BAB II

TINJAUAN PUSTAKA

2.1 Ban

Ban adalah material komposit yag tersusun dari karet, baja, dan serat. Ban juga merupakan salah satu polimer sintetis (polistirena) yang berbahan dasar karet (Roy T.M.H., 2017). Ban tersusun atas bahan karet atau polimer yang sangat kuat diperkuat dengan serat-serat sintetik dan baja yang sangat kau menghasilkan suatu bahan yang mempunyai sifat-sifat unik seperti kekuatan tarik yang sangat kuat, fleksibel, ketahanan pergeseran yang tinggi. Sebuah ban mengandung tiga puluh jenis karet sintetis, delapan jenis karet alam, delapan jenis karbon hitam, tali baja, poliester, nilon, manik-manik baja, silika, dan empat puluh jenis bahan kimia, minyak dan pigmen. Kandungan kimia yang terdapat pada ban kendaraan bermotor dapat dilihat pada tabel 2.1.

Tabel 2.1 Kandungan Kimia Karet Ban Kendaraan Bermotor

Nomor	Jenis Pemeriksaan	Hasil
1	Kadar karet alam	25 %
2	Kadar karet butadiena-stirena	15 %
3	Kadar butil karet	5 %
4	Kadar karbon hitam	35 %
5	Kadar ZnO	4 %
6	Kadar <i>oil</i> / nafta / aromatik	4 %
7	Kadar kotoran / debu / kaolin / kalsium	12 %

(Sumber: Arita S, dkk., 2015)

Cracking karet ban bekas pada temperatur tinggi adalah proses paling sederhana untuk daur ulang karet ban bekas. Pada proses ini material polimer atau karet ban bekas dipanaskan pada temperatur tinggi. Proses pemanasan ini menyebabkan struktur makro-molekul dari karet terurai menjadi molekul yang lebih kecil dan hidrokarbon rantai pendek terbentuk. Produk yang dihasilkan berupa fraksi gas, residu padat, dan fraksi cair yang mengandung parafin, olefin, nafta, dan aromatis (Arita S, dkk., 2015).

2.2 Polystyrene

Polystyrene adalah plastik polimer dengan monomer stirena yang mudah dibentuk bila dipanaskan, rumus molekulnya adalah (-CHC6H5-CH2-)n. Pada

suhu ruangan, polistirena biasanya berbentuk termoplastik padat dan dapat mencair pada temperatur yang lebih tinggi (Kholidah N, dkk., 2019).

Polystyrene merupakan hidrokarbon parafin yang terbentuk dengan cara reaksi polimerisasi. Polistirena memiliki berat molekul ringan dan memiliki bentuk padatan murni yang tidak berwarna, bersifat ringan, keras, tahan terhadap panas, agak kaku, tidak mudah patah, tidak beracun, memiliki kestabilan yang tinggi, tahan terhadap air, tahan terhadap bahan kimia non-organik, tahan terhadap alkohol, dan sangat mudah terbakar (Supriyanto A, dkk., 2017). Untuk sifat-sifat fisik polistirena dapat dilihat pada Tabel 2.2.

Tabel 2.2 Sifat Fisik Polistirena

Sifat Fisik	Ukuran
Densitas	1.050 ^{kg} / _{m³}
Densitas EPS	$25 - 200 \frac{\text{kg}}{\text{m}^3}$
Konduktivitas listrik (s)	10^{-16}S/m
Specific gravity	1,05
Konduktivitas panas (k)	$0.08 \text{W/}_{\text{m K}}$
Modulus Young (E)	3.000 - 3.600 Mpa
Kekuatan tarik (s _t)	40 - 60 Mpa
Perpanjangan	3 – 4 %
Notch test	$2-5^{kJ}/_{m^2}$
Temperatur transisi gelas (Tg)	95 °C
Titik leleh	240 °C
Heat trasfer coeffiecient (Q)	$0.17 \frac{\text{W}}{\text{m}^2. \text{K}}$
Specific heat	$1.3 \frac{\text{kJ}}{\text{kg. K}}$

(*Handono*, 2017)

2.3 Pirolisis

Pirolisis yaitu pemanasan dalam kondisi bebas oksigen pada temperatur (250 – 900 °C) dengan menguraikan senyawa organik dari suatu bahan menjadi produk cair dan gas dengan melepaskan ikatan bahan-bahan anorganik yang terikat. Proses pirolisis menghasilkan tiga produk yang berupa *liquid*, *solid charcoal*, dan gas (Syamsiro M, dkk., 2019). Proses pirolisis dapat disebut juga dengan proses perengkahan atau *cracking*. *Cracking* adalah proses pemecahan rantai polimer menjadi senyawa dengan berat molekul yang lebih rendah. Ada tiga macam proses *cracking* yaitu *hydocracking*, *thermal cracking* dan *catalytic cracking*

(Chen,dkk., 2014).

2.3.1 Hydrocracking

Hydrocracking adalah proses perekahan dengan mereaksikan bahan dengan hidrogen di dalam wadah tertutup yang dilengkapi dengan pengaduk pada temperatur antara 423 – 673 K dan tekanan hidrogen 3 – 10 MPa. Dalam proses hydrocracking ini dibantu dengan katalis. Hydrocracking biasanya melibatkan reaksi hidrogen dengan katalis yang berlebih dalam autoclave batch yang diaduk pada temperatur tinggi dan bertekanan guna memperoleh kualitas bensin yang tinggi. Untuk membantu pencampuran dan reaksi biasanya digunakan bahan pelarut 1-methyl naphtalene, tetralin dan decalin. Katalis berfungsi untuk menggabungkan kegiatan hidrogenasi dan cracking (Tri Handono M., 2017).

2.3.2 Thermal Cracking

Thermal cracking termasuk proses pirolisis, yaitu dengan cara memanaskan bahan polimer tanpa oksigen melalui proses dekomposisi kimia dan termal. Di sebagian besar proses, udara dihilangkan untuk alasan keamanan, kualitas produk, dan *yield*. Proses *thermal cracking* dapat dilakukan di berbagai temperatur, waktu reaksi, tekanan, dan katalis reaktif. Pirolisis ban bekas dapat dilakukan pada temperatur rendah (150 °C), menengah (150 – 600 °C), dan tinggi (>600 °C). Dari proses ini akan dihasilkan arang, minyak dari kondensasi gas seperti parafin, isoparafin, olefin, naftalena, dan aromatik, serta gas yang memang tidak bisa terkondensasi (Handono ., 2017).

2.3.3 Catalytic Cracking

Reaksi *catalytic cracking* atau perengkahan katalitik adalah reaksi perengkahan menggunakan katalis (katalis heterogen) sebagai material yang mampu mempercepat laju reaksi untuk mencapai kesetimbangan dan menghasilkan produk akhir reaksi melalui mekanisme pembentukan ion karbonium (Layla.dkk.,2017). Ion karbonium yang sudah terbentuk dapat mengalami pemutusan rantai pada posisi beta untuk membentuk olefin dan ion karbonium baru.Katalisator di sini berfungsi untuk memecah hidrokarbon rantai panjang menjadi rantai pendek. Di samping itu, katalisator mampu meningkatkan kecepatan dekomposisi dan memperbesar produk cair hasil pirolisis (Danarto,

2010). Katalis heterogen lebih mudah terpisah dari medium reaksi namun susah dalam penonaktifan karena dapat menjadi *coke* sedangkan katalis homogen sulit untuk dikeluarkan dari produk akhir sehingga katalis lebih mudah menjadi lumpur. Tabel 2.3 menunjukkan perbedaan antara *thermal cracking* dan *catalytic cracking*.

Tabel 2.3 Perbandingan antara Thermal Cracking dan Catalytic Cracking

Thermal Cracking	Catalytic Cracking				
Tanpa katalis	Menggunakan katalis				
Temepratur lebih tinggi	Temperatur lebih rendah				
Tekanan lebih tinggi	Tekanan lebih rendah				
Free radical reaction mechanism	Ionic reaction mechanisms				
Moderate thermal efficiency	High thermal efficiency				
Moderate yields of gasoline and other	Good integration of cracking and				
distillates	regeneration				
Gas yields feedstock dependent	High yield of gasoline and other distillates				
Alkanes produced but feedstcok-dependent	Low gas yields				
yields					
Low octane number gasoline	Low n-alkane yields				
Some chain branching in alkanes	High octane number				
1 4 1 1-1 C4 -1-C	Chain branching and high yield of C4				
Low-to-moderate yield of C4 olefins	olefins				
Low-to-moderate yield of aromatics	High yield of aromatics				

(Speight, 2013)

2.4 Katalis

Katalis merupakan suatu zat yang dapat meningkatkan kecepatan reaksi terhadap suatu kesetimbangan tanpa adanya zat katalis yang dikonsumsi, setelah selesai katalis dapat diperoleh kembali (Afif. dkk., 2017). Katalis digunakan dalam pirolisis untuk memperoleh kualitas bahan bakar cair yang lebih tinggi yang setara dengan bahan bakar premium. Katalis berperan penting dalam proses termokimia karena dapat *promotingtargeted reactions*, mengurangi temperatur reaksi, dan menaikkan efisiensi proses sistem (Devy., 2016).

Pada proses konversi limbah ban, katalis yang digunakan adalah aluminium oksida, dengan variasi jumlah katalis yang digunakan adalah 0%, 5%, 10%, 15% dan 20% dari jumlah baku. Tujuan digunakannya katalis adalah untuk menurunkan temperatur reaksi, mempercepat reaksi dekomposisi, dan memperbaiki kualitas produk.

2.4.1 Aluminium Oksida

Aluminium oksida atau alumina adalah senyawa kimia dengan rumus molekul Al₂O₃ yang terdiri atas unsur aluminium dan oksigen. Katalis alumina merupakan katalis asam yang dapat diaplikasikan dalam reaksi perengkahan katalitik. Pada katalis ini, atom aluminium adalah sumber kekuatan utama dari sisi katalis. Alumunium dengan keasamaan yang tinggi, dikelilingi oleh atom oksigen yang memiliki keelektronegatifan yang relatif baik. Alumina terdiri dari alumina amorf dan alumina dengan struktur trigonal. Alumina dalam bentuk amorf memiliki kekuatan asam yang lebih rendah daripada alumina dengan struktur trigonal. Distribusi atom alumina yang tidak merata adalah penyebab lemahnya kekuatan asam alumina amorf.

Tabel 2.4 Sifat Fisik Alumina (Prasetya dkk., 2006)

Rumus Molekul	Al_2O_3					
Bentuk	Bubuk kristal padat					
Dentuk	berwarna putih					
Titik Leleh	2303 K					
Titik Didih	3250 K					
Massa Jenis	$3.97 \times 10^3 \text{ kg/m}^3$					
Berat Molekul	101.96					

2.5 Bahan Bakar Cair

2.5.1 Diesel (Solar)

Bahan bakar solar adalah fraksi minyak bumi dengan warna solar komersial kuning coklat yang jernih dan mendidih sekitar temperatur 175-370 °C. Penggunaan solar pada umumnya adalah untuk bahan bakar pada semua jenis

mesin diesel dengan putaran tinggi (diatas 1000 rpm) (Susilo, 2014). Bahan bakar disesl memiliki rantai atom $C_{13} - C_{20}$ (Kholidah dkk., 2017). Bahan bakar diesel ini biasanya disebut juga *Industrial Diesel Oil* (IDO) dan *Automotive Diesel Oil* (ADO). Kualitas bahan bakar diesel dengan bilangan setana. Bilangan setana mengindikasikan kesiapan mesin diesel untuk menyala secara spontan pada temperatur dan tekanan rendah, semakin tinggi bilangan setana, maka waktu penundaan antara injeksi dan penyalaan semakin pendek dan kualitas penyalaan semakin baik (Fadarina dkk., 2018).

Bahan bakar diesel yang beredar di Indonesia salah satunya adalah solar 48 yang memiliki bilangan setana (*cetane number*) minimum 48. Spesifikasi solar 48 dapat dilihat pada Tabel 2.5.1

Tabel 2.5.1 Standar untuk Solar 48 SNI 8220:2017

		~		an SNI	Metode Uji	
No	Karakteristik	Satuan	Minyak Solar 48			
	~		Min.	Maks.	ASTM	Lain-Lain
1	Bilangan Setana		48	-	D613	
	Indeks Setana		45	-	D4737	
2	Densitas (15°C)	kg/m ³	815	870	D4052/D1298	
3	Viskositas (40 °C)	mm^2/s	2,0	4,5	D445	
4	Kandungan Sulfur	% m/m	-	0,30	D4294/D5453/D2622	
5	Distilasi: 90% vol. Penguapan	°C	-	370	D86	
6	Titik Nyala	$^{\circ}\mathrm{C}$	52	-	D93	
7	Titik Kabut	$^{\circ}\mathrm{C}$	-	18	D2500	
8	Titik Tuang	$^{\circ}\mathrm{C}$	-	18	D97	
9	Residu Karbon	% m/m	-	0,1	D189/D4530	
10	Kandungan Air	mm/kg	-	500	D6304	
11	Kandungan FAME	% v/v	-	20	D7806/D7371	
12	Korosi Bilah Tembaga			Kelas 1	D130	
13	Kandungan Abu	% m/m	_	0,01	D482	
14	Kandungan Sedimen	% m/m	-	0,01	D473	
15	Bilangan Asam Kuat	mg KOH/g	-	0	D664	
16	Bilangan Asam Total	mg KOH/g	-	0,5	D664	
17	Penampilan Visual		Jernih dan Terang			Visual
18	Warna	No. ASTM	-	3,0	D1500	
19	Lubricity (HFRR wear scar dia. @60 °C	micron (μ)	-	460	D6079	

20	Kestabilan Oksidasi Metode Rancimat	Jam	35	-		EN15751
21	Vanadium	mg/kg	-	100	AAS	
22	Aluminium+Silikon	mg/kg	-	25	D5184 / DAAS	

(Sumber: Badan Standardisasi Nasional)

2.5.2 Gasoline

Gasoline (bensin) merupakan suatu cmpuran yang kompleks yang tersusun atas hidrokarbon rantai lurus 5 - 12 atom C (Rachmadena D, dkk., 2018).Kualitas suatu gasoline diukur dengan angka oktan. Angka oktan merupakan suatu parameter *antiknocking* yang tejadi pada mesin. Angka oktan merupakan perbandingan antara iso-oktana dengan n-heptana dalam suatu gasoline (Novandy A, 2013). Komposisi hidrokarbon pada gasoline yakni terdiri dari 4-8% alkane, 2-5% alkena, 25-40% isoalkana, 3-7% sikloalkana, 1-4 % 12 sikloalkena, dan 20-50% aromatic total (0,5-2,5% benzene) (Shamsul,dkk., 2017). Adapun standar gasoline RON 88 (premium) dapat dilihat pada Tabel 2.5.2

Tabel 2.5.2 Standar Gasoline RON 88 SNI 3506:2017

No	Parameter Uji	Satuan	Ba	ntasan	Metode Uji	
No.			Minimal	Maksimal	ASTM	Lain-Lain
1	Bilangan oktana (angka oktana riset (RON)		88,0	-	D2699	
2	Stabilitas oksidasi	Menit	360	-	D525 D2622 /	
3	Kandungan sulfur	% m/m	-	0,05	D4294 / D5453 / D7039	
4	Sulfur merkaptan	% m/m	-	0,002	D3227	
5	Kandungan timbal (Pb)	g/l	tic	jeksi timbal lak diizinkan Ilaporkan	D3237 / D5059	
	Kandungan logam:					
6	a. Mangan	mg/l	-	1	D3831 / D5185	
	b. Besi		-	1	D5185	UOP391
7	Kandungan oksigen	% m/m	-	2,7	D4815 / D6839 / D5599	
8	Kandungan olefin	0/ /	ь	,	D4815 / D6839 / D6730	
9	Kandungan aromatik	% v/v	Dila	Dilaporkan	D1319 / D6839 / D6730 /	

					D5580 D4815 /	
10	Kandungan benzena				D6839 /	
10	Kandangan benzena				D6730 /	
	Distilasi:				D3806	
	10 % vol.					
	penguapan	°C	_	74		
	50 % vol.	°C	75	125		
11	penguapan	°C	-	180	D8	36
	90 % vol.	$^{\circ}\mathrm{C}$	-	215		
	penguapan Titik didih akhir	% vol	-	2,0		
	Residu					
12	Sedimen	mg/l	-	1	D5452	
13	Unwashed gum	gr/100	-	70	D381	
14	Washedgum	ml	-	5		
15	Tekanan Uap	kPa	45	69	D5191/	
					D323	
16	Berat Jenis (15°C)	Kg/m^3	715	770	D4052/	
					D1298	
17	Korosi bilah		-	Kelas Ib	D130	
	Tembaga					
18	Tampilan	Jernih dan Terang				Visual
19	Warna		K	uning		Visual

2.6 Karakteristik Bahan Bakar Cair

Karakteristik bahan bakar cair yang akan digunakan pada penelitian ini adalah sebagai berikut:

2.6.1 Densitas (ASTM D-1298)

Massa jenis atau yang biasa disebut densitas merupakan indikator banyaknya zat pengotor hasil reaksi. Jika massa jenis suatu bahan bakar melebihi ketentuan, maka akan meningkatkan keausan mesin dan menyebabkan kerusakan mesin

Densitas (p) dapat dihitung dengan menggunakan persamaan berikut:

$$\rho = \frac{\text{massa sampel}}{\text{volume}}$$

2.6.2 Titik Nyala (ASTM D-93)

Titik nyala merupakan temperatur di mana uap yang berada di atas minyak akan menyala sementara atau meledak seketika kalau ada api. Titik nyala suatu bahan bakar menunjukkan jarak didih di mana pada temperatur tersebut bahan bakar akan aman terhadap bahaya kebakaran selama penyimpanan, penanganan, dan transportasi. Titik nyala mengindikasikan tinggi rendahnya volatilitas dan kemampuan suatu bahan bakar untuk terbakar.

2.6.3 Specific Gravity (ASTM D4052-18a) dan °API Gravity (ASTM D287-12b)

Tujuan dilakukannya pengukuran terhaap *specific gravity*(berat jenis)dan °API *gravity* adalah untuk indikasi mutu minyak di mana semakin tinggi °API *gravity* akan semakin rendah berat jenisnya, maka minyak tersebut akan semakin berharga karena banyak mengandung bensin. °API *gravity* dan *specific gravity* dapat dihitung menggunakan rumus:

$$spgr = \frac{\rho_{hidrokarbon 60^{\circ}F}}{\rho_{air 60^{\circ}F}}$$

$$^{\circ}APIgravity = \frac{141.5}{spgr} - 131.5$$

2.6.4 Viskositas (ASTM D445)

Viskositas suatu minyak merupakan ukuran ketahanan terhadap pengalirannya sendiri dan merupakan indikasi adanya minyak pada permukaan bidang pelumasan. Pengukuran viskositas dimaksudkan untuk mengetahui kekentalan minyak pada suhu tertentu sehingga minyak dapat dialirkan pada suhu tersebut. Pada umumnya, makin ringan fraksi minyak bumi maka akan semakin kecil viskositasnya. Viskositas dapat dihitung menggunakan rumus:

$$\begin{split} \eta &= k \, \times \left(\rho_{bola} - \, \rho_{minyak} \right) \times \, t_{jatuh \, bola} \\ \nu &= \frac{\eta}{\rho_{minyak}} \end{split}$$

Keterangan:

- 1. η = viskositas dinamis (Pa.s)
- 2. $\nu = \text{viskositas kinematis } (m^2/s)$

2.6.5 Nilai Kalor (ASTM D240-19)

Nilai kalor merupakan jumlah energi panas maksimum yang dibebaskan oleh suatu bahan bakar melalui reaksi pembakaran sempurna per satuan massa atau volume bahan bakar tersebut. Analisa nilai kalor suatu bahan bakar

dimaksudkan untuk memperoleh data tentang energi kalor yang dapat dibebaskan oleh suatu bahan bakar dengan terjadinya reaksi atau proses pembakaran

2.6.6 Persen Yield

Persen *yield* dapat dihitung dengan menggunakan rumus:

% yield =
$$\frac{m_{produk}}{m_{bahan baku}} \times 100 \%$$

2.6.7 Analisa Senyawa Kimia dengan *Gas Chromatography-Mass Spectroscopy* (ISQ Series TraceTM 1300).

GC-MS (*Gas Chromatography-Mass Spectroscopy*) merupakan suatu instrumen yang terdiri dari dua metode analis. Kromatografi gas berfungsi untuk mendeteksi masing-masing molekul komponen dalam suatu senyawa, sedangkan spektrometri massa berfungsi untuk mendeteksi masing-masing molekul komponen yang telah dipisahkan pada kromatografi gas. Gas kromatografi merupakan pemisahan campuran menjadi konstituennya dalam fase gerak berupa gas yang melalui fase diam yang berupa sorben. Gas kromatografi dapat digunakan untuk analisis kualitatif maupun kuantitatif (Qurratul'uyun, 2017).