 2018. This conference aims at summarizing recent research activities relevant to the nuclear, material, mechanical, electric, chemical, geology, architect and civil engineering, computer science and IT, food and agriculture, and also facilitate communication among relevant experts.

More than 150 people from Indonesia, Malaysia, India, Taiwan, and some other countries have participated in this conference. About 207 presentations including 6 keynote speeches and 1 plenary talk are presented. The presentations are grouped into 9 areas of particular interest: (1) Nuclear Science and Engineering, (2) Material Science and Engineering, (3) Mechanical and Industrial Engineering, (4) Electrical Science and Engineering, (5) Chemical Science and Engineering, (6) Geological Science and Mining Engineering, (7) Architecture and Civil Engineering, (8) Computer Science and Information Technology, and (9) Food and Agricultural Science, Natural Resource Science.

From about 190 full papers submitted, then peer-reviewed by relevant experts, eventually 169 papers were accepted for publication in this proceeding. We are indebted to all of authors for submitting their original papers.

We would like to thank all participants, and express our gratitude to all those who helped the success of this conference.

Syaiful Bakhri SENTEN 2018 Chairman

Peer review statement

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing

Reviewer Board

The Reviewers Board for SENTEN 2018 :

- 1. Prof. Dr. Djarot S. Wisnubroto (BATAN, Indonesia)
- 2. Prof. Dr. Nesimi Ertugrul (UoA, Australia)
- 3. Prof. Dr. Nguyen Trung Tinh (TIC-VARNS, Vietnam)
- 4. Prof. Dr.-Ing. Nandy Putra (UI, Indonesia)
- 5. Prof. Dr. Jung Jae-cheon (KINGS, Korea)
- 6. Prof. Dr. Ridwan (BATAN, Indonesia)
- 7. Prof. Dr. Ir. Dedi Priadi, DEA. (UI, Depok)
- 8. Prof. Dr. Akio Gofuku (Okayama Univ, Japan)
- 9. Prof. Dr. Ir. H. Anis Saggaff, MSCE (Sriwijaya University, Indonesia)
- 10. Prof. Ir. Zainuddin Nawawi, Ph.D (Sriwijaya University, Indonesia)
- 11. Prof. Subriyer Nasir (Sriwijaya University, Indonesia)
- 12. Prof. Erika Buchari (Sriwijaya University, Indonesia)
- 13. Prof. Eddy Sutriyono (Sriwijaya University, Indonesia)
- 14. Prof. Iskhaq Iskandar, Ph.D (Sriwijaya University, Indonesia)
- 15. Prof. Siti Nurmaini ((Sriwijaya University, Indonesia)
- 16. Prof. Kaprawi (Sriwijaya University, Indonesia)
- 17. Prof. Muhammad Said (Sriwijaya University, Indonesia)
- 18. Prof. Eddy Ibrahim (Sriwijaya University, Indonesia)
- 19. Prof. Hasan basri (Sriwijaya University, Indonesia)
- 20. Dr. Hadid Subkhi (IAEA)

- 21. Dr. Frederik Reitsma (IAEA)
- 22. Dr. Jim Kuijper (NRG, Netherlands)
- 23. Dr. Mark Mitchell (PBMR, South Africa)
- 24. Dr. Mike Davies (AFW, UK)
- 25. Dr. Kunihiko Nabeshimaa(JAEA-Japan)
- 26. Dr. Sun Jun (Tsinghua University, China)
- 27. Dr. Phongpaeth Pengvanich (CU, Thailand)
- 28. Dr. Sidik Permana (IT, Indonesia)
- 29. Dr. Alexander Agung (UGM, Indonesia)
- 30. Dr. Deendarlianto (UGM, Indonesia)
- 31. Dr. Geni Rina Sunaryo (BATAN, Indonesia)
- 32. Syaiful Bakhry, Ph.D (BATAn, Indonesia)
- 33. Dr. Ir. P. Made Udiyani, M.Si (BATAN, Indonesia)
- 34. Ir. DT Sony Tjahyani, M.Eng (BATAN, Indonesia)
- 37. Dr. Hendro Tjahyono (BATAN, Indonesia)
- 38. Dr. R. Muhammad Subekti (BATAN, Indonesia)
- 39. Dr. Julwan Hendry Purba (BATAN, Indonesia)
- 40. Dr. Mulya Juarsa (BATAN, Indonesia)
- 41. Dr. Arya Adhyaksa Waskita (BATAN, Indonesia)
- 42. Rafiuddin Syam, Ph.D. (UNHAS, Indonesia)
- 43. Dr. Wayan Nata Septiadi (UNUD, Indonesia)

TABLE OF CONTENTS

PART 1

NUCLEAR SCIENCE AND ENGINEERING

SHORT CIRCUIT ANALYSIS ON HPS ELECTRICAL SYSTEM	1
Khairul Handono, Edy Sumarno, Kiswanta, Koes Indrakoesoema	
POWER FLOW ANALYSIS ON RDE FUEL HANDLING SYSTEM USING ETAP	9
Edy Sumarno, Khairul Handono, Kiswanta, Koes Indrakoesoema	
COMPARISON OF GALLIUM-68 PRODUCTION YIELDS FROM (P,2N), (a,2N) AND (P,N)	
NUCLEAR REACTIONS APPLICABLE FOR CANCER DIAGNOSIS	19
I Kambali, F A Wibowo	
ANALYSIS OF HEAVY METAL LOADING OPTIMIZATION THROUGH CRITICALITY	
CALCULATION ON RDE	
Suwoto, H. Adrial, Zuhair, K. Kamajaya, S. Bakhri	
NUCLEAR POWER PLANT MAINTENANCE OPTIMISATION: MODELS, METHODS &	
STRATEGIES	
I Wayan Ngarayana, Thi-Mai-Dung Do, Kenta Murakami, Masahide Suzuki	
TECHNOLOGICALLY ENCHANCED NATURALLY OCCURRING RADIOACTIVE	
MATERIALS (TENORM) ANALYSIS OF BANGKA TIN SLAG	63
Onek Gunawan, Eko Pudjadi, Musaddiq Musbach, Wahyudi	
DETERMINATION OF DIFFUSION COEFFICIENT OF ¹³⁷ CS AT UNSATURATED ZONE OF	
DH-2 SITE SOIL UNDER $\delta = 1.41$ G.CM ³ CONDITION	
Budi Setiawan, Nurul Efri Ekaningrum	
CALCUYIELD: A NOVEL ANDROID-BASED SOFTWARE FOR RADIOACTIVITY YIELD	
CALCULATIONS	78
F A Wibowo. I Kambali	
WATER EVAPORATION RATE OF RSG-GAS SPENT FUEL STORAGE POOL	86
Titik Sundari, Mukhsinun Hadi Kusuma, Budiyono, M. Joko Puspito, Parjono, Darmawan Aji, Irwan Santoso, Sri	
Ismarwanti	
IMPROVEMENT OF NUCLEAR SCIENCE STANDARDS (SNI) TO MEET MARKET NEEDS	
AND HARMONIZATION	101
J. Sutanto, P. Sulisworo	
ANALYSIS FOR DEVELOPING A CLEARING HOUSE OF NUCLEAR TECHNOLOGY USING	
SWOT-BSC STRATEGIES	107
A. Bayu Purnomo, Jepri Sutanto	107
CROSS-SECTIONAL IMAGING OF TREE STEM DENSITY DISTRIBUTION USING GAMMA-	
RAY TOMOGRAPHY TECHNIQUE.	114
Wibisono, Bayu Azmi, Sastra Kusuma Wijaya, Prawito, Firliyani Rahmatia Ningsih	
INFLUENCE ANALYSIS OF NATURAL VENTILATION SYSTEM ON RADON	
CONCENTRATION IN INTERIM STORAGE FOR RADIOACTIVE WASTE	121
R. Ratiko	
A SELF-EVALUATION TOOLS FOR THE ASSESSMENT OF NUCLEAR FORENSIC	
CAPABILITY	120
Nurul Ilyani Zaharudin, Phongphaeth Pengvanich	127
REVERSE ENGINEERING PROGRAM USING MBSE TO SUPPORT DEVELOPMENT OF I&C	
SYSTEM EXPERIMENTAL POWER REACTOR FROM PLC TO FPGA.	130
Restu Maerani, Deswandri, Sigit Santoso, Sudarno, Ign. Djoko Irianto	
TRANSIENT ANALYSIS OF CVCS MALFUNCTION IN LARGE PASSIVE PWR	
Surip Widodo, Andi Sofrany Ekariansyah	132
EVALUATION OF FUEL BURN-UP AND RADIOACTIVITY INVENTORY IN THE 2 MW	
EVALUATION OF FUEL BURN-UP AND RADIOACTIVITY INVENTORY IN THE 2 MW TRIGA-PLATE BANDUNG RESEARCH REACTOR	170
M Budi Setiawan, S Kuntjoro, P M Udiyani, I Husnayani	100
APPLICABILTY STUDY OF ULTRASONIC FLAW DETECTOR FOR NUCLEAR GRADE	
	177
GRAPHITE EXAMINATION Roziq Himawan, Freddy Lie, Prita Dewi Basoeki, Mudi Haryanto	10/
Koziq nimawan, Freaay Lie, Friia Dewi Dasoeki, Muai Haryanio	

PRELIMINARY STUDY OF TEMPERATURE HOMOGENISATION IN EXPERIMENTAL POWER REACTOR HOT GAS CHAMBER	175
R Andika Putra Dwijayanto, Muhammad Subekti	175
A COMPARATIVE STUDY ON SAFETY DESIGN REQUIREMENTS BETWEEN HTGR AND	
LWR	
Julwan Hendry Purba, Damianus Toersiwi Sony Tjahyani	
INVESTIGATION OF GRAPHITE MATRIX ACTIVATION IN THE FUEL PEBBLE OF	
REAKTOR DAYA ESKPERIMENTAL	
I Husnayani, P M Udiyani, S Kuntjoro, M B Setiawan	
COMPARATIVE STUDY OF RDE AND CONVENTIONAL PLANT FOR MODERATE SCALE	
POWER GENERATIONS	
S Sudadiyo, T Taryo, E Saragi, Krismawan	
COMMISSIONING PREPARATION OF A SUBCRITICAL EXPERIMENTAL FACILITY FOR	
99MO PRODUCTION	
Syarip, P I Wahyono, W Susilo, K Donny	
DESIGNING INSTRUMENTATION AND CONTROL SYSTEM FOR POWER CONTROL AND	
SHUTDOWN SYSTEM OF RDE	
Agus Cahyono, Demon Handoyo, Kristedjo Kurnianto, Deswandri	
ANALYSIS OF IRRADIATED PEBBLE BED FUEL TRANSFER SYSTEM IN HOT CELL 101	
RADIOMETALLURGY INSTALLATION	
Helmi Fauzi Rahmatullah, Rohmad Sigit, Sri Ismarwanti, Erlina Noerpitasari, Maman Kartaman Ajiriyanto, Jan	
Setiawan CODDEL A TION DETRUCEN DIFFEDENT TYDE OF CAESHIM CADDIED IN THE	
CORRELATION BETWEEN DIFFERENT TYPE OF CAESIUM CARRIER IN THE RADIOCAESIUM INTERCEPTION POTENTIAL MEASUREMENT FOR FOREST SOILS	220
Hendra A Pratama, M Yoneda, Y Shimada, F Satoshi, M Ikegami	
REGULATORY ASSESSMENT ON A NEW UTILIZATION OF SAMOP TEST FACILITY:	
DETERMINATION ON FISSION POWER	238
Azizul Khakim	
FUEL BURN-UP AND RADIOACTIVITY INVENTORY ANALYSIS FOR NEW IN-CORE FUEL	
MANAGEMENT OF THE RSG-GAS RESEARCH REACTOR	246
S Kuntjoro, P M Udiyani, M Budi Setiawan	
DESIGN CRITERIA OF INSTRUMENTATION AND CONTROL IN FUEL HANDLING SYSTEM	
OF RDE	
Dian Fitri Atmoko, Achmad Suntoro, Deswandri	
TRADE-OFF ANALYSIS BETWEEN PLC AND FGPA FOR THE SYSTEM PLATFORM OF	
INSTRUMENTATION AND CONTROL SYSTEM EXPERIMENTAL POWER REACTOR: A	
PRELIMINARY STUDY	
Saharudin, Restu Maerani	
STUDY ON MOX CORE CHARACTERISTICS OF EXPERIMENTAL POWER REACTOR	
USING MCNP6 CODE	
Zuhair, Suwoto, H. Adrial, T. Setiadipura	
CONTROL ROD REACTIVITY ANALYSIS OF ONE STUCK ROD CONDITION IN 10 MWTH	
EXPERIMENTAL REACTOR CONCEPTUAL DESIGN (RDE-10 MWTH) ON FIRST FULL	
CORE	
H. Adrial, Suwoto, A. Hamzah, Zuhair	
BENCHMARKING OF EXPERIMENTAL SETUP FOR PRESSURE DROP CALCULATION IN A	
PACKED PEBBLE BED USING RELAP5	
A S Ekariansyah, S Widodo	
INHERENT SAFETY ANALYSIS OF THE UO2 FUELED PEBBLE LATTICE AT THE RDE	
USING SRAC2006 MODULE OF PIJ.	
J Susilo, I Husnayani, A A Waskita, Zuhair, S Bakhri THE DENIEL ODMENIT OF TIDLA C RATAN: A TIDLEO FUEL DEBEODMANCE ANAL VEIC CODE	207
THE DEVELOPMENT OF TRIAC-BATAN: A TRISO FUEL PERFORMANCE ANALYSIS CODE	
A. A. Waskita, T. Setiadipura BURNUP CALCULATION STUDY OF PEBBLE BED EQUILIBRIUM CORE	215
L. Suparlina, T. Setiadipura, Suwoto	
ESTIMATION OF RADIOACTIVITY IMPACT FOR RDE BASED ON HTR-10 HYPOTHETICAL	
ACCIDENT - A CASE STUDY	274
P M Udiyani, S Kuntjoro, I Husnayani, M Budi Setiawan, S A Santa	
PRELIMINARY ANALYSIS OF DOSE RATES DISTRIBUTION OF EXPERIMENTAL POWER	
REACTOR 10 MW USING MCNP	331
Amir Hamzah, Suwoto, Hery Adrial	

COMPARISON ON TWO OPTION DESIGN OF THE RDE COGENERATION SYSTEM	
Sukmanto Dibyo, Ign.Djoko Irianto, Syaiful Bakhri	
ANALYSIS OF HYDROCYCLONE AS RIVER WATER PRE-TREATMENT FOR TERTIARY	
COOLANT OF RDE	
Sriyono, Rahayu Kusmastuti, Sofia L. Butarbutar, Djati Hoesen Salimy, Febrianto, Ign. Djoko Irianto, M. Pancoko, Geni R. Sunaryo	
THE ANALYSIS FOR PREDICTION OF A CENTRAL DISTRIBUTION CRACK FOR RDE PRESSURE VESSEL BY FUZZY NEURAL NETWORK	
Mike Susmikanti, Roziq Himawan, Jos Sulistyo	
TWO DIMENSIONAL PERFORMANCE ANALYSIS OF SMALL HTR RESIDUAL HEAT	
REMOVAL SYSTEM IN DLOFC CONDITION	
Hendro Tjahjono, Susyadi, Surip Widodo, Anhar R. Antariksawan, Andi Sofrany, Hadi Kusuma, Rahayu Kusumastuti	
DECOMPOSED FUNCTIONAL BEHAVIOR OF HELIUM PURIFICATION SUPPORT SYSTEM	
FOR EXPERIMENTAL POWER REACTOR (RDE) TYPE USING SEQUENCE DIAGRAM	
Kussigit Santosa, Restu Maerani, Sudarno	
EFFECT OF HEAT ON COATING PROCESS OF JOINT TUBE WALL ASCENDING TUBE	277
FUEL HANDLING SYSTEM RDE	
EFFECT OF SUPERHEATED STEAM PRESSURE ON THE PERFORMANCE OF RDE ENERGY	
CONVERSION SYSTEM	38/
Ign. Djoko Irianto, Sriyono, R. Kusumastuti, K. Santoso, H. Subiyah, A. Citra, S. Dibyo, Zuhair, S. Bakhri, G. R. Sunaryo	
SOFTWARE REQUIREMENT ANALYSIS FOR DIGITAL BASED REACTOR PROTECTION	
SYSTEM OF RDE DESIGN	
S. Santoso, Sudarno, R. Maerani, J. Situmorang, A. Cahyono	
ANALYSIS OF AIR DISTRIBUTION AT MOLECULAR SIEVE VESSEL IN RDE SYSTEM	
BASED ON FAN FLOW RATE VARIATION USING AEROSOL DENSITY TESTING FACILITY	
Ainur Rosidi, G. Bambang Heru, Dedy Haryanto	
STUDY OF STRUCTURE SYSTEMS AND COMPONENTS CLASSIFICATION OF REAKTOR	
DAYA EKSPERIMENTAL - RDE BASED ON LIFE CYCLE MANAGEMENT	
Endiah Puji Hastuti, Sri Sudadiyo, Syaiful Bakhri	
SENSITIVITY OF HEAT TRANSFER PARAMETERS ON THE REAKTOR DAYA	
EKSPERIMENTAL - RDE CORE	419
Sudarmono, Suwoto, Syaiful Bakhri	
CALCULATION OF DOMESTIC RAW MATERIALS USING DOMESTIC RESOURCE COST	
METHOD.	
Arief Tris Yuliyanto, Dharu Dewi, Ewitha Nurulhuda, Nurlaila, Moch. Djoko Birmano, Utomo, Muhammad	
Subhan, Putut Hery Setiawan, Krismawan, Edi Siswanto, Citra Candranurani, Sufiana Solihat, Rustama	105
RECENT STATUS OF PUBLIC RESPONSE TO RDE DEVELOPMENT & UTILIZATION	
Dimas Irawan, Theresia Erni Wijayanti, Mudjiono, Muhammad Busthomi SOCIAL ENGINEERING TO THE DEVELOPMENT PLAN OF EXPERIMENTAL POWER	
REACTOR (RDE)	441
Mudjiono, Siti Alimah, Dimas Irawan, M. Busthomi, Heni Susiati	
CHAIN AND SPROCKET ANALYSIS OF CONTROL ROD DRIVE MECHANISM OF HTGR	
EXPERIMENTAL POWER REACTOR	448
M. Awwaluddin, Sri Hastuty, Z. Petrus, H. S. Putut, Krismawan, S. Edi, E. Byan W. R, A. Nugroho	
THE METHODS OF CONDITION MONITORING FOR CIRCULATOR OF HTGR	455
S. Bakhri, N. Ertugrul, Wen. L. Soong	
PRELIMINARY EXPERIMENT OF U-SHAPED HEAT PIPE AS PASSIVE COOLING SYSTEM	
IN HIGH TEMPERATURE GAS-COOLED REACTOR COOLING TANK	
Mukhsinun Hadi Kusuma, Anhar Riza Antariksawan, Giarno, Sri Ismarwanti, Mulya Juarsa, Dedy Haryanto,	
Surip Widodo, Tanti Ardiyati	
CONCEPTUAL DESIGN OF INDONESIA EXPERIMENTAL POWER REACTOR COUPLED	
WITH DESALINATION UNIT	
Erlan Dewita, Teguh Ariyanto, Heni Susiati, Marliyadi Pancoko	
DESIGN OF REINFORCED CONCRETE SHEAR WALL OF REACTOR BUILDING,	
EXPERIMENTAL POWER REACTOR	
Hadi Suntoko, Eko Rudi Iswanto, Ary Marwanto, Antonius Mahatma Puteraka	
PERCEPTION STUDY OF SAFETY INDICATORS IN NUCLEAR INSTALLATIONS USING	
MANN WITHNEY NONPARAMETRIC STATISTIC TECHNIQUE	
J. Situmorang, S. Santoso	

SENSITIVITY OF REFLECTOR ON NEUTRONIC PARAMETER FOR CONVERSION CORE DESIGN OF THE TRIGA RESEARCH REACTOR	
S. Tukiran, Pinem Surian, Bakhri Syaiful	
AN IMPROVEMENT OF THE DECISION MAKING GRID MODEL IN FAILURE- BASED MAINTENANCE ON RSG-GAS SYSTEM/COMPONENTS	
Entin Hartini, Muhammad Subekti STUDY ON PITTING CORROSION OF ALMG ₂ IN SOLUTION CONTAINING CHLORIDE	
Febrianto, Sriyono, Endiah Puji Hastuti, Geni Rina Sunaryo	
THE DEVELOPMENT OF HTGR-TRISO COATED FUELS IN THE GLOBE: CHALLENGING OF INDONESIA TO BE AN HTGR FUEL PRODUCER T Taryo, I Husnayani, RM Subekti, S Sudadiyo, E Saragi, Rokhmadi	
ASSESSMENT OF RELAP5 CODE MODEL TO SIMULATE U-SHAPED HEAT PIPE PERFORMANCE FOR HEAT SINK	515
Anhar R. Antariksawan, Mukhsinun Hadi Kusuma, Surip Widodo, Giarno, Mulya Juarsa, Hendro Tjahyono, Dedy Haryanto	
OVERVIEW OF THE APPLICATION OF THE SPECIFIC SAFETY REQUIREMENTS TO	
BATAN RESEARCH REACTORS	
Iman Kuntoro, Sriyono, M. Subekti, G.R. Sunaryo, Agus Rokhim, Taxwim, Jaja Sukmana PWR FUEL MACROSCOPIC CROSS SECTION ANALYSIS FOR CALCULATION CORE FUEL	550
MANAGEMENT BENCHMARK	
S. Pinem, T.M. Sembiring, Tukiran Surbakti	571
HEAT REMOVAL ANALYSIS IN THE AP1000 REACTOR'S REFUELLING PROCESS	
FAST DEFECT DETECTION ON PRIMARY PUMP PIPE FOR RSG-GAS REACTOR USING ACOUSTICS EMISSION TECHNIQUES	
Rokhmadi, M. Yahya, Santosa Pujiarta, Syaiful Bakhri, R. Muhammad Subekti	
A REVIEW ON PNEUMATIC TRANSPORTATION IN THE DESIGN OF FUEL HANDLING SYSTEM IN RDE-HTGR	590
K Widiyati, Sukmanto Dibyo	
UTILIZATION OF HTGR FOR PHOSPHATE FERTILIZER PRODUCTION AND URANIUM RECOVERY	
Djati H Salimy, Abdul Hafid, Sriyono PROPARIJ JETIC SAFETTY, ANALYSIS FOR ASSESSING THE FAILURE OF HEAT DEMONAL	
PROBABILISTIC SAFETY ANALYSIS FOR ASSESSING THE FAILURE OF HEAT REMOVAL CONTROL OF AP1000	
D T Sony Tjahyani, J H Purba	
SUSTAINING THE OPERABILITY AND SAFETY OF MALAYSIAN RESEARCH REACTOR TO SUPPORT NATIONAL NUCLEAR RESEARCH AND EDUCATION	615
M.F. Abd Farid, N. Ramli, M. F. Zakaria, A. N. Ab Rahim, A. S. Ligam	
SIMPLE SIMULATION USING COUPLING BETWEEN FLOWNEX AND LABVIEW SIMULTANEOUSLY IN CASE OF INDONESIAN EXPERIMENTAL POWER REACTOR A. S. Muksin, B. Syaiful	622
PRELIMINARY INVESTIGATION ON NATURAL CIRCULATION FLOW USING CFD AND	
CALCULATION BASE ON EXPERIMENTAL DATA PRE-FASSIP-02	
PRELIMINARY STUDY ON FLUID DYNAMICS IN MANIFOLDS OF THE REACTOR CAVITY	
COOLING SYSTEM - THE EXPERIMENTAL POWER REACTOR TEST FACILITY	634
Arif Adtyas Budiman, Dedy Haryanto, Muhammad Subekti, Mukhsinun Hadi Kusuma	c 1 7
ROLE OF SENSORS (NANO) IN NUCLEAR TECHNOLOGY Murthy Chavali Yadav	
EQUILIBRIUM CORE DESIGN OF REAKTOR DAYA EKSPERIMENTAL	650
3D MODELLING AND STATIC STRUCTURAL ANALYSIS OF BOTTOM REFLECTOR	
EXPERIMENTAL POWER REACTOR (RDE) USING SOLIDWORKS SOFTWARE Farisy Yogatama Sulistyo, Ari Nugroho, Syaiful Bakhri	
CRITICALITY AND BURNUP STUDY ON DIFFERENT TRISO MODELLING OF HTR PEBBLE	
L Wahid, T Setiadipura, Zuhair, Suwoto, S Bakhri THE SELECTION OF GEOMETRY AND FLOW RATE ON THE FLUIDIZED BED REACTOR	
THE SELECTION OF GEOMETRY AND FLOW RATE ON THE FLUIDIZED BED REACTOR FOR COATING PARTICLE	
R Sukarsono, S Riyadi, D Husnurrofiq. Sri Rinanti	
APPLICABLE STANDARD DOCUMENT REFERENCES FOR AGEING MANAGEMENT	
ISSUES RELATED TO INDONESIAN RESEARCH REACTORS Restu Maerani, Eric Yee	

MATERIAL SCIENCE AND ENGINEERING

EXTRACTION OF NEODYMIUM (III) FROM NEODYMIUM CONCENTRATE U	SING
SYNERGISTIC SOLVENT D2EHPA, TOPO AND TBP	
Moch Setyadji, Suyanti	

PART 2

LOW CYCLE FATIGUE PROPERTIES OF EXTRUDED 6061-T6 ALUMINUM ALLOY	
M Badaruddin, Zulhanif, H Supriadi	
SEPARATION OF CE, LA AND ND IN RARE EARTH HYDROXIDE (REOH) BY OXIDATION	716
WITH POTASSIUM PERMANGANATE AND PRECIPITATION. M V Purwani, K Trinopiawan, H Poernomo, Suyanti, N D Pusporini, R A Amiliana	/16
ANALYSIS OF COMPOSITION, DENSITY, AND THERMAL PROPERTIES OF U-ZR-NB ALLOY POWDER FOR NUCLEAR FUEL	720
Masrukan, Yanlinastuti, M.H Alhasa, Arif Sasongko	
INFLUENCE OF HOOKED-ENDSTEEL FIBERS ON FRESH AND HARDENED PROPERTIES	
OF STEEL FIBER REINFORCEMENT SELF-COMPACTING CONCRETE (SFRSCC)	737
Faiz Sulthan, Saloma	
ANALYSIS OF FATIGUE LIFE AND CRACK PROPAGATION CHARACTERIZATION OF	
GRAY CAST IRON UNDER NORMALIZING PROCESS	748
Hendri Chandra, Nukman, Baoadi Sianturi	
FINITE ELEMENT FAILURE ANALYSIS ON 34CRNIMO6 FIRING PIN IN FATIGUE	
FRACTURE	
A Yusup, A Mataram, I Yani, M Zahir	
EVALUATION PAVEMENT DETERIORATING CONDITION ON SURFACE DISTRESS INDEX	
(SDI) DATA USING RADIAL BASIS FUNCTION NEURAL NETWORKS (RBFNN)	
Amrina Rosada, Joni Arliansyah, Erika Buchari	
STUDY ON THE MECHANISM OF CO2 ADSORPTION PROCESS ON ZEOLITE 5A AS A	
MOLECULAR SIEVE IN RDE SYSTEM: AN INFRARED INVESTIGATION	
R. Kusumastuti, Sriyono, M. Pancoko, S.L. Butar-Butar, Guntur Eko Putra, Hendro Tjahjono	
CONSIDERATIONS OF MATERIAL SELECTION FOR CONTROL ROD DRIVE MECHANISM	
OF REAKTOR DAYA EKSPERIMENTAL	778
Sri Hastuty, Petrus Zacharias, M Awwaluddin, Krismawan, Putut Hery Setiawan, Edy Siswanto, Budi Santoso, Ari	
Nugroho, Ahmad Majdi Abdul-Rani	-0.4
ANALYSIS OF RPV STRENGTH IN CURRENT RDE BASED ON TEMPERATURE	
E. Saragi, S. Sudadiyo, T. Taryo	
PREPARING THE CARBON-BASED MATERIAL WITH DIFFERENT MILLING SETTINGS TO	702
CHANGE THE MORPHOLOGY AND CRYSTALLINE STRUCTURE Barlin, WC Chang	
EFFECTS OF SIC PARTICULATE-REINFORCED ON THE FLUIDITY AND MECHANICAL	
PROPERTIES OF ALUMINIUM MATRIX COMPOSITE THROUGH STIR CASTING ROUTE	801
Gunawan, Amir Arifin, Yani Irsyadi, Bembi Aris Munandar	
THE INFLUENCES OF CATALYST COMBINATION ON THE HIGH TEMPERATURE	
PROTON EXCHANGE MEMBRANE FUEL CELL	808
K Sasiwimonrit, W-C Chang	

MECHANICAL AND INDUSTRIAL ENGINEERING

MICRO HYDRO ELECTRIC POWER PLANT (MHEP) PROTOTYPE A STUDY OF THE	
EFFECT OF BLADE NUMBERS TOWARD TURBINE ROTATIONAL VELOCITY	
Ibnu Asrafi, M. Yerizam, Sairul Effendi, Agung Mataram	
THE EFFECT OF MAGNETIC FIELD AND HEATER IN BIODIESEL FUEL LINE TOWARD	
TORQUE, POWER, AND FUELD CONSUMPTION OF ONE CYLINDER FOUR STROKE	
DIESEL ENGINE AT MAXIMUM LOAD	
Muhamad Sirajudin, A Husaini, Tri Widagdo, Agung Mataram	
PV PANEL COOLER TO ENHANCE OUTPUT PERFORMANCE USING PERFORATED	
ALUMINIUM PLATE	
I Bizzy, L Mustafrizal	

OPTIMALIZATION PHYSICAL ENVIRONMENT EFFECTS ON WORK PRODUCTIVITY FOR	
ASSEMBLY OPERATOR WITH RESPONSE SURFACE METHODOLOGY	
M. Rosyidah, D. Oktarini, Madagaskar, Azhari	
SUSTAINABLE DEVELOPMENT OF LUBRICATOR TO OPTIMIZATION PROCESS OF	
LUBRICATION IN WIRE ROPE SLING	
Mgs Halim, H Chandra, D K Pratiwi, M Zahir	
THERMODYNAMICS PERFORMANCE EVALUATION IN COMBINED CYCLE POWER	
PLANT BY USING COMBINED PINCH AND EXERGY ANALYSIS	
M I Riady, D Santoso, M D Bustan	
DEVELOPMENT OF IMAGE ACQUISITION SOFTWARE FOR DIGITAL RADIOGRAPH AND	0.64
X-RAY CT.	
Fitri Suryaningsih, Demon Handoyo, Andeka Tris Susanto	
DESIGN OPTIMIZATION IN STRESS DISTRIBUTION OF FIRING PIN RIFLE BY IMPACT	070
FORCE USING FINITE ELEMENT MODELLING	
E P Riyanto, I Yani, A Arifin, M Zahir	070
CHALLENGES IN TURBINE FLOW METERING SYSTEM: AN OVERVIEW	8/8
Bunyamin, Nyayu Latifah Husni, Hasan Basri, Irsyadi Yani MECHANICAL EDACTUDE CHADACTEDIZATION OF DICE KEDNEL UNDED MILLINC	
MECHANICAL FRACTURE CHARACTERIZATION OF RICE KERNEL UNDER MILLING PROCESS	000
H Chandra'	009
THE ANALYSIS OF DIMPLE GEOMETRY ON ARTIFICIAL HIP JOINT TO THE	
PERFORMANCE OF LUBRICATION	80/
Hasan Basri, A. Syahrom, A. T. Prakoso, D. Wicaksono, M. I. Amarullah, T. S. Ramadhoni, R. D. Nugraha	
THE EFFECT OF THE WELDING DIRECTION ON FATIGUE CRACK PROPAGATION RATE	
OF WELDED SHELL KILN	904
Akbar Teguh Prakoso, Irsyadi Yani, Agung Mataram, Gunawan, Hasan Basri	
ANALYTICAL DESIGN OF HELICAL COIL STEAM GENERATOR FOR HOT TEMPERATURE	
GAS REACTOR	
B W Riyandwita, M Awwaludin, Krismawan, P Zacharias, E Siswanto, P H Setiawan, A Nugroho	
FATIGUE EVALUATION OF PRESSURE VESSEL USING FINITE ELEMENT ANALYSIS	
BASED ON ASME BPVC SEC. VIII DIVISION 2	
P. Kadarno, D. S. Park, N. Mahardika, I. D. Irianto, A. Nugroho	
APPLICATION OF RSM AND ANN IN PREDICTING SURFACE ROUGHNESS FOR SIDE	
MILLING PROCESS UNDER ENVIRONMENTALLY FRIENDLY CUTTING FLUID	
M Yanis, A S Mohruni, S Sharif, I Yani, A Arifin, B Khona'ah	
PROCESSING OF STAINLESS STEEL (SS316L)-HYDROXYAPATITE (HA) POWDER	
COMPOSITE THROUGH POWDER INJECTION MOLDING	937
Mohd Ikram Ramli, Abu Bakar Sulong, Norhamidi Muhamad, Andanastuti Muchtar, Amir Arifin, Seong Jin Park	
MACHINABILITY ANALYSIS OF DRILLED BAMBOO FIBRE REINFORCED POLYMER	
(BFRP) COMPOSITE	
M F A Zaharuddin, P A A Yunos, Y Jiyoung, A S Mohruni, I Yani, M Yanis	
DETECTING SKIN DEFECTS OF STAR APPLE BY USING HYPERSPECTRAL IMAGES	
Quoc Thien Pham, Nai-Shang Liou	
THE FABRICATION POROUS HYDROXYAPATITE SCAFFOLD USING SWEET POTATO	0.50
STARCH AS A NATURAL SPACE HOLDER	
Gunawan, Amir Arifin, Irsyadi Yani, Sufran Danar Arian	0.55
SELF-IGNITION TEMPERATURE OF PEAT	
A Taufik Arief, Nukman, Elda Elwita	

ELECTRICAL SCIENCE AND ENGINEERING

ELECTRICAL DESIGN FOR HELIUM PURIFICATION AND SUPPLY SYSTEM OF RDE	
Kiswanta, E. Sumarno, K. Santosa, K. Indrakoesoema, K. Handono	
ROBOT POSITION CONTROL USING ANDROID	
A S Handayani, N L Husni, A B Insani, E Prihatini, C R Sitompul, S Nurmaini, I Yani	
ANALYSIS OF DIELECTRIC STRENGTH OF VIRGIN COCONUT OIL AS AN ALTERNATIVE	
TRANSFORMER LIQUID INSULATION	
Ansyori, Zainuddin Nawawi, M. Abubakar Siddik, Indra Verdana	
ELECTRICITY LOAD SATURATION ANALYSIS FOR MAKASSAR CITY	
Yusri Syam Akil, Hendra Pachri, Saiful Mangngenre, Yusran, Muhammad Azwal, and Jumardin	

1014

CHEMICAL SCIENCE AND ENGINEERING

PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL WITH ULTRASONIC	
IRRADIATION METHOD AS RENEWABLE ENERGY SOURCE	
Agus Lukman Hakim, Martha Aznury, Jaksen M Amin	
SYNTHESIS BIODIESEL FROM WASTE COOKING OIL WITH MICROWAVE IRRADIATION	
METHOD AS ALTERNATIVE RENEWABLE ENERGY SOURCE	1035
I. Gunawan, M. Aznury, A. Husaini	
1,2-PROPANEDIOL - BETAINE AS GREEN SOLVENT FOR EXTRACTING α-MANGOSTIN	
FROM THE RIND OF MANGOSTEEN FRUIT: SOLVENT RECOVERY AND PHYSICAL	
CHARACTERISTICS	
K Mulia, Y Yoksandi, N Kurniawan, I F Pane, E A Krisanti	
HYDROGEN RECOVERY FROM CH ₄ – H ₂ GAS MIXTURE BY ADSORPTION USING	
COCONUT SHELL-BASED ACTIVATED CARBON	
M Sudibandriyo, N A Madiadipura	
THE COMBINED PROCESS OF PYROLYSIS AND CATALYTIC CRACKING OF RICE STRAW	
USING ZSM-5 AND γ-AL ₂ O ₃ CATALYST PREPARED BY PHYSICALLY MIXING	
Aji S Nugraha, RM Ivan Pratama, Setiadi, T S Utami	
EFFECT OF HIGH SPEED HOMOGENIZER SPEED ON PARTICLE SIZE OF POLYLACTIC	
ACID	
K Mulia, A Safiera, I F Pane, E A Krisanti	
TREATMENT OF TOFU INDUSTRY'S WASTEWATER USING COMBINATION OF	
OZONATION AND HYDRODYNAMIC CAVITATIONS METHOD WITH VENTURI INJECTOR	
E F Karamah, A R Primasto, R R Najeges, S Bismo	
FORMULATION, CHARACTERIZATION, AND RELEASE PROPERTY OF ANTIOXIDANT	
SUPPLEMENT CAPSULE WITH RED GINGER OLEORESIN EXTRACT-LOADED CHITOSAN	
MICROPARTICLES	
K Mulia, U Y Risgi, I F Pane, E A Krisanti	

GEOLOGICAL SCIENCE AND MINING ENGINEERING

IDENTIFICATION OF SANDSTONE LAYER BENEATH THE DEMONSTRATION DISPOSAL	
SITE AT NUCLEAR SERPONG AREA USING RESISTIVITY GEO-ELECTRICAL METHOD	
Sucipta, Bella Septian Lestari, Risdiana Setiawan, Sutrisno	
THE EFFECT OF HEAT TREATMENT ON FATIGUE TESTING OF ALUMINUM CANS	
MS Firdaus, Nukman, Irsyadi Yani, Amir Arifin, Prana Arifta, Indra Surya	
ARCHITECTURE AND CIVIL ENGINEERING	
ARCHITECTURE AND CIVIL ENGINEERING	
EFFECTS OF THE DESIGN PARAMETERS AGAINST SLAB ON GRADE VOLUME USING	
CORPS OF ENGINEERING DESIGN METHOD	1106
Muhamad Taufik Costarico, Maulid Muhammad Iabal, Joni Arliansyah	
ANALYZE OF TANJUNG API-API FERRY PORT SERVICE PERFORMANCE SOUTH	
SUMATERA, INDONESIA	
Yossy Marissa, Maulid Muhammad Iqbal, Ika Juliantina	
STRUCTURING OF SLUM SETTLEMENT INFRASTRUCTURE KERTAPATI VILLAGE,	
PALEMBANG CITY, SOUTH SUMATRA	
Ariezki Yuliani, Maulid Muhammad Iqbal, Heni Fitriani	

AN ANALYSIS OF AIR QUALITY THROUGH THE BASIS OF TRAFFIC PERFORMANCE OF SIGNALED INTERSECTIONS	1140
Emelda Raudhati, Joni Arliansyah, Erika Buchari	
ANALYSIS OF THE INFLUENCE OF TRAFFIC FLOW ON AIR POLLUTION AT SIMPANG	
ANGKATAN 66 OF PALEMBANG CITY	1149
Mei Lisa Adha, Joni Arliansyah, Erika Buchari	
IDENTIFICATION OF DAMAGED INFRASTRUCTURE ON SHEET PILE MUSI AT	
PALEMBANG CITY	1157
Ratih Baniva, Maulid M. Iqbal, Henl Fitriani	
CHANGE OF ELEMENT SETTLEMENT IN MUSI RIVERSIDE PALEMBANG	1162
Bambang Wicaksono, Ari Siswanto, Susilo Kusdiwanggo, Widya Fransiska Febriati Anwar	
RELIABILITY ANALYSIS OF SAFETY SYSTEM ON FIRE HAZARD FACTORY BUILDING	
(STUDY CASE AT PT. SEMEN BATURAJA)	1170
Dewi Marlina, Heni Fitriani, Ika Juliantina	
DEVELOPMENT OF MAINTENANCE SYSTEM PROCEDURE GOVERNOR OFFICE	
BUILDING SOUTH SUMATERA PROVINCE	1176
Andriansyah, Maulid Iqbal, Mona Foralisa	
STUDY ON DEVELOPMENT OF WATER SUPPLY SYSTEM IN PENUKAL ABAB LEMATANG	
ILIR REGENCY	1188
Rina Anggraini, Maulid Muhammad Iqbal, Sarino	
DETERMINING RENT PRICE OF KASNARIANSYAH FLAT USING ABILITY TO PAY	
ANALISYS	1106
F H Putri, M M Iqbal, I Juliantina	1190
THE SPATIAL DECISION-MAKING SYSTEM IN MITIGATION OF THE SOUTHERN RING	1200
ROAD OF INUNDATION SUB WATERSHEDS	1206
Tezar Rizky Abdullah, Dinar DA Putranto, Sarino	
ANALYSIS OF OPEN GREEN SPACE IN THE AREA OF SRIWIJAYA UNIVERSITY	
INDRALAYA	
Aries Sandratama, Dinar Dwi Anugerah Putranto, Sarino, Ari Siswanto	
THE INFLUENCE OF OPERATION AND MAINTENANCE ACTIVITIES ON WATER	
MANAGEMENT OF TINONDO SWAMPS IRRIGATION AREA AT EAST KOLAKA REGENCY,	
SOUTHEAST SULAWESI PROVINCE, INDONESIA	1229
Hesti Wahyu Lestari, Dinar Dwi Anugerah Putranto, Sarino	
THE FINANCIAL FEASIBILITY ON DEVELOPING TERMINAL BUILDING OF SULTAN	
MAHMUD BADARUDDIN II INTERNATIONAL AIRPORT	1236
M Oktari, M M Iqbal, M Agustien	
ANALYSIS OF FLOOD HYDROGRAPH TO THE LAND USE CHANGE ON FLOOD PEAK	
DISCHARGE IN THE SEKANAK WATERSHED	1244
Soraya Ayu Lestari, Dinar Dwi Anugerah, Sarino	
HEALTH AND SAFETY ANALYSIS OF LIGHT RAIL TRANSIT PROJECTS IN PALEMBANG	1254
Gafo Rudy Hendrik Aji, Dinar DA Putranto, Ika Juliantina	
MECHANICAL PROPERTIES OF FOAMED CONCRETE WITH ADDITIONAL PINEAPPLE	
FIBER AND POLYPROPYLENE FIBER	1260
T Irawan, Saloma, Y Idris	
AN ANALYSIS OF THE DAMAGE AND ESTIMATED MAINTENANCE COSTS A. ROZAK	
STREET CITY OF PALEMBANG	1267
Bayumi Oktorine, Dinar Da Putranto, Ika Juliantina	
CHARACTERISTICS FOAM CONCRETE WITH POLYPROPYLENE FIBER AND	1075
STYROFOAM	1275
Falfuady, Saloma, Y Idris	
MECHANICAL PROPERTIES OF FLY ASH-BASED GEOPOLYMER WITH NATURAL FIBER	1282
R Zulfiati, Saloma, Y Idris	
EVALUATION OF DESIGN PLANNING WATER DISTRIBUTION SYSTEM WITH WATERCAD	
V.7.0 SIMULATION PROGRAM FOR TOWNSITE BASECAMP SETTLEMENT RELOCATION	
IN TANJUNG ENIM, SOUTH SUMATRA	1289
Eka Septiawati, Edy Sutriyono, Ika Juliantina, Ari Siswanto	
THE ANALYSIS OF ABILITY TO PAY (ATP) AND WILLINGNESS TO PAY (WTP) ON LIGHT	
RAIL TRANSIT (LRT) TARIFF IN PALEMBANG	1299
M. H. A. Sarwandy, Joni Arliansyah, Heni Fitriani	
EXPERIMENTAL STUDY OF MODEL IN FOLDED PLATE SOFT CLAY	1308
Evin Oktavina, Maulid Iqbal, Ratna Dewi	. 200

ANALYSIS OF TRIP ATTRACTION AS LAND USE DEVELOPMENT EFFECT IN PALEMBANG: CASE STUDY ON CINDE TRADITIONAL MARKET	1315
Marice Agustini, Erika Buchari, Melawaty Agustien	
EFFICIENCY ANALYSIS OF SUBAN IRRIGATION SYSTEM, WEST TANJUNG JABUNG,	
JAMBI PROVINCE	
Achmad Rezhani Fitra, Dinar DA Putranto, Sarino	
WATER MANAGEMENT PLANNING FOR SWAMP BUFFALO IN SUB-DISTRICT	
RAMBUTAN, BANYUASIN REGENCY	
Andre Wibowo, Dinar Dwi Anugerah Putranto, Sarino	
ROLE ANALYSIS AND MANDOR FUNCTIONS ON BRIDGE AND BUILDING	
CONSTRUCTION PROJECTS IN DISTRICT OGAN KOMERING ULU	
R Vrayudha, M Iqbal, M Foralisa	
THE BUILDING PERFORMANCE OF LIMAS HOUSE; DEALING WITH CURRENT CONTEXT	
Widya Fransiska F Anwar	
ANALYSIS OF AIR POLLUTION DUE TO VEHICLE EXHAUST EMISSIONS ON THE ROAD	
NETWORKS OF BERINGIN JANGGUT AREA	
Achmad Rizki Pratama, Joni Arliansyah, Melawaty Agustien	
ANALYSIS AND DESIGN OF CRANE BEAM OF EXPERIMENTAL POWER PLANT TURBINE	
BUILDING	
Abdul Hafid, Djati Salimi, Ewitha, Sitti Hijraini Nur	

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

RICE FARMING AGE DETECTION USE DRONE BASED ON SVM HISTOGRAM IMAGE	
CLASSIFICATION	1376
Marsujitullah, Zahir Zainuddin, Salama Manjang, Aksan Surya Wijaya	
A COMPARATIVE STUDY OF THE ALGORITHMS FOR PATH FINDING TO DETERMINE	
THE ADVERSARY PATH IN PHYSICAL PROTECTION SYSTEM OF NUCLEAR FACILITIES	1383
D. Andiwijayakusuma, A. Mardhi, I. Savitri, T. Asmoro	
AN APPROACH IN AUTO VALUING FOR OPTIMAL THRESHOLD OF VIOLA JONES	1388
Indrabayu, Nurzaenab, Ingrid Nurtanio	
STUDY IN DEVELOPMENT OF CANS WASTE CLASSIFICATION SYSTEM BASED ON	
STATISTICAL APPROACHES	1397
Y Resti, A.S. Mohruni, T. Rodiana, D.A. Zayanti	
PERSONAL IDENTIFICATION USING VOICE RECOGNITION WITH NEURO FUZZY	
METHOD	
Ariyawan Sunardi, Rezky Mahardika, Sunarko, Heri Suherkiman	

FOOD AND AGRICULTURAL SCIENCE, NATURAL RESOURCE SCIENCE

IDENTIFICATION OF SETTLEMENT IN THE AREA SITE RDE AND IT'S SURROUNDING	
FOR SOCIAL ENGINEERING EVALUATION	12
Heni Susiati, Habib Subagio, Mudjiono, Siti Alimah, Dimas Irawan	

Author Index

Challenges in Turbine Flow Metering System: An Overview

Bunyamin¹, Nyayu Latifah Husni², Hasan Basri^{1*}, Irsyadi Yani¹

¹Mechanical Engineering Department, Faculty of Engineering, Universitas Sriwijaya ²Electrical Engineering Department, Politeknik Negeri Sriwijaya

* E-mail: hasan basri@unsri.ac.id

Abstract. This paper presents an overview of turbine flow meter (TFM). State of the art, the basic concept of TFM, and some parameters that influence the robustness of TFM are described. In addition, some challenges that occurred in TFM that can affect the accuracies of the measurement are also analysed. The different meter reading between the manual metering or turbine stand meter and Electronic Volume Corrector (EVC) that occurs in turbine flow meter in oil and gas industries is one of TFM challenges. This difference leads to losses in customers or in industries themselves. A notification system is proposed in this paper. An intelligent system that can determine the occurrence of the error will be embedded to the system. It is hoped that by having the earlier notification, the losses can be decreased.

Keyword: Artificial Intelligence, Electronic Volume Corrector, Meter Bouncing, Notification, Turbine Flow Meter

1. Introduction

Measuring fluid flow rate (gas or liquid) in real-time becomes one of the most important things in many applications, such as in industry, oil and gas trade, health [1], and other applications [2]. The characteristic of the fluid that is able to change easily in different ways made it become not always remain stable. To overcome this problem, a flow meter with high precision and fast response is of significant need. There were a lot of flow meter types that have been invented by previous researchers; some of them are coriolis [3], venturi [4], orifice [5], ultrasonic [6], and turbine [7] flow meter.

Turbine flow meter has been investigated for a decade due to the economy of installation, low maintenance costs [8], compact (with small size), high stability, precision [7], direct volume readout and wide measurement range [9]. It has succeeded to measure not only the liquid but also the gas. It can be used to measure the billing meter for water and gas flow in private house, office, hotels, apartment complexes, and other commercial buildings. It can also be applied to measure the oil in upstream and downstream of refineries or process liquid in industrial and pharmaceutical chemicals [10]. In conducting the measuring tasks, the turbine flow meter should offer a good performance. It should provide a correct measurement. However, the flow condition in the pipelines usually shows its consistency. The fluid supply and demand fluctuated every time [11]. It could decrease the performance of the turbine flow meter. Therefore, a robust turbine flow meter is really needed.

The accuracy of the flow meter can be obtained using accurate calibration. Turbine flow meter must be properly and periodically calibrated [12]. Unfortunately, even with a well installed and calibrated, turbine flow meters sometimes showed bad performances [13]. Error deviation that is

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1 disadvantageous always occurs as its effects. This paper has an objective to analyze the challenges that cause incorrect measurements of turbine flow meter.

2. Turbine Flow Meter Technology

Previous researchers introduced some flow meters that can handle the measurement of the fluid. In general, the flow meters can be categorized into 2 groups, i.e. inferential and positive displacements [5]. In other researches, they were divided into many classifications, such as: (i) proposed by Furio [9] that divided the flow meter into 3 groups, i.e. inferential, differential pressure and positive displacements; (ii) introduced by Richard [14] that classified the meters into 3 groups, i.e. pressure differential meter, insertion volume, and mass; (iii) presented by Frenzel [15] that grouped the flow meters into 2 main classes (Figure 1). In Frenzel's classification, the division of the groups is based on 2 criteria, namely 1) in closed pipe lines and 2) open channel and free surface pipe lines.

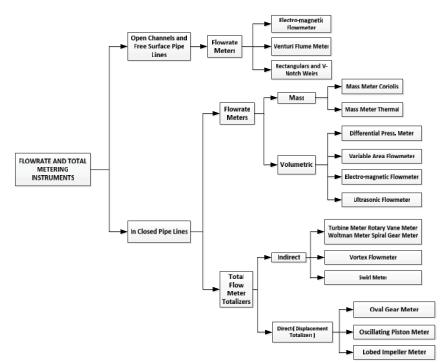


Figure 1. Classification of Flow Meter

The inferential flow meter usually does not measure the volume, velocity or mass directly, but measures flow by inferring its value from other measured parameters, in other word this metering measures the rate of the flow [5]. That is why some references categorize the inferential flow meter as indirect flow meter that measures gas flow volumes by counting the revolutions of the rotor [16]. Flow meters that included as inferential flow meters are: orifice, ventury, flow nozzle, pitot, dall tube.

Differential pressure meters are devices that derive the volumetric flow rate through the measurement of a difference of static pressure between two suitable pressure taps. They work based on the pressure differences that depends on the Bernoulli's theorem and the continuity equation. Some examples of differential pressure meters are orifice plates, nozzles, rotameter, etc.

Positive Displacement meters are actually counter meters. It separates the incoming gas into a series of known discrete volumes and then totalizes the number of volumes. This meter directly measures the volume of the fluid that passed through a pipe. Some examples of positive displacement meters are rotary piston, gear, helical, weir, sluice gate, open channel flow meter, and diaphragm flow meter.

2.1. State of The Art Turbine Flow Meter

The history of turbine flow meter started when the first turbine flow meter was invented by Reinhard Woltman in 1790 [10] [12]. Most of the researchers in that time focused on analyzing the turbine flow meter in steady flow [17]. In 1960, the topic of the researches was shifted to the design the blade shape of the turbine flow meter. Some of the researchers also established some mathematical model of the rotation of the impeller in order to analyze the torque on different part of blade. By having numerical method, the development cycle of new products could be shortened and the cost of the development could be reduced [1]. However, the model still could not describe the internal flow field and the velocity distribution [12]. Moreover, during rotation process of the blade, its precision calculation was also affected by many phenomena, such as separation, whirlpool and reflux [12]. Recently, most of the researches were interested in two research scopes, including the numerical simulation technology and turbine flow meter calibration and measurement (see Table 1). Most usable simulation software in flow meter was computational Fluid Dynamic (CFD). It is a tool for simulating many applications with high accuracy and flexibility.

Table 1. Recent Turbine Flow Meter Researches					
Year	Author	Technique/method	Results/Advantages	Туре	Ref
2013	Suna Guo	CFD simulation	viscosity and linearity error increased; average meter factor of turbine flow meter decrease	Experiment/Si mulation	[2]
2014	Z. Saboohi	and CFD simulation		Simulation	[18]
	Y. Z. Huang	Cavitation modeling	Could predict the cavitation	Simulation	[8]
	Paul W. Tang	Describe some factors that affected the error occurred in the measurement	Offered an accuracy measurement by using optimization	Experiment /Simulation	[16]
	Xin Jin	Mathematical modeling using AMESim	Could manage the high frequency oscillation	Simulation	[19]
2015	Pedišius Nerijus	Comparing the measurement and rotary vane and turbine flow meter	Forecast measurement accuracy	Experiment/Si mulation	[20]
	LI Dong-hui	Drift-flux model	Could manage the error	Simulation	[21]
	Furio Cascetta	Addition new original formulae	on-off cycles influenced the extra rotation	Experiment/Si mulation	[9]
	Carl L. Tegtmeier	CFD modelling	Steady state rotor speed	Simulation	[12]
2016	Mohammed Design and build TFM using Liaket Ali Arduino precise result with 3% error		precise result with 3% error	Experiment	[22]
	Guo Suna CFD		Showed the optimal flow meter performance	Simulation	[23]
2017	Y. Yuang	workbench	adaptive measurement	Modelling/ Simulation	[7]
2018	Z. Džemić	High Frequency Signal	Suggest a good dynamic response	Experiment/Si mulation	[24]

Many researchers tried to make new design and optimization of turbine flow meter. Tegtmeier in [12] analyzed the calibration of gas turbine using CFD. A model was established to imitate the real experiment of turbine flow meter. A variation of the flow rate, viscosity, and density was set up in order to reach a stable rotor speed. The model gave some results that can be used to improve the turbine flow meter in the future [12]. Some other researchers that used CFD in their researches can be seen in Table 1.

For the real design, it can be seen in research proposed by Ali in [22]. The research showed a design of turbine flow meter that could record the flow rate and the temperature of fluid. The design

managed to measure the flow of the fluid by utilizing the opto-sensor that grabbed the rotation of turbine and transmitted the pulse signal to the microprocessor. The error produced by the design was really small (3%).

2.2. Turbine Flow Meter Basic Concept and Equation

The turbine meters can be used to measure various flow rates, operating pressures up to 10,000 pounds per square inch, temperature range of -450° to 1000° F [8]. Turbine flow meter in basic concept utilizes the spin of the rotor. The rotor spins when fluid passes through them. The force of the fluid current makes the rotor to spin. Therefore, the rotor in general rotates proportionally to the flow rate. For detecting the rotational speed of the rotor, a pick off sensor is needed. Typically, the pick off sensor is equipped with a magnet and rotating conductor. This magnet has a chance to count the rotation of the rotor of the turbine [10]. When plate blades cut through the flow helically, the value of velocity v and frequency f, can be generated using equation (1) and (2) [25]. In its application, turbine flow meter consisted of many types, as shown in Table 2 [10].

$$v_a = \frac{v}{\tan\beta} \tag{1}$$

$$f = \frac{N \tan \beta v_a}{2\pi r}$$
(2)

where v_a is the axial velocity, v is the blade velocity, β is the blade angle, N is the number of the blade, and r is the radius of the blades.

No.	Туре	Principles	Application
1	Axial	The rotor of this type revolves around the axis of flow	industrial liquid, oil or
			gases measurement
2	Single Jet/	It has orifices that lead the fluid into blades so that it turns.	municipal, commercial, and
	Multi Jet		industrial water
			measurement
3.	Paddlewheel	The paddlewheel is light and the blades are flat. The	to measure low-speed flows
		blade spins to flow rate proportionally	
4.	Pelton wheel	It is almost the same with paddlewheel, but it has a	to measure low flow rates
		single size rotor and the blade is straight	of low-viscosity
5.	Propeller	The blade is helical-shaped. This type has longer and	to measure dirty fluid
		fewer blades than the other type	
6.	Woltman	The axis of the turbine is in line with the flow direction	to measure larger volume

Table 2. Flow meter Turbine Types [10].

2.3. Parameters in Turbine Flow Meter

2.3.1. Viscosity

Viscosity is one of important factors in turbine flow meter performance. When the viscosity is low (1 cSt (centistokes) or below, as in water), the response of the flow meter depends on the flow rate linearly [12]. However, when the viscosity is high (20 to 100 cSt, as in hydraulic fluid), the response of the flow meter is really non-linear [12]. Tegtmeier [12] analysed the effect of viscosity to the turbine flow meter measurement. The result of the research could be very useful for calibrating and designing turbine flow meters.

The viscosity exists not only in liquid but also in gases. The values are appreciably smaller than for liquids and increase with temperature [15]. It is contradictive with liquids where its viscosity reduces with increasing temperature [15]. The viscosity has a tight relation with pressure and temperature. The increasing of viscosity affected the decreasing of the pressure. Therefore, an additional energy is needed to increase the pressure, so that the fluid can manage its rate of flow [26]. Meanwhile, the increasing of the temperature will decrease the absolute viscosity. Thus, the turbine flow meter performance will also be affected by the temperature [26].

Turbine flow meters that are usually used to measure high flow rate are needed to be calibrated for atmospheric pressure. The kinematic viscosity will decrease as the effects of the gas density growth due to the increasing of pressure. This condition leads to the difficulty of extrapolating the laboratory calibration result to operating conditions [20]. The ratio for absolute viscosity to density in equation (3) is called Kinematic Viscosity (ν) [26].

$$\mathbf{v} = \frac{\mu}{\rho} \tag{3}$$

where, \boldsymbol{v} is kinematic viscosity; $\boldsymbol{\mu}$ is absolute viscosity; and $\boldsymbol{\rho}$ is density

2.3.2. Reynold Number

According to Paul [16], Reynolds number (Re) is a dimensionless ratio that related to the gas flow rate, the meter run diameter, and the properties of the gas. For low Re (below 2000) where the viscous forces are dominant, the flow laminar will take place. In contrast, when the Re is high (above 4000), the turbulent flow will occur due to the domination of inertial forces. For Re between 2000 and 4000, a transitional state will dominate. In this condition, the system shows its instability.

The Re can be calculated using the equation (4):

$$Re = \frac{\rho v D}{\mu} \tag{4}$$

where, ρ is density; ν is velocity; D is diameter; and μ is dynamic viscosity.

To reach the dynamic similarity of fluid flow, many researchers took into account a Reynolds number [24], [16]. When the same Re was exposed to an object, the characteristics of that object would be the same. For instance: with the same Re, the rotation of the rotor in a turbine meter would have same angular velocity [24].

2.3.3. Cavitation

Cavitation in a turbine flow meter refers to an empty space that occur due to the decreasing of local pressures near or below the vapor pressure [8]. It can cause the rotor to speed up at the high flow rate due to the increased flow volume and causes the accuracy curve of the turbine flow meter to be adversely affected [8]. Navier-Stokes equations in equation (5) -(8) are the most common formulas used in describing the cavitation models. Equations (5), (6), (7), and (8) are mass conservation, momentum equation, transport equation for cavitation dynamics of vapor volume fraction, and mass transfer.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0 \tag{5}$$

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j u_i) = \rho g_i - \frac{\partial \rho}{\partial x_i} + \frac{\partial \tau_{ji}}{\partial x_i}$$
(6)

$$\frac{\partial \alpha_{\nu} \rho_{g}}{\partial t} + \frac{\partial}{\partial x_{j}} (\alpha_{\nu} \rho_{g} u_{j}) = 5$$
⁽⁷⁾

$$S = \dot{m}^+ + \dot{m}^- \tag{8}$$

Where:

$$\dot{m} = \dot{m}^{+} + \dot{m}^{-} = \left(\frac{2\xi}{2-\xi}\right) \left(\frac{M}{2\pi R}\right)^{\frac{1}{2}} \left(\frac{P_{\nu}}{\sqrt{T}} - \frac{P}{\sqrt{T}}\right) A \tag{9}$$

2.3.4. Calibration

Calibration means improving the reading of meters by comparing the measurement of the device with the standard one [27]. Some settings that are trained to the device are really needed to enhance the calibration result. Calibration techniques that are frequently used are presented in Table 3.

No.	Calibration Techniques	Drawbacks	Ref
1.	Hydrocarbon flow meter calibrations, the standard Stoddard solvent	volatile and poses an environmental and health risk to those performing the calibrations.	[12]
2.	A mixture of propylene glycol and water	the density of the propylene glycol and water mixture is 15% higher than that of the volatile fluid.	[12]
3.	Physical models for the turbine meter calibration curve based on momentum and airfoil approaches	should be supplemented with experimental correction factors to improve accuracy.	[12]
4	UVC (Universal Viscosity Calibration)	 – only for the linear range. – it does not compensate for other temperature and pressure effects such as flowmeter body expansion 	[26]
5	Adaptive Calibration of Turbine Flow Measurement using ANN	A simulation experimental only, not the real one	[28]

	Table 3.	Calibration	Techniques
--	----------	-------------	------------

3. Challenges in Turbine Flow Meter

Common troubles that always occur in turbine flow meter are usually caused by the cavitation, viscosity, debris on rotor stator, mechanical vibration, and faulty pick up [29]. Cavitation can make the turbine flow meter misread the actual flow rate; the value becomes higher or lower than the real one. The lower reading of the flow meter indicates that there is higher viscosity that occurs in the flow, while the lower one shows that there may be gas which presents in the flow. To overcome those problems, the meter should be cleaned or recalibrated [29]. General detail troubles, causes, and how to resolve the problems in turbine flow meter are presented in Table 4.

Trouble	Possible Cause	Remedy
Meter indicates higher than actual flow rate	 Cavitation Debris on rotor support Build-up of foreign material on meter bore Gas in liquid 	 Increase back pressure Clean meter Clean meter Install gas eliminator ahead of meter
Meter indicates lower than actual flow rate	 Debris on rotor Worn bearing Viscosity higher than calibrated 	 Clean meter and add filter Clean meter and add filter Recalibrate monitor
Erratic system indication, meter alone works well (remote monitor application only)	Ground loop in shielding	Ground shield one place only. Look for internal electronic instrument ground. Reroute cables away from electrical noise
Indicator shows flow when shut off	Mechanical vibration causes rotor to oscillate without turning	Isolate meter
No flow indication. Full or partial open position	Fluid shock, full flow into dry meter or impact caused bearing separation or broken rotor shaft	Rebuild meter with repair kit and recalibrate monitor. Move to location where meter is full on start-up or add downstream flow control valve
Erratic indication at low flow, good indication at high flow	Rotor has foreign material wrapped around it	Clean meter and add filter
No flow indication	Faulty pick-up	Replace pick-up
System works perfect, except indicates lower flow over entire range	By-pass flow, leak	Repair or replace by-pass valves, or faulty solenoid valves
Meter indicating high flow, upstream piping at meter smaller than meter bore	Fluid jet impingement on rotor	Change piping
Opposite effects of above	Viscosity lower than calibrated	Change temperature, change fluid or recalibrate meter

Table 4.	Troubles,	cause and	remedy [29]

Troubles that occur in the turbine flow meter will affect its accuracies. The accuracies that are affected by real world implementation become one of challenges in turbine flow meter. According to Mark [13], some errors in measurement occur due to 3 factors, namely: 1. environmental temperature, 2. low static pressures, and 3. calibration before every tests. Some suppliers of the flow meter provide a standard spreadsheet to calculate the flow meter error using Microsoft Excel as shown in Figure 2.

The calculation using AGA 7 standard (in Figure 2) can be established by reading the screenshot data in stand meter (Figure 3). The gas parameters, such as volume, pressure, and temperature were then counted using the equation: $\frac{dV_m}{0.204 g^2 \rho_{flow}}$: 1000, to get the dV_b value of AGA7. The value of the dV_b of AGA 7 was then compared to the dV_b of Flowcom measurement. The Flowcom used the gas volume data of stand meter from the Gas chromatograph (GC), where the value of volume, pressure and temperature were based on the high frequency (HF) and low frequency (LF) that were read in real time in online system.

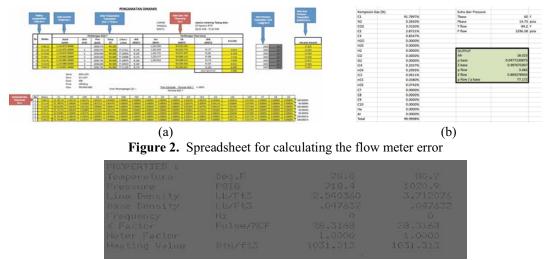


Figure 3. Screenshot data from flow computer

In this research, the gas volume measurement was done using two mechanisms, i.e. 1. using mechanic counter, 2. using electronic. In mechanic counter, the measurement was based on the mechanical gear. When the flow of the fluid passed through the gear, the rotation of the gear was then connected to a pulse counter (stand meter). This meter was read every week. In electronic, there are two ways of reading the pulse counter, namely high frequency (HF) and low frequency (LF). In LF, a reed switch with a magnetic principal mechanism was used as the pulse counter. Its principal works was similar to the contactors that generates the ON and OFF. In HF, a special sensor was used. The value of < 6.65, indicates that $k = 0.1 m^3$, the value of 6.65 - 6.100, indicates that $k = 1m^3$, and the value of > 6100, indicates that $k = 10 m^3$. The measurement of LF and HF were done using EVC using online system by EVC and sent to the control center using Automatic Meter Reading (AMR). The dynamic test using LF is used due to it has less error than HF (figure 4). However, using LF can cause different reading between stand meter and flow com. The quality of the magnet determines the difference occurred in them. In some applications, some industries prefer HF to LF.

In oil and gas industries, the different meter reading between the manual metering or turbine stand meter and Electronic Volume Corrector (EVC) that occurs in turbine flow meter is called as meter bouncing. In general, they usually show different calculation. Manual metering usually used to display the output of the turbine flow meter. It measures the volume of gas flowing through them without considering its variation. In its application, to compensate the variation of volume that occurs due to the pressure and temperature changing of gas flow, the natural gas industries use EVC. By having EVC, true volume of natural gas that flows through the turbine flow meter can be calculated correctly. In general, the EVC calculates the electronic signal output obtained from the turbine flow meter and makes the correction of the volume based on AGA7 and AGA8 [30]. One of the examples of meter bouncing can be seen in Table 5 while the meter reading of system can be seen in Figure 5.

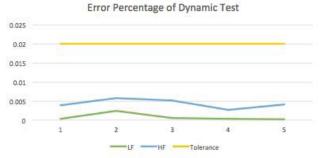


Figure 4. LF and HF error measurement percentage

Table 5.	Meter Bouncing e	example (reprinte	ed with permission	n of PT. PGN)
----------	------------------	-------------------	--------------------	---------------

Stand Meter (m ³) (BarA) (°C) Manual (AGA 7) EVC (r 1. 12.14 465246 4.41325 30.03 8.71 8.56 2. 12.19 465247 4.21325 30.01 4.16 4.30 3. 12.24 465249 4.21325 30.01 8.31 8.62	No.	Time	Turbine	Pressure	Temperature	Meter Rea	ding
2. 12.19 465247 4.21325 30.01 4.16 4.30 3. 12.24 465249 4.21325 30.01 8.31 8.62	INO.	Time	Stand Meter (m ³)	(BarA)	(^{0}C)	Manual (AGA 7)	$EVC(m^3)$
3. 12.24 465249 4.21325 30.01 8.31 8.62	1.	12.14	465246	4.41325	30.03	8.71	8.56
	2.	12.19	465247	4.21325	30.01	4.16	4.30
4. 12.29 465250 4.31325 30.01 4.26 4.28	3.	12.24	465249	4.21325	30.01	8.31	8.62
	4.	12.29	465250	4.31325	30.01	4.26	4.28
5. 12.34 465252 4.31325 29.99 8.51 8.42	5.	12.34	465252	4.31325	29.99	8.51	8.42
6. 12.39 465253 4.31325 29.99 4.24 4.17	6.	12.39	465253	4.31325	29.99	4.24	4.17
Average/Total 4.3133 30.02 38.02 38.35		Avera	ige/Total	4.3133	30.02	38.02	38.35

From Table 5, the reading meter difference can be calculated using equation (6)

$$Difference = \frac{EVC - Manual}{Manual} x \ 100\%$$

The difference was found 0,4 %.

The correction of meter misreading was then done as shown in Figure 5. It shows the meter reading of manual and EVC. Figure 5 (a) shows the condition of turbine stand mater. In that correction, the stand mater turbine showed the value 465253.0 m³, with pressure 3.3 BarG and temperature 30 °C (Figure 5. (b) and 5 (c)), while the EVC showed the base volume 38.35 m³, with primary volume 465253.0 m³, pressure 4.2419 BarA, and temperature 29.98 °C. Number of bouncing accidents in 2016 and 2017 can be seen in Figure 6 (a) and (b).

(b) (a) (c) Figure 5. The display of meter reading (a) turbine stand meter; (b) pressure; (c) Temperature (reprinted with permission of PT. PGN)

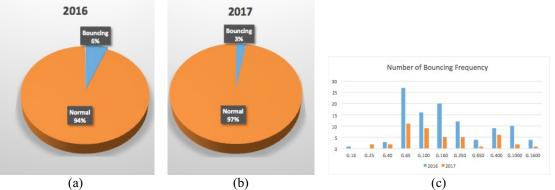


Figure 6. Bouncing percentage (a) 2016, (b) 2017, (c) Bouncing frequency

4. Proposed Research

To overcome the problem of meter bouncing, the author proposed a system that can minimize the error by making a system that has an ability to notify its occurrence. An Intelligent system will be added to the system. The signal from the flow meter, the pressure, and the temperature of the systems will be inputted to the fuzzy logic controller. Fuzzy will determine and decide whether the error reading between the stand meter and the EVC has occurred and send the output to the server. Fuzzy logic controllers has been widely used in various applications, such as for reaching a target [31], [32], navigating [33], [34], controlling robots [35], localizing odor [36], maintaining formation [37]. However, only little researchers who are interesting in using artificial intelligence in flow meter research.

The notification will be very useful to make correction to the error in meter reading. The faster the notification, the faster the error correction will be. When the notification has warned the system that the error has occurred, a correction factor to the EVC can be done by re-inputting the value to the system.

5. Conclusion

Some challenges occurred in TFM still become complicated problems. Although it seems only as a little problem, however, its occurrence has affected the losses in customers and industries. Thus, some strategies should be built. A notification system is proposed in this paper. An intelligent system that can determine the occurrence of the error will be embedded to the system. By having this notification, a correction can be done earlier. It is hope that the earlier the correction, the more minimum losses would be.

Acknowledgement

This research is one of the Author's Master Degree projects. The authors would like to express their gratitude to PT. PGN "Perusahaan Gas Negara" for the opportunity to use the turbine meter calibration data obtained in Stasiun Metering Talang Duku.

References

- [1] E. Schena, C. Massaroni, P. Saccomandi, and S. Cecchini, "Flow Measurement in Mechanical Ventilation : a review," *Med. Eng. Phys.*, vol. 37.3, pp. 257–264, 2015.
- [2] S. Guo, L. Sun, T. Zhang, W. Yang, and Z. Yang, "Analysis of Viscosity Effect on Turbine Flow- meter Performance Based on Experiments and CFD Simulations," *Flow Meas. Instrum.*, 2013.
- [3] T. Wang and R. Drive, "Coriolis flowmeters : a review of developments over the past 20 years , and an assessment of the state of the art and likely future directions," vol. 44, no. 0, pp. 34–38, 2014.

- [4] H. Ghassemi and H. F. Fasih, "Application of small size cavitating venturi as flow controller and flow meter," *Flow Meas. Instrum.*, vol. 22, no. 5, pp. 406–412, 2011.
- [5] O. E. E, "Offshore Gas Well Flow and Orifice Metering System: An Overview," *Innovovative Energy Res.*, vol. 6, no. 2, pp. 2–5, 2017.
- [6] H. Zhou, T. Ji, R. Wang, X. Ge, X. Tang, and S. Tang, "Multipath ultrasonic gas flow-meter based on multiple reference waves Multipath ultrasonic gas flow-meter based on multiple reference waves," *Ultrasonics*, no. July, 2017.
- [7] Y. Yuan and T. Zhang, "Research on the Dynamic Characteristics of a Turbine Flow Meter," *Flow Meas. Instrum.*, 2017.
- [8] G. C. and B. L. Z. Y Z HuangB S Zhang, "Cavitation performance simulation of turbine meter under different temperature water condition," *Int. Symp. Cavitation Multiph. Flow (ISCM 2014). Mater. Sci. Eng.*, vol. 72, 2015.
- [9] F. Cascetta and G. Rotondo, "Effects of Intermittent Flows on Turbine Gas Meters Accuracy," *MEASUREMENT*, no. February, 2015.
- [10] J. Yoder, "Flowmeter Spin," Flow Reseach, 2012.
- [11] J. Pei, Z. Su, and K. Zhang, "Using Numerical Simulation to Optimize the Design of Gas Turbine Flowmeter Sensor," pp. 1910–1913, 2013.
- [12] C. L. Tegtmeier, "Analysis of a Turbine Flow Meter Calibration Curve using CFD," 53rd AIAA Aerosp. Sci. Meet. Am. Inst. Aeronaut. Astronaut., no. January, pp. 1–12, 2015.
- [13] B. M. Menezes and B. D. Manager, "Calculating & Optimizing Repeatability of Natural Gas Flow Measurements," *Tech. Note*, no. November, 2012.
- [14] R. S. Figliola and D. E. Beasley, *Theory and Design for Mechanical Measurements*, 5th Editio. John Wiley & Sons, Inc., 2011.
- [15] F. Frenzel, *Industrial flow measurement Basics and practice*. ABB Automation Products GmbH, 2011.
- [16] P. W. Tang, "Pressure, Temperature, and Other Effects on Turbine Meter Gas Flow Measurement," Am. Sch. Gas Meas. Technol., vol. 3, no. September, 2015.
- [17] P. W. Stoltenkamp, Dynamics of turbine flow meters. Technische Universiteit Eindhoven, 2007.
- [18] Z. Saboohi, S. Sorkhkhah, and H. Shakeri, "Developing a Model for Prediction of Helical Turbine Flowmeter Performance Using CFD," *Flow Meas. Instrum.*, 2014.
- [19] X. Jin, B. Wang, and Z. Ye, "Driving Solution Study of a Turbine Flowmeter Dynamic Calibration System," *Int. Conf. Fluid Power Mechatronics*, 2015.
- [20] Z. Gediminas and M. Eugenijus, "Influence of Gas and Liquid Viscosity on Turbine and Positive Displacement Meters Calibration," 17th Int. Congr. Metrol., vol. 3, pp. 1–6, 2015.
- [21] L. I. Dong-hui and X. U. Jing-yu, "Measurement of Oil-Water Flow Via the Correlation of Turbine Flow Meter, Gamma Ray Densitometry and Drift-Flux Model," J. Hydrodyn., vol. 27, no. 4, pp. 548–555, 2015.
- [22] M. L. Ali, R. Ridoy, U. Barua, and M. B. Alamgir, "Design and Fabrication of a Turbine Flow Meter," J. Mod. Sci. Technol., vol. 4, no. 1, pp. 16–26, 2016.
- [23] G. Suna, Z. Tao, and S. Lijun, "Blade Shape Optimization of Liquid Turbine Flow Sensor," *Trans. Tianjin Univ.*, pp. 144–150, 2016.
- [24] Z. Džemić, B. Širok, and B. Bizjan, "Turbine Flowmeter Response to Transitional Flow Regimes," *Flow Meas. Instrum.*, 2017.
- [25] C. B. Roger, Flow Measurement, Handbook. Cambridge University Press, 2005.
- [26] A. Trigas, "Practical Aspects of Turbine Flow Meters Calibration and UVC Principles," *TrigasFI GmbH*, pp. 1–7, 2008.
- [27] T. for L. NEL, "Good Practice Guide The Calibration of Flow Meter," Natl. Meas. Syst.
- [28] S. KV, "Adaptive Calibration of Turbine Flow Measurement using ANN," Int. Symp. Adv. Comput. Commun., 2015.
- [29] Omega, "Turbine Flow meter Manual Book." [Online]. Available: https://www.omega.com/manualpdf/M4517.pdf.

- [30] Galvanic, "Application Insight: Gas Micro Electronic Volume Corrector. Electronic Volume Correction in NG Custody Transfer & Distribution Applications," *Galvanic Appl. Sci. Inc.*, no. June, 2015.
- [31] S. Nurmaini, S. Z. M. Hashim, A. Zarkasi, B. Tutuko, and A. Triadi, "Target Localization With Fuzzy-Swarm Behavior," pp. 21–24, 2014.
- [32] A. S. Handayani, T. Dewi, N. L. Husni, S. Nurmaini, and I. Yani, "Target tracking in mobile robot under uncertain environment using fuzzy logic controller," *Int. Conf. Electr. Eng. Comput. Sci. Informatics*, vol. 2017–Decem, no. September, pp. 19–21, 2017.
- [33] A. Pandey, R. K. Sonkar, K. K. Pandey, and D. R. Parhi, "Path Planning Navigation of Mobile Robot With Obstacles Avoidance Using Fuzzy Logic Controller," 2014.
- [34] M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel, "Fuzzy Logic Controllers Design For Omnidirectionnal Mobile Robot Navigation," *Appl. Soft Comput. J.*, 2016.
- [35] H. Omrane, M. S. Masmoudi, and M. Masmoudi, "Fuzzy Logic Based Control for Autonomous Mobile," vol. 2016, 2016.
- [36] N. L. Husni and A. S. Handayani, "Odor Localizaton using Gas Sensor for Mobile Robot."
- [37] A. S. Member, N. Latifah, H. Member, S. N. Member, and I. Yani, "The Survey Paper: Formation Control For Swarm Robots."

THIS CERTIFICATE IS PROUDLY PRESENTED TO

NYAYU LATIFAH HUSNI

as : participant / presenter / guest / comittee*

SENTEN 2018

Symposium of Emerging Nuclear Technology and Engineering Novelty Palembang, 4-5th July 2018

> "Discovering Science and Engineering Novelty for improving human life prosperity"

Head of Center for Nuclear Reactor Technolofy and Safety

munor Dr. Geni R. Sunayo, M.Sc

Dean of Engineering Faculty Sriwijaya University

Prof. Ir. Subriyer Nasir, M.S., Ph.D.