BAB II TINJAUAN PUSTAKA

2.1 Alat Pembatas dan Pengukur (APP)¹

Alat pembatas dan pengukur adalah suatu peralatan yang dipasang pada pelanggan untuk keperluan transaksi energi listrik untuk mengukur energi yang digunakan serta membatasi daya yang digunakan sesuai dengan standar peralatan tersebut.

Pembatas bertujuan untuk membatasi pemakaian daya sesuai daya yang tersambung dengan menggunakan alat pembatas, yang akan melakukan pemutusan energi listrik secara otomatis jika daya yang dipakai melebihi dari kapasitasnya. Alat pembatas yang digunakan adalah:

- a. Pada sistem tegangan rendah sampai dengan 100A digunakan MCB, diatas 100
 A digunakan MCCB
- b. Pada sistem tegangan menengah biasanya menggunakan relay.

Persamaan arus untuk menentukan pembatas:

Untuk daya 1 phasa:

$$I_n = \frac{S}{E} \text{ (Ampere)} \tag{2.1}$$

Untuk daya 3 phasa:

$$I_n = \frac{S}{\sqrt{3.Ef-f}} \text{ (Ampere)}... (2.2)$$

Dimana:

 $I_n = Arus nominal (A)$

S = Daya pelanggan (VA)

E = Tegangan phasa-netral (V)

 E_{f-f} = Tegangan antar phasa (V)

¹ Binnaro, Hutahean. 2018. Diakses Maret 2021 https://id.scribd.com/document/393154156/APPlengkap-Modul-1-KB4-newpdf

Sedangkan, pengukuran bertujuan untuk menentukan besarnya pemakaian energi listrik. Peralatan yang digunakan untuk menentukan seberapa besar pemakaian energi listrik adalah kWh meter untuk mengukur energi aktif, kVArh meter untuk mengukur energi reaktif, kVa meter maksimum, meter arus dan meter tegangan. Sistem pengukuran dibagi menajdi dua macam yaitu :

- a. Pengukuran Primer (Pengukuran secara langsung)
 Pengukuran Primer terjadi dari pengukuran primer 1 phasa untuk pelanggan dengan daya diatas 6600 VA pada tegangan 220V/380V dan pengukuran primer tiga phasa untuk pelanggan dengan daya diatas 6600 VA sampai dengan 33000 VA pada tegangan 220 V/380 V.
- b. Pengukuran Sekunder Tiga Phasa (Pengukuran tidak langsung)
 Pengukuran sekunder memerlukan trafo arus biasanya digunakan untuk
 pelanggan dengan daya 53 KVA sampai dengan 197 KVA.

2.1.1 Fungsi-fungsi dari APP

- a. Sebagai pembatas daya yang digunakan oleh pelanggan (sesuai dengan kontrak pemasangan).
- b. Mencatat daya yang dipakai oleh konsumen. Karena itu ada yang menyebutnya "kWh meter" atau "Meteran Listrik" (kWh : kilowatt hour)
- c. Sebagai saklar utama pemutus aliran listrik bila terjadi kelebihan pemakaian daya oleh pelanggan, adanya gangguan hubung singkat dalam instalasi listrik rumah pelanggan atau sengaja dimatikan untuk keperluan perbaikan instalasi listrik.

2.1.2 Batas daya pelanggan

Tabel 2. 1 Batas daya pelanggan

Pelanggan TR	<197 KVA
Pelanggan TM	200 KVA s/d 30 MVA
Pelanggan TT	> 30 MVA

2.2 Kwh Meter²

Kilowatt hours meter atau yang biasa dikenal dengan kWh meter merupakan peralatan yang berfungsi untuk menghitung pemakaian energi listrik. Energi listrik yang dihitung oleh kWh meter adalah perhitungan daya aktif yang digunakan dikalikan waktu dalam satuan jam (hours) dan faktor daya.

Berikut adalah persamaan untuk menghitung energi listrik oleh kWh meter :

$$E=V I t cos \theta....(2.3)$$

Dimana:

E = Energi listrik yang terukur oleh kWh meter (kWh)

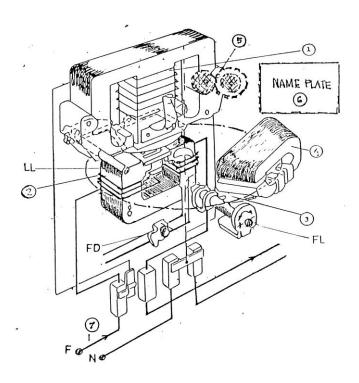
V = Tegangan(V)

I = Arus(A)

t = Waktu pemakaian (Jam)

 $\cos \theta = \text{Faktor daya}$

Pada persamaan 2.3 dapat diketahui bahwa besar pengukuran energi listrik oleh kWh meter berbanding lurus dengan tegangan, arus, waktu pemakaian dan faktor daya. Sehingga semakin tinggi nilai keempat besaran tersebut maka energi listrik yang digunakan akan semakin besar. Begitupun sebaliknya, ketika nilai ketiga besaran tersebut semakin rendah maka energi listrik yang terbaca oleh kWh meter juga akan semakin kecil.


2.2.1 Jenis-jenis Kwh Meter

Apabila dilihat dari cara kerjanya, kWh Meter dibedakan menjadi :

1. Kwh Meter Analog

kWh meter analog merupakan kWh meter yang biasa dipakai pada tarif listrik reguler/pascabayar. Konstanta putarannya dihitung menurut perputaran piringan yang berbanding lurus dengan satu kilo watt-jam. Adapun bagian-bagian utama dari sebuah kWh meter Analog antara lain, sebagai berikut :

² PT.PLN (Persero) Pusat Pendidikan dan Pelatihan. Teori Dasar kWh meter

Gambar 2. 1 Bagian-bagian kWh meter analog¹

1. Kumparan Tegangan

Kumparan Tegangan terdiri dari:

- a. Pada kWh meter 1 phasa kumparan tegangan 1 Set
- b. Pada kWh meter 3 phasa 3 kawat kumparan tegangan 2 set
- c. Pada kWh meter 3 phasa 4 kawat kumparan tegangan 3 Set
- 2. Kumparan arus

Kumparan arus terdiri dari:

- a. Pada kWh meter 1 phasa kumparan arus 1 set
- b. Pada kWh meter 3 phasa 3 kawat kumparan arus 2 set
- Pada kWh meter 3 phasa 4 kawat kumparan 3 set

 Pada kumparan arus dilengkapi dengan kawat tahanan atau lempengan besi
 yang berfungsi sebagai pengatur Cosinus phi (factor kerja)
- 3. Elemen Penggerak/Piringan

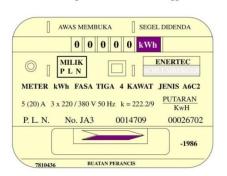
_

¹ Binnaro, Hutahean. 2018. Diakses Maret 2021 https://id.scribd.com/document/393154156/APPlengkap-Modul-1-KB4-newpdf

Piringan kWh meter ditempatkan dengan dua buah bantalan (atas dan bawah) yang digunakan agar piringan kWh meter dapat berputar dengan mendapat gesekan sekecil mungkin.

4. Rem Magnit

Rem magnit terbuat dari magnit permanen, mempunyai satu pasang kutub (Utara dan Selatan) yang gunanya untuk :

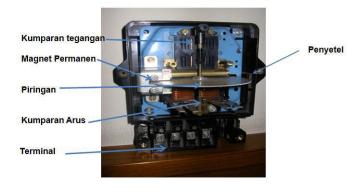

- a. Mengatasi akibat adanya gaya berat dari piringan kWh meter
- b. Menghilangkan/meredam ayunan perputaran piringan serta alat kalibrasi semua batas arus.
- 5. Roda gigi dan Alat Pencatat (register)

Sebagai transmisi perputaran piringan, sehingga alat pencatat merasakan adanya perputaran, untuk mencatat jumlah energi yang diukur oleh kWh meter tersebut dan mempunyai satuan, puluhan, ratusan, ribuan dan puluh ribuan

6. Papan nama atau *name plate* digunakan untuk mencantumkan informasi dasar yang terdapat pada kWh meter.

Pada papan nama dari meter energi tercantum data sebagai berikut :

- a. Nama alat / merek pabrik
- b. Tipe atau jenis meter
- c. Cara pengawatan:
 - 1) satu phasa, 2 kawat
 - 2) tiga phasa, 3 kawat
 - 3) tiga phasa, 4 kawat
- d. Tegangan
- e. Arus
- f. Frekuensi
- g. Konstanta meter
- h. Kelas
- i. Satuan energi listrik



(a) Papan nama meter tarif tunggal (b) Papan nama meter tarif ganda

Gambar 2. 2 Contoh papan nama meter tarif tunggal dan ganda

7. Terminal Klemp / Terminal Blok yang merupakan tempat penyambungan pengawatan sumber tegangan dan beban ke kumparan arus dan kumparan tegangan.

Gambar 2. 3 Konstruksi kWh meter analog ³

Gambar 2. 4 Kwh meter analog

³ Nuranita, Silmi. 2013. *ANALISA PERBANDINGAN KWH METER PRABAYAR DENGAN NONPRABAYAR DILIHAT DARI SISI KEEKONOMISANNYA DI PT. PLN (Persero)*. Sekolah Tinggi Teknik Harapan: Medan

2. Kwh Meter Digital³

Kwh Meter digital merupakan jenis kWh meter yang menggunakan sistem komputer dalam operasinya dengan sistem pengisian menggunakan pulsa. Kwh meter ini dibuat untuk mengatasi kelemahan dari kWh meter analog. Kwh meter digital sendiri tampilannya dalam bentuk LCD dan untuk konstanta dalam bentuk impuls/kedipan,misalkan dalam papan nama terdapat keterangan konstanta 800 imp/kWh artinya 1 kWH baru terhitung setelah 800 kedipan.

Bagian bagian dari kWh meter digital

Gambar 2. 5 Bagian-bagian kWh meter digital

Keterangan:

1. Layar LCD

Berfungsi untuk menampilkan berbagai informasi pada meteran

2. Lampu LED Indikator

Berfungsi sebagai indikator yang menandakan keadaan tertentu

3. Spesifikasi Meter

Berisi spesifikasi teknis meteran, tipe meteran dan pabrikan yang memperoduksinya

4. Nomor Meter

Nomor yang digunakan untuk membeli pulsa lstrik

5. Optical Port

-

³ Nuranita, Silmi. 2013. *ANALISA PERBANDINGAN KWH METER PRABAYAR DENGAN NONPRABAYAR DILIHAT DARI SISI KEEKONOMISANNYA DI PT. PLN (Persero)*. Sekolah Tinggi Teknik Harapan: Medan

Terminal komunikasi meter yang akan digunakan oleh petugas PLN untuk melakukan download data yang tersimpan di dalam memori kWh meter

6. Papan Tombol / Keypad

Tombol-tombol untuk melakukan perintah – perintah dengan masukan kode tertentu pada meteran

7. MCB (Miniatur Circuit Breaker)

Alat untuk membatasi daya terpasang di pelanggan dan pengaman terhadap arus hubung singkat yang dapat menyebabkan kebakaran

8. Penutup Terminal

Penutup untuk melindungi terminal, tindakan membuka atau merusak penutup ini bisa didenda

9. Penutup Meter

Penutup meter disegel menggunakan segel khusus PLN, tindakan membuka atau meruak segel PLN bisa didenda

Adapun kelebihan dari kWh meter digital antara lain sebagai berikut :

- a. Sistem pembayarannya dengan sistem prabayar, dengan sistem prabayar menggantikan cara pembayaran umumnya, dengan menggunakan kartu prabayar elektronik pengganti tagihan bulanan.
- b. Kwh meter dengan tampilan digital yang menyala dan berukuran cukup besar.
- c. Akurasi perhitungan kWh, tidak adanya tunggakan pembayaran tagihan listrik, kemudahan memutus sambungan listrik pelanggan yang melakukan tunggakan tagihan dengan menggunakan alat yang bisa diatur dari jarak maksimal 200 meter.

Gambar 2. 6 Kwh meter digital

3. Kwh Meter Semi Digital

Kwh meter semi digital merupakan kWh meter yang hampir menyerupai kWh meter digital namun tampilannya masih dalam bentuk register dan konstanta sudah dalam bentuk kedipan. Sitem pembayaran untuk kWh meter semi digital ini adalah pascabayar. Perbedaannya dengan kWh meter digital adalah kWh meter digital tampilannya dalam bentuk LCD dan konstanta dalam bentuk kedipan. Kwh meter semi digital pascabayar yang sering digunakan saat ini adalah smart meter. Kwh meter semi digital pascabayar terdiri dari 1 phasa dan 3 phasa.

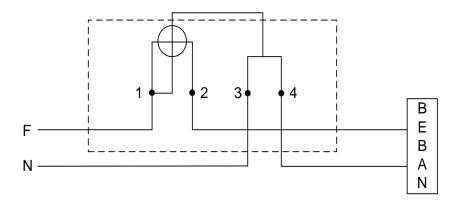
Gambar 2. 7 Kwh meter semi digital

Menurut jenis pemakaiannya kWh meter dibedakan menjadi:

1. Kwh Meter 1 phasa¹

Kwh meter 1 phasa adalah alat penghitung pemakaian energi listrik dengan menggunakan 1 phasa 2 kawat kumparan arus 1 set. Kwh meter satu phasa terdiri dari dua kawat yaitu untuk kawat phasa dan kawat netral. Kwh meter satu phasa digunakan untuk mengukur pemakaian energi listrik dengan skala kecil seperti pengukuran daya listrik yang terpakai pada rumah-rumah.

¹ Binnaro,Hutahean. 2018. Diakses Maret 2021 https://id.scribd.com/document/393154156/APPlengkap-Modul-1-KB4-newpdf


a. Kwh meter 1 phasa semi digital

b. Kwh meter 1 phasa digital

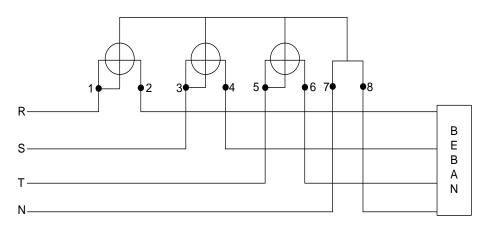
b. Kwh meter 1 phasa analog

Gambar 2. 8 Kwh meter 1 phasa

Gambar 2. 9 Diagram Pengawatan Kwh Meter 1 phasa²

2. Kwh Meter 3 Phasa¹

Kwh meter tiga phasa merupakan kWh meter yang terdiri dari empat kawat, tiga kawat sebagai phasa sedangkan satu kawat sebagai netral. Kwh meter tiga phasa banyak digunakan di pabrik-pabrik, instalasi rumah sakit, sekolah, dan bangunan-bangunan yang membutuhkan daya listrik dalam skala besar.



a. Kwh meter 3 phasa analog

b. Kwh meter 3 phasa semi digital

Gambar 2. 10 Kwh meter 3 phasa

Gambar 2. 11 Diagram Pengawatan Kwh Meter 3 Phasa Sambungan Langsung²

² PT.PLN (Persero) Pusat Pendidikan dan Pelatihan. *Teori Dasar kWh meter*

¹ Binnaro,Hutahean. 2018. Diakses Maret 2021 https://id.scribd.com/document/393154156/APPlengkap-Modul-1-KB4-newpdf

² PT.PLN (Persero) Pusat Pendidikan dan Pelatihan. Teori Dasar kWh meter

2.2.2 Klasifikasi Kwh Meter Dan Batas Kesalahan

Klasifikasi kWh meter dibagi dalam 3 kelas :

- 1. Kwh meter kelas 0,5 dipakai sebagai meter standar
- 2. Kwh meter kelas 1 dipakai untuk pengukuran sekunder (memakai trafo ukur)
- 3. Kwh meter kelas 2 dipakai untuk pengukuran primer (tanpa trafo ukur)

Batas – batas kesalahan kWh meter yang ditentukan oleh kamar tera PLN (atas kebijaksanaan PLN Wilayah/Distribusi setempat).

Tabel 2. 2 Batas kesalahan KWh meter dalam %4

Kelas	Batas Kesalahan yang diizinkan dalam Persentase
0,5	±0,5 %
1	±1 %
2	±2 %

⁴ SK-Dirjen-PDN-No1.-24-Tahun-2010-ttg-ST-Meter-kWh-dan-Lampiran

2.2.3 Prinsip Kerja Kwh meter

1. Kwh Meter Analog⁵

Ditinjau dari segi cara kerjanya maka pengukur ini memakai prinsip azas induksi atau *azas ferraris*. Dan pada umumnya alat pengukur ini digunakan untuk mengukur daya listrik arus bolak balik. Pada alat ini dipasang sebuah cakera alumunium (*alumunium disk*) yang dapat berputar, dimuka sebuah kutub magnit listrik (*Electromagnet*).

Magnit listrik ini diperkuat oleh kumparan tegangan dan kumparan arus. Dengan adanya lapangan magnit tukar yang berubah-ubah maka cakera (*Disk*) alumunium ditimbulkan suatu arus bolak-balik, yang menyebabkan cakera tadi mulai berputar dan menggerakkan pesawat hitungnya.

Secara umum perhitungan untuk daya listrik dapat dibedakan menjadi tiga macam, yaitu :

S = V.I...(2.4)

 $Q = V.I \sin \varphi. \tag{2.5}$

 $P = V.I \cos \varphi. \tag{2.6}$

Dimana:

S = Daya kompleks (VA)

Q = Daya reaktif (VAR)

P = Daya aktif (Watt)

Dari ketiga daya tersebut yang terukur pada kWh meter adalah daya aktif, yang dinyatakan dengan satuan *Watt*. Sedangkan daya reaktif dapat diketahui besarnya dengan menggunakan alat ukur Varmeter. Untuk pemakaian pada rumah, biasanya hanya digunakan kWh meter.

Pada pembebanan bebas induksi kecepatan berputarnya cakera sangat tergantung pada hasil kali tegangan (E) x Kuat arus (I) dalam satuan watt. Jumlah putaran tergantung pada kecepatan dan lamanya, dengan demikian dapat kita rumuskan sebagai berikut :

Sumi Aksara: Jakarta

⁵ Suryatmo,F. 1999. Teknik Pengukuran Listrik dan Elektronika.

E x I x t dalam satuan Watt jam (WH).....(2.7)

Dimana:

E = Tegangan(V)

I = Kuat Arus A

t = Waktu(s)

Untuk alat pengukur Kilowatt jam (kWh) arus putar, pada umumnya mempunyai tiga system magnit, yang masing-masing dengan sebuah kumparan arus tegangan yang bekerja pada sebuah cakera turutan, dimana ketiga cakera itu dipasang pada sumbu yang sama. Cara kerjanya adalah pada piringan kWh merer terdapat suatu garis penanda (berwarna hitam atau merah). Garis ini berfungsi sebagai indikator putaran piringan. Untuk 1 kWh biasanya setara dengan 900 putaran (ada juga 450 putaran tiap kWh). Saat beban benyak memakai daya listrik, maka putaran piringan kWh ini akan semakin cepat. Hal ini tampak dari cepatnya garis penanda ini melintas.

2. Kwh Meter Digital⁶

Adapun cara kerja dari kWh meter digital antara lain sebagai berikut :

- Kwh Meter digital dikontrol oleh sebuah mikrokontroler dengan tipe AVR90S8515 dan menggunakan sebuah sensor digital tipe ADE7757 yang berfungsi untuk membaca tegangan dan arus serta untuk mengetahui besar energi yang digunakan pada instalasi rumah.
- Seven Segment sebagai penampil data besaran energi listrik yang digunakan di rumah. Dari komponen-komponen tersebut dihasilkan sebuah kWh meter modern dengan tampilan digital yang dapat mengukur besaran penggunaan energi, dengan batasan maksimal beban 500 watt.

https://www.scribd.com/document/319781082/pengertian-kwh-meter-jenis-jenis-dan-prinsip-kerjanya-doc

⁶ Mayer, Tezer. 2016. Diakses Maret 2021

2.3 MCB (Miniature Circuit Breaker)⁷

MCB adalah pengaman pada sistem tenaga listrik, yang sering dipergunakan pada tegangan rendah, baik terpasang di Perlengkapan Hubung Bagi (PHB) atau dipergunakan sebagai pembatas yang terpasang kontak kWh meter. Prinsip kerjanya didasarkan pada karakterisitik *thermal* dimana ketika arus lebih besar yang melewati MCB, maka akan memanaskan bimetalic trip.

MCB memainkan peranan penting dalam hal proteksi arus lebih dan juga sebagai alat *disconnect* pada jaringan listrik. Sebuah *breaker* merupakan alat yang didesain untuk mengisolasi rangkaian dari gangguan arus lebih *overload* (beban lebih) dan *short circuit* (hubung singkat).

Pada umumnya, MCB bekerja menggunakan prinsip elektromekanik (*Thermal/Magnetic*) untuk membuka kontak *breaker* ketika gangguan arus lebih terjadi. Unit *thermal trip* bekerja berdasarkan kenaikan nilai temperatur, sedangkan unit *magnetic trip* bekerja berdasarkan kenaikan nilai arus.

Pengaman MCB sebagai pembatas diatur dalam Standar PLN (SPLN) nomor 108 tahun1992.

Gambar 2. 12 MCB8

⁷ Sarimun, Wahyudi. 2015. Buku Saku Pelayanan Teknik. Garamond: Jakarta

⁸ http://www.habetec.com/MCB-Miniature-Circuit-Breaker.html10

Tabel 2. 3 Tabel Pemakaian MCB 1 Phasa

Daya yang digunakan konsumen	MCB yang digunakan
450 VA	2 A
900 VA	4 A
1300 VA	6 A
2200 VA	10 A
3500 VA	16 A
4400 VA	20 A
5500 VA	25 A
7700 VA	35 A
11 KVA	50 A

Tabel 2. 4 Tabel Pemakaian MCB 3 Phasa

Daya yang digunakan konsumen	MCB yang digunakan
6600 VA	10 A
10600 VA	16 A
13200 VA	20 A
16500 VA	25 A
23000 VA	35 A
33000 VA	50 A

Bagian-bagian dari MCB:

- 1. *On-Off* trip dipergunakan secara manual untuk mengoperasikan atau membuka MCB, dan menandakan status MCB trip/operasi atau terbuka.
- 2. Switch mekanis yang membuat kontak arus listrik bekerja.
- 3. Kontak arus listrik sebagai penyambung dan pemutus arus listrik
- 4. Terminal untuk disambungkan keperalatan yang ingin diamankan
- 5. Bimetal, yang berfungsi sebagai thermal trip
- 6. Penyetelan arus secara manual untuk kalibrasi di pabrikan / laboratorium
- 7. Solenoid *Coil* atau lilitan yang berfungsi sebagai *magnetic trip* dan bekerja bila terjadi hubung singkat arus listrik.

8. Pemadam busur api jika terjadi percikan api saat terjadi pemutusan atau pengaliran kembali arus listrik.

Gambar 2. 13 Kosntruksi MCB¹

Berdasarkan waktu pemutusannya, pengaman-pengaman otomatis seperti MCB dapat terbagi atas :

1. Otomat L (Untuk Hantaran)

Pada otomat jenis ini pengaman termisnya disesuaikan dengan meningkatnya suhu hantaran. Apabila terjadi beban lebih dan suhu hantarannya melebihi suatu nilai tertentu, elemen dwi logamnya akan memutuskan arusnya. Ketika terjadi hubung singkat, arusnya diputuskan oleh pengaman elektromagnetiknya. Untuk arus bolak-balik yang sama dengan 4xIn s/d 6xIn dan arus searah yang sama dengan 8xIn pemutusan arusnya berlangsung dalam waktu 0,2 detik.

2. Otomat H (Untuk Instalasi Rumah)

Secara termis jenis ini sama dengan otomat-L. Tetapi pengaman elektromagnetiknya memutuskan dalam waktu 0,2 detik, jika arusnya sama dengan 2,5 x In s/d +- 3x In untuk arus bolak-balik atau sama dengan 4 x In untuk arus searah. Jenis otomat ini dapat dipergunakan untuk instalasi rumah,

¹ Binnaro, Hutahean. 2018. Diakses Maret 2021 https://id.scribd.com/document/393154156/APPlengkap-Modul-1-KB4-newpdf

jika terjadi gangguan tanah, bagian-bagian yang terbuat dari logam tidak akan lama bertegangan.

3. Otomat G

Jenis otomat ini digunakan untuk mengamankan motor-motor listrik kecil untuk arus bolak-balik atau arus searah, alat-alat listrik dan juga rangkaian akhir besar untuk penerangan, misalnya penerangan pabrik. Pengaman elektromagnetiknya berfungsi pada 8xIn s/d 11xIn untuk arus bolak-balik atau pada 14xIn untuk arus searah dalam waktu t =0,2 detik. Kontak-kontak sakelarnya dan ruang pemadam busur apinya memiliki konstruksi khusus. Karena itu jenis otomat ini dapat memutuskan aus hubung singkat yang besar, yaitu sehingga 1500 ampere.

Berdasarkan penggunaan dan daerah kerjanya, MCB dapat digolongkan menjadi 5 jenis ciri yaitu:

- a. Tipe Z (*rating* dan *breaking capacity* kecil) Digunakan untuk pengaman rangkaian semikonduktor dan trafo-trafo yang sensitif terhadap tegangan.
- b. Tipe K (*rating* dan *breaking capacity* kecil) Digunakan untuk mengamankan alat-alat rumah tangga.
- c. Tipe G (rating besar) untuk pengaman motor.
- d. Tipe L (rating besar) untuk pengaman kabel atau jaringan.
- e. Tipe H untuk pengaman instalasi penerangan bangunan

Menurut karakteristik tripnya, ada tiga tipe utama dari MCB, yang didefinisikan dalam IEC 60898.

- a. MCB Tipe B, adalah tipe MCB yang akan trip ketika arus beban lebih besar 3 sampai 5 kali dari arus maksimum atau arus nominal MCB. MCB tipe B merupakan karateristik trip tipe standar yang biasa digunakan pada bangunan domestik.
- b. MCB Tipe C, adalah tipe MCB yang akan trip ketika arus beban lebih besar 5 sampai 10 kali arus nominal MCB. Karakteristik trip MCB tipe ini akan menguntungkan bila digunakan pada peralatan listrik dengan arus yang lebih tinggi, seperti lampu, motor dan lain sebagainya.

c. MCB tipe D, adalah tipe MCB yang akan trip ketika arus beban lebih besar 8 sampai 12 kali arus nominal MCB. Karakteristik trip MCB tipe D merupakan karakteristik trip yang biasa digunakan pada peralatan listrik yang dapat menghasilkan lonjakan arus kuat seperti, transformator, dan kapasitor.