2019 International Conference on Technologies and Policies in Electric Power & Energy

Yogyakarta, Indonesia 21 – 22 October 2019

IEEE Catalog Number: ISBN:

CFP19BWE-POD 978-1-7281-5693-4

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP19BWE-POD

 ISBN (Print-On-Demand):
 978-1-7281-5693-4

 ISBN (Online):
 978-1-7281-5692-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

ON DIGITAL POWER TRANSMISSION SYSTEMS Dodi Garinto	1
STUDY OF DETERMINING COST COMPENSATION OF POWER WHEELING TRANSACTION	
ON COMPOSITE SYSTEM RELIABILITY BY OPTIMAL POWER FLOW	7
Rifqi Fatchurrahman ; Ariesa Budi Zakaria	/
OPPORTUNITY COST ALLOCATION FOR WHEELING USING POWER FLOW TRACING	12
Yusuf Susilo Wijoyo ; Sasongko Pramono Hadi ; Sarjiya	13
DE-AERATOR EXHAUST WASTE HEAT RECOVERY USING TEG	10
Wildan Arif Febrianto ; Agung Rahadian Puntaran	10
LEARNING VECTOR QUANTIZATION BASED VIBRATION ANALYSIS FOR STEAM POWER	
PLANT ROTATING EQUIPMENT FAULT DIAGNOSIS	22
Muhammad Insan Al-Musthafa	22
READINESS INDEX FOR INDONESIAN POWER PLANT TOWARD INDUSTRY 4.0	25
Harry Indrawan; Nur Cahyo; Arion Simaremare; Siti Aisyah; Paryanto; Mohammad Tauviqirrahman	23
MODELLING HYBRID PV-GENERATOR SYSTEM USING MATLAB/SIMULINK AT JIFAK	
VILLAGE, PAPUA	31
Dwi Handoko Arthanto ; Bernardus Galih Dwi Wicaksono ; Arga Iman Malakani ; Agus Purwadi	
THE DEVELOPMENT OF 35 GW POWER GENERATION FOR SUSTAINABILITY OF PJB	
EXISTING POWER PLANT: AN ASSESSMENT AND ANALYSIS ON JAVA-BALI SYSTEM	37
Indratno Pardiansyah ; Adrian Akbar Untoro	
ANALYSIS AND EVALUATION PERFORMANCE OF MPPT ALGORITHMS: PERTURB &	
OBSERVE (P&O), FIREFLY, AND FLOWER POLLINATION (FPA) IN SMART MICROGRID	
SOLAR PANEL SYSTEMS.	43
Suyanto Suyanto ; Luthfansyah Mohammad ; Iwan Cony Setiadi ; Roekmono Roekmono	
CHARACTERISTICS OF TEMPERATURE CHANGES MEASUREMENT ON PHOTOVOLTAIC	
SURFACES AGAINST QUALITY OF OUTPUT CURRENT ON SOLAR POWER PLANTS	49
Andi Makkulau ; Christiono ; Samsurizal	
FINANCIAL RISK ASSESSMENT FOR POWER PLANT INVESTMENT UNDER	
UNCERTAINTY USING MONTE CARLO SIMULATION	53
Abduh Sayid Albana ; Yudha Andrian Saputra	
FEASIBILITY STUDY ON INSTALLATION OF SOLAR CELL RENEWABLE ENERGY	
GENERATORS	59
Husein Mubarok ; Bayu Prastowo	
ANALYSIS OF VOLTAGE AND POWER FACTOR FLUCTUATION DUE TO PHOTOVOLTAIC	
GENERATION IN DISTRIBUTION SYSTEM MODEL	65
Dhandis R. Jintaka ; Aristo Adi Kusuma ; Handrea Bernando Tambunan ; Muhammad Ridwan ; K. G. H.	
Mangunkusumo ; Buyung Sofiarto Munir	
DESIGN AND DEVELOPMENT OF HARDWARE-AGNOSTIC SOLAR PV AUTOMATED	70
MONITORING SYSTEM Dimas Kaharudin Indra Rupawan ; Aripriantoni ; Rifky Raymond	/0
NEW AND RENEWABLE CATALYST BASED ON ELECTRO-ACTIVATED CARBON FOR	
HYDROGEN GENERATION	7.4
Deni Shidqi Khaerudini ; Hanifah Winarto ; Andri Hardiansyah ; Sagir Alva ; Deni Shidqi Khaerudini ; Cecep E.	/4
Rustana ; Denawati Junia ; Fharuq Dirza Dirgantara	
COMPARATIVE ANALYSIS BETWEEN FIXED TILT AND TRACKED PV SYSTEM IN	
TROPICAL CLIMATE	80
Dimas Kaharudin Indra Rupawan ; Aripriantoni ; Rifky Raymond	
PLACEMENT AND CAPACITY OPTIMIZATION OF UNIFIED POWER FLOW CONTROLLER	
USING IMPERIALIST COMPETITIVE ALGORITHM	83
Rini Nur Hasanah ; Rionaldi Wika Yuniatmoko ; Hadi Suyono	
SMART GRID TECHNOLOGY FOR ENERGY CONSERVATION IN STREET LIGHTS: LESSON	
LEARNT FROM SIX YEARS' OPERATION IN INDONESIA	89
Muhammad Indra Al Irsyad ; Anthony Halog ; Rabindra Nepal	
OPTIMAL DESIGN OF LUBRICATED JOURNAL BEARING UNDER SURFACE ROUGHNESS	
ARRANGEMENT	95
Mohammad Tauviairrahman : P. Parvanto : Harry Indrawan : Nur Cahyo : Arion Simaremare : Siti Aisyah	

EXPERIMENTAL ANALYSIS ON WIRELESS POWER TRANSFER FOR CONTINUOUS	
CHARGING OF A MOBILE ROBOT	100
Tresna Dewi; Pola Risma; Yurni Oktarina; Ahmad Taqwa; Lin Prasetyani; Ahmad Aman Astra	
ENERGY LOSS ANALYSIS USING VALUE STREAM MAPPING (VSM): A POWER PLANT	106
CASE STUDY	100
PRICE DEMAND ELASTICITY AND POTENTIAL SAVING OF ELECTRIC SUBSIDIES:	
EMPIRICAL EVIDENCE OF HOUSEHOLD SOCIO-ECONOMIC SURVEY	111
Andri Yudhi Supriadi ; Telisa Falianty	
SMART GRID INITIATIVES IN SOUTH EAST ASIAN COUNTRIES: WHAT ARE BEING DONE	
IN THE EARLY STAGE	115
Revi Aldrian ; Daniel Karmel Fernando Tampubolon ; Iman Faskayana	
BOILER RELIABILITY OF 100 MW POWER PLANT USING RELIABILITY BLOCK DIAGRAM	
(RBD)	120
Ariyana Dwiputra ; M. Iqbal Felani ; Nur Cahyo	
TOWARDS 100% RENEWABLE ELECTRICITY FOR INDONESIA: THE ROLE FOR SOLAR	
AND PUMPED HYDRO STORAGE	126
Matthew Stocks; Andrew Blakers; Cheng Cheng; Bin Lu	
PREDICTING ROOFTOP PHOTOVOLTAIC ADOPTION IN THE RESIDENTIAL CONSUMERS	
OF PLN USING AGENT-BASED MODELING	130
Fajar Nurrohman Haryadi ; Muhammad Ali Imron ; Harry Indrawan ; Meiri Triani	
IMPLEMENTATION OF FAULT CURRENT LIMITER IN WEST JAVA 150 KV	
TRANSMISSION SYSTEM	135
Johanno Afrizal Wibowo ; Abdur Rouf ; Erliansyah Nur Muhammad ; Syah Jahan Al-Ahmad	
EXCESSIVE WATER CONTENT IDENTIFYING APPROACH USING SWEEP FREQUENCY	
RESPONSE ANALYSIST AND ELECTRICAL INDIVIDUAL TEST FOR POWER	140
TRANSFORMER	140
IMPACT OF SIZING AND PLACEMENT ON ENERGY STORAGE SYSTEM IN GENERATION	
SCHEDULING CONSIDERING TRANSMISSION LOSSES	1/16
Imron ; Lesnanto Multa Putranto ; Sarjiya ; Muhammad Yasirroni	140
ELECTRIC VEHICLE CHARGING LOAD FORECASTING MODEL CONSIDERING ROAD	
NETWORK-POWER GRID INFORMATION	152
Jun Yang ; Xuemei Long ; Xueli Pan ; Fuzhang Wu ; Xiangpeng Zhan ; Yangjia Lin	
DETERMINATION OF OVERHEAD CONDUCTORS CURVES WITH QUADRATIC APPROACH	
BASED	157
Hermagasantos Zein; Sri Utami; Siti Saodah; Conny K. Wachjoe	
LIGHTNING DETECTION MONITORING SYSTEM FOR IDENTIFICATION TRANSMISSION	
LINE FAULT IN PLN TRANS JBT	163
Eki Farlen ; Andhy Dharma Setyawan ; Didit Prasetyo ; Devy Cahyaningrum	
THE LITERATURE STUDY OF IMPLEMENTATION NEW POSTPAID ENERGY METER	
SYSTEM FOR ACHIEVING OPERATIONAL COST EFFICIENCY	169
Hardian Sakti Laksana ; Ivan Gede Histijanton ; R. Mirwanto	
THE DESIGN OF KALIMANTAN TRANSMISSION SYSTEM INTERCONNECTION IN	4=0
ELECTRICAL STABILITY PERSPECTIVE	173
P. Ardyono; P. Margo; P. S. Talitha; F. Rahmat; R. M. Vincentius; P. Adi; S. Ira	
HEPAF AND IGVM COMBINATION TECHNOLOGY TO CONTROL THE INDUSTRIAL GAS TURBINE PERFORMANCE, EXCESS AIR AND CO2 PRODUCTION	170
Okwaldu Purba ; Adhi Eko Apriyanto	1/8
SPECIAL PROTECTION SYSTEM WITH MACRO VBA-BASED DESCENDING METHOD AT	
PT PLN (PERSERO) SOUTH AND CENTRAL KALIMANTAN	184
Ariesa Budi Zakaria ; Ratna Nuringtyas ; Anang Hardoyo	104
CASE STUDY OF STRAIGHTENING METHODS FOR BENT SHAFT 1.25 MM ON HIP	
TURBINE ROTOR PACITAN STEAM POWER PLANT#1	188
Yasfi ; Muhammad Nasruddin ; Hery Artady	
CONSTRUCTION OF WASTE-TO-ENERGY (WTE) POWER PLANT IN BALIKPAPAN TO	
HANDLE WASTE AND MARINE LITTER TREATMENT IN INDONESIA	193
Mirza Prasetya Kurniawan ; Jhibril ; Hafidz Nufi Hartanto ; Anrizal	
DESIGN MINI HYDRO POWER PLANT UTILIZE DISCHARGE CHANNEL TELUK	
BALIKPAPAN 2X110 MW COAL-FIRED STEAM POWER PLANT BY FINITE ELEMENT	
METHOD ANALYSIS	199
Hafidz Nufi Hartanto ; Mirza Prasetya Kurniawan ; Muhammad Hanif Salim ; Anrizal	

ELECTRICITY DEMAND FORECASTING USING A SIMPLE-E EXPANDED APPROACH AT PT PLN (PERSERO) OF KOTAMOBAGU AREA FROM 2018 TO 2022	205
Zakki Mubarok ; Maureen Langie ; Sri Soeyati	203
THE EFFECT OF AGING ON MICROSTRUCTURE, MECHANICAL PROPERTIES, AND	
ELECTRICAL CONDUCTIVITY OF 6061 ALUMINIUM ALLOY FOR CIRCUIT BREAKER	211
Dian Mughni Fellicia ; Rochman Rochiem ; Muhammad Rafi Wirawan Putra ; Arianto Dwi Utomo ; Madeline Rosmariana	
VISIBILITY STUDY OF OPTIMIZED HYBRID ENERGY SYSTEM IMPLEMENTATION ON	
INDONESIA'S TELECOMMUNICATION BASE STATION	216
Mochamad Mardi Marta Dinata ; Joko Slamet Saputro	
NUMERICAL ANALYSIS ON THE EFFECT OF THREAD MODIFICATION ON AIR NOZZLE	
FOR CFB BOILER IN PLTU BARRU	222
Gede Satya Sarasamucchaya ; Mohamad Afin Faisol ; Wawan Hudayana ; Tri Rinanto Mugiharjo ; Muhammad Rai Fadhilah	
EFFECT OF SODIUM CHLORIDE SOLUTION CONCENTRATION ON HYDROGEN GAS	
PRODUCTION IN WATER ELECTROLYZER PROTOTYPE	227
Rusdianasari Rusdianasari ; Yohandri Bow ; Tresna Dewi ; Ahmad Taqwa ; Lin Prasetyani	
INSTALLATION OF LITHIUM-BROMIDE (LI-BR) ABSORPTION CHILLER SYSTEM IN	
CILEGON POWER PLANT UTILIZING WASTE HEAT FROM HRSG FOR GAS TURBINE	
COMPRESSOR AIR INTAKE COOLING	233
Fandi Setia ; Jon Tohom J Silitonga ; St Sayuti	•••
CO-FIRING RDF IN CFB BOILER POWER PLANT	239
Mochamad Soleh ; Yudi Hidayat ; Zaenal Abidin	2.15
INDONESIA OPPORTUNITY TO ACCELERATE ENERGY TRANSITION	245
Muhammad Arifianto Chairiawan	
DEVELOPMENT OF COAL FIRED POWER PLANT AGING FLY ASH AND BOTTOM ASH	2.40
UTILIZATION	249
Mochamad Soleh ; Yudi Hidayat ; Zaenal Abidin	
THE OVERVIEW OF TURBINE'S ROTOR REPAIR METHODOLOGY IN 55 MW	25.4
GEOTHERMAL POWERPLANT	254
STUDY OF AGC IN THE SARAWAK - WEST KALIMANTAN INTERCONNECTED POWER	
SYSTEM UNDER DEREGULATED SCENARIO	250
Bagas Maulana Sutardi ; M. Iqra Orytuasikal ; M. Fasih Mubarrok	239
A GRID-CONNECTED INVERTER WITH VAR SUPPORT CAPABILITY FOR A SMALL SCALE	
SOLAR PV USING A DROOP TECHNIQUE	265
Ferdian Ronilaya ; Widamuri Anistia ; Ika Noer Syamsiana ; Indrazno Siradjuddin ; Mochammad Junus ;	203
Aripriharta	
LOSSES MANAGEMENT OF PT. PLN (PERSERO) ULP SIAK BY USING JOGJA LOSSES	
FORMULA CALCULATION METHOD	271
Ainur Rohmah ; Ir. Edy Ervianto	
MARKET SURVEY ON THE ADDITION OF CILEGON FUEL GAS COMPRESSION CAPACITY	
AS THE SOURCING BEST PRACTICE OF EPC SMALL SCALE PROJECT	276
Muhammad Imaduddin	
APPLICATION OF DEMAND RESPONSE SCHEME FOR GENERATION SCHEDULING AND	
DISPATCH FOR REDUCING GENERATION COST	281
Fikriyan Fajar Al Farobi ; Sarjiya ; Lesnanto Multa Putranto ; Muhammad Yasirroni	
AUTOMATION OF ELECTRICITY SYSTEM PLN UPDL BANJARBARU USING PASSIVE	
INFRARED SENSORS	287
Soni Asmaul Fuadi ; Ario Dwi Prabowo	
DIGITALIZATION SOLUTION ON CUSTOMER SERVICES TO LEVERAGE THE EASE OF	
GETTING ELECTRICITY	291
Wisnu Cahyono ; Wahyu Haris Kusuma Atmaja ; Asteria Palupi Karyuniati	
CORPORATE STRATEGY USING STRATEGIC PORTFOLIO ANALYSIS IN FACING	
RENEWABLE & LIBERALIZED ELECTRICITY ERA Herry Nico Siagian ; Fransiscus Adam Perkasa	297
IMPACT OF PLUG IN ELECTRIC VEHICLE ON UNIFORMLY DISTRIBUTED SYSTEM MODEL	303
Kevin Gausultan Hadith Mangunkusumo ; Buyung Sofiarto Munir ; Joko Hartono ; Aristo Adi Kusuma ; Dhandis R. Jintaka ; Muhamad Ridwan	
DEVELOPMENT OF PREDICTIVE MAINTENANCE METHODOLOGY UTILIZING MACHINE	
LEARNING TECHNOLOGY TO SUPPORT PLANT HEALTH MANAGEMENT	308
Mochamad Soleh ; Aghil Riyadi ; Annisa Prima Asnel	

IMPLEMENTATION OF RISK ANALYSIS USING MONTE CARLO SIMULATION ON	
ELECTRICITY INVESTMENT DECISION MAKING: CASE STUDY: STEAM AND COMBINED	
CYCLE POWER PLANT DEVELOPMENT IN INDONESIA BY PT PEMBANGKITAN JAWA-	
BALI	314
Vernon Sapalatua ; Herry Nico Siagian	
HYBRID ENERGY FOR REMOTE ISLANDS FROM PEOPLES INDEPENDENT POWER	
PRODUCERS	319
Muhamad Hami Pradipta ; Peri Indrianto ; Herda Dwi Cahyanova	
THERMAL ANALYSIS OF PV MODULE AND THE EFFECT ON ITS EFFICIENCY	323
Rivan Muhfidin ; Ing-Song Yu	
ELECTROMAGNETIC RISK IDENTIFICATION IN OIL AND GAS INDUSTRY	327
Hazrul Izwan Hussien ; Muhammad Akmal Ayob ; Indhika Fauzhan Warsito ; Eko Supriyanto ; Indhina	
Reihannisha	
OPTIMAL TUNING OF PID CONTROL ON SINGLE MACHINE INFINITE BUS USING ANT	
COLONY OPTIMIZATION	331
A. M. Shiddiq Yunus ; Muhammad Ruswandi Djalal	
COMPARISON OF STATIC VAR COMPENSATOR (SVC) AND UNIFIED POWER FLOW	
CONTROLLER (UPFC) FOR STATIC VOLTAGE STABILITY BASED ON SENSITIVITY	
ANALYSIS: A CASE STUDY OF 500 KV JAVA-BALI ELECTRICAL POWER SYSTEM	337
Chico Hermanu; Oktavian Listiyanto; Agus Ramelan	
CONTROLLING ENERGY CONSUMPTION OF BUILDING UNDER INTELLIGENT CONTROL	2.12
SYSTEM	343
Marwan Marwan	
DESIGN AND ANALYSIS OF TOOTHED LOG PERIODIC ANTENNA AS PARTIAL	240
DISCHARGE SENSOR IN POWER APPARATUS	348
Umar Khayam; Miftahul Husna; Rachmawati Rachmawati	
INVERTER POSITION PLACEMENT METHOD IN PV FARM USING THE STRING PV	254
CLUSTER ON NORMAL/PARTIAL SHADED CONDITIONS	354
Antonius Rajagukguk; Maryani Aritonang; Nurhalim Nurhalim; Iswadi Hasym Rosma	
OPTIMIZING THE COGGING TORQUE REDUCTION OF INTEGRAL SLOT NUMBER IN PERMANENT MAGNET MACHINE	260
Marsul Siregar; Tamer Zaki Fouad Mohamed; Dolly Ramly Wohon; Tajuddin Nur	300
NUMERICAL STUDY OF THE CHARACTERISTICS OF FLOW AND HEAT TRANSFER	
DESIGN OF USC 1000 MW SUPERHEATER BOILER	365
Ronny C Sirait	
OPTIMIZATION OF THE ENERGY MANAGEMENT CONCEPT IN HIGH RISE OFFICE	
BUILDING (CASE STUDY IN SSS BUILDING JAKARTA)	370
Marsul Siregar ; Tajuddin Nur ; Firma Purbantoro ; Lanny Panjaitan	
REDUCING THE COGGING TORQUE OF INTEGRAL SLOT NUMBER IN INSET-	
PERMANENT MAGNET GENERATOR	376
Tajuddin Nur ; Hoang Than ; Marsul Siregar ; Feri Yusivar	
FUZZY-PID CONTROLLER ON MPPT PV TO STABILIZE DC BUS VOLTAGE	381
Adhi Kusmantoro ; Mauridhi Hery Purnomo ; Ardyono Priyadi ; Vita Lystianingrum Budiharto Putri	
DOUBLE AIR TERMINAL IN LIGHTNING PROTECTION SYSTEM	387
Indhika Fauzhan Warsito ; Muhammad Faudzi M Yasir ; Muhammad Akmal Abu Taib ; Eko Supriyanto ; Indhina	
Reihannisha ; Nur Faizal Bin Kasri	
EFFECTIVENESS OF TIP DESIGNS IN REDUCING FIRE RISK AT COLD VENT STACK	391
Nur Faizal Bin Kasri ; Muhammad Faudzi M Yasir ; Muhammad Akmal Abu Taib ; Eko Supriyanto ; Indhika	
Fauzhan Warsito ; Indhina Reihannisha	
IMPLEMENTATION OF FAULT CURRENT LIMITER IN WEST JAVA 150 KV	
TRANSMISSION SYSTEM	395
Johanno Afrizal Wibowo ; Abdur Rouf ; Erliansyah Nur Muhammad ; Syah Jahan Al-Ahmad	
ENVIRONMENTALLY FRIENDLY SYNTHESIS OF LINI _{0.80} CO _{0.15} AL _{0.05} O ₂ CATHODE	
MATERIAL FOR LI-ION BATTERIES AND ITS GALVANOSTIC TEST USING ARTIFICIAL	
GRAPHITE ANODE	400
Setia Utaminingtyas ; Cornelius Satria Yudha ; Muhammad Nur Ikhsanudin ; Soraya Ulfa Muzayanha ; Agus	
Purwanto ; Hendri Widiyandari NACI, DODED I INI. (CO.) (Al. 2000), VIA SOI ID STATE DEACTION EOD I I ION DATTEDIES	105
NACL DOPED LINI _{0.8} CO _{0.15} AL _{0.05} O ₂ VIA SOLID-STATE REACTION FOR LI-ION BATTERIES	405
Muhammaa Nur Ikhsanuam ; Cornetius Satria Tuaha ; Setia Otaminingiyas ; Agus Purwanio ; Henari Widiyandari ; Arif Jumari ; Endah Retno Dyartanti	
AN ANALYSIS OF UNIFIED POWER FLOW CONTROLLER PLACEMENT EFFECT ON	
TRANSMISSION LINES TOTAL TRANSFER CAPABILITY	410
Handika Putra ; Irfan Joyokusumo	

THE CHARACTERISTIC OF THERMOELECTRIC ENERGY GENERATOR MODULE	
INSTALLED AT THE WALL OF THE PRIME STOVE	415
Andrya Muhamad Zuhud ; Widayat Widayat ; Facta Mochammad	
MODELING THE TEMPERATURE OF THE DISTRIBUTION TRANSFORMER OIL USING	
TRANSFORMER BODY TEMPERATURE AND POWER QUALITY PARAMETERS BASED ON	
ARTIFICIAL NEURAL NETWORK	421
Anang Tjahjono ; Wahyu A. Septian ; Rosmaliati ; Novita W. Rika ; Taufik Taufik	
OPTIMIZATION OF ECONOMIC DISPATCH OF 150 KV SULSELRABAR SYSTEM USING	
LAGRANGE APPROACH	427
A. M. Shiddiq Yunus ; Muhammad Ruswandi Djalal	
Author Index	

Yogyakarta, Indonesia, October 21st-24th, 2019

PROCEEDING:

DOI:

PARALLEL SESSION DISTRIBUTION

	Ag	ung Room 1 (Topic : Generati	ion)
Date	e : 21 October 2019	Session 1 (13.00 – 16.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
37	industrial Gas Turbine p production	nation tecnology to control the erformance, excess air and CO2	Chairman: Dr. Umar Khayam, S.T., M.T.
54	Hydrogen Gas Production Prototype	i Eko Apriyanto le Solution Concentration on on Produced in Water Electrolyzer ari, Yohandri Bow, Tresna Dewi and	Co-Chairman: Dr. Zainal Arifin Secretary: Hendi Wijaya, ST, MT
55	Dry Lay-Up Preservation Maintenance in Reserve	Using Flue Gases as Preventive d Shutdown Steam Power Plant , Pronika Lilensi and Supri Arianto	
101	Determining Optimum S with Multiple Gas Turbin	Start Priority for Peaker Power Plant	
150		cated Journal Bearing Under Surface t	
171	· · · · · · · · · · · · · · · · · · ·	cement on Energy Storage	
	Imron Imron, Lesnanto N Muhammad Yasirroni	Iulta Putranto, Sarjiya Sarjiya and	
56	E-Field Measurement fo in Oil and Gas Industry	r Electromagnetic Risk Identification	
		uhammad Akmal Ayob, Muhammad nmad Faudzi M Yasir, Indhika	

	Agı	ung Room 1 (Topic : Generati	on)
Date	e : 21 October 2019	Session 2 (16.00 – 18.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
40	, ,	ning Methods For Bent Shaft 1.25 or Pacitan Steam Power Plant#1 ddin and Hery Artady	Chairman: Dr. Zainal Arifin
51		native Energy from Plastic Waste in sing Pyrolysis Plant as Preventive ea Water	Co-Chairman: Sarjiya, S.T., M.T., Ph.D., IPU
	Muhammad Khoiri Albai Huda and Ramadhani Ro	na, Muhammad Yunus Qomarul amadhani	Secretary: Hendi Wijaya, ST, MT
52	Numerical Analysis On T Air Nozzle For Cfb Boile	he Effect Of Thread Modification On In PLTU Barru	

PROCEEDING:	DOI:
ad Afin Fairal Tui	

	Agung Roor	n 2 (Topic : Transmission and	Distribution)
Date	e : 21 October 2019	Session 1 (13.00 – 16.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
2	Quadratic Approach Ba	nead Conductors Curves with sed i Utami and Siti Saodah, Conny K.	Chairman: Sarjiya, S.T., M.T., Ph.D., IPU
	Wachjoe	t Otalin and Sitt Sabdan, Conny K.	
32	Lightning Detection Mo Transmission Line Fault	nitoring System For Identification in PLN Trans JBT	Co-Chairman: Dr. Eng. Ardyono Priyadi, S.T.,
	Eki Farlen		M.Eng
9	Fuzzy-PID Controller Or Voltage	n MPPT PV To Stabilize DC Bus	Secretary:
	Adhi Kusmantoro		Norayati binti Nordin
75	A Grid-connected Inver Small Scale Solar PV Us	ter with VAr Support Capability for A ing A Droop Technique	
	_	nuri Anistia, Ika Noer Syamsiana, ochammad Junus and Aripriharta	
111	Lightning Simulation of	Gravel Variant	
		Fauzhan Warsito, Muhammad Akmal Taudzi M Yasir and Indhina	
155	Experimental Analysis of Continuous Charging o	n Wireless Power Transfer for f a Mobile Robot	
		a, Yurni Oktarina, Ahmad Taqwa, Lin	

	Agung Roo	m 2 (Topic : Transmission and	Distribution)
Date	e : 21 October 2019	Session 2 (16.00 – 18.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
36		tan Transmission System trical Stability Perspective	Chairman: Dr. Umar Khayam, S.T., M.T.
		o Pujiantara, Talitha Puspita Sari, narko, Vincentius Raki Mahindara, Adi	Co-Chairman: Dr. Yulizar Widiatama, M.Eng
26	Channels Of Prototype	Transmission And Distribution Wind Turbine Power Plant (PLTB)	Secretary:
	Mahmuuda Catur and	Agus Kiswantono	Norayati binti Nordin

International Conference on Technology and Policy in Electric Power & Energy (ICT-PEP)

	PROCEEDING:
35	Analysis of the Implementation of PASTI Energy Meter System in Achieving Operational Cost Efficiency, Case Study in PLN UID Jateng DIY
	Hardian Sakti Laksana, Ivan Gede Histijanton and R Mirwanto
38	Special Protection System With Macro Vba-Based Descending Method At PT PLN (Persero) South And Central Kalimantan
	Ariesa Budi Zakaria, Ratna Nuringtyas and Anang Hardoyo minor revision
65	An Analysis of Unified Power Flow Controller Placement
	Effect on Transmission Lines Total Transfer Capability
	Handika Putra and Irfan Joyokusumo

International Conference on Technology and Policy in Electric Power & Energy (ICT-PEP)

Yogyakarta, Indonesia, October 21st-24th, 2019

PROCEEDING:

DOI:

		Ballroom 1 (Topic : Policy)	
Date	e : 21 October 2019	Session 1 (13.00 – 16.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
67	Indonesia Opportunity Muhammad Arifianto Cl	To Accelerate Energy Transition	Chairman: Dr. Telisa Aulia Falianty
72	Study of AGC in The Sar Interconnected Power S	rawak – West Kalimantan ystem under Deregulated Scenario M Iqra Orytuasikal and M Fasih	Co-Chairman: Dr. Eng. Agus Purwanto, S.T., M.T.
80	Execution of Energy Management System in High Rise Office Building (Case Study in SSS Building) Marsul Siregar, Tajuddin Nur and Firma Purbantoro		Secretary: Nur Faizal bin Kasri
85	Corporate Strategy Using Strategic Portfolio Analysis in Facing Renewable & Liberalized Electricity Era		
96	Herry Nico Siagian and Fransiscus Adam Perkasa Implementation of Risk Analysis using Monte Carlo Simulation on Electricity Investment Decision Making, Case Study: Steam and Combined Cycle Power Plant Development in Indonesia		
129	Herry Nico Siagian and Vernon Sapalatua Financial Risk Assessment For Power Plant Investment Under Uncertainty Using Monte Carlo Simulation		
163	Smart Grid Initiatives in Are Being Done in The I	Yudha Andrian Saputra South East Asian Countries : What Early Stage Apubolon and Iman Faskayana	

International Conference on Technology and Policy in Electric Power & Energy (ICT-PEP)

Yogyakarta, Indonesia, October 21st-24th, 2019

PROCEEDING:

DOI:

Date	e : 21 October 2019	Ballroom 1 (Topic : Policy) Session 2 (16.00 – 18.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
78	Market Survey on the Addition of Cilegon Fuel Gas Compression Capacity as the Sourcing Best Practice of EPC Small Scale Project Muhammad Imaduddin		Chairman: Dr. Matthew Stocks Co-Chairman:
84		on Customer Services to Leverage the	Dr. Eng. Agus Purwanto, S.T., M.T.
	Wisnu Cahyono, Wahyu Haris Kusuma Atmaja and Asteria Palupi Karyuniati		Secretary: Achmad Alfian Hidayat, S.ST, MT
95	Development Of Predictive Maintenance Methodology Utilizing Machine Learning Technology To Support Plant Health Management		
	Mochamad Soleh, Aghil Riyadi and Annisa Prima Asnel		
120	PLN Premium Electricity Policy Estimation of Renewable Energy Tariff Using Life Cycle Assessment for Industrial needs in Eco-Friendly Electricity Demand to Accelerate Indonesia Renewable Energy Development		
	Muhammad Khoiri Albana and Robby Ramadhan		
162		y And Potential Saving Of Electric ridence Of Household Socio-Economic	
	Andri Supriyadi and Te	lisa Falianty	

		PROCEEDING:	DOI:
Date	e : 21 October 2019	Session 1 (13.00 – 16.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
46	Batteries and Its Galvano Anode	Cathode Material for Li-ion ostic Test Using Artificial Graphite rnelius Satria Yudha, Muhammad	Chairman: Mochammad Facta, S.T., M.T., Ph.D. Co-Chairman: Dr. Yulizar Widiatama, M.Eng
47	Purwanto and Hendri W NaCl Doped LiNi0.8Co0. for Li-lon Batteries	idiyandari 15Al0.05O2 via Solid-State Reaction	Secretary: Achmad Alfian Hidayat, S.ST, MT
		udin, Cornelius Satria Yudha, Setia rwanto, Hendri Widiyandari, Arif Dyartanti	
98	Thermal Analysis of PV I Efficiency	Module and the Effect on its	
122		Performance of MPPT Algorithms: O), Firefly, and Flower Pollination	
		ohammad, Iwan Cony Setiadi and	-
133	Analysis of Voltage and Power Factor Fluctuation due to Photovoltaic Generation in Distribution System Model Dhandis Rito Jintaka, Aristo Adi Kusuma, Handrea Bernando		
143		Ridwan and Buyung Sofiarto Munir etween Fixed Tilt And Tracked Pv ate	_
		toni - and Dimas Kaharudin Indra	
166	for solar and pumped h	le electricity for Indonesia: the role ydro storage Cheng Cheng and Andrew Blakers	_

	Ballroom 2 (Topic : Smart Grid and Renev	vable Energy)
Date	e : 21 October 2019	Session 2 (16.00 – 18.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER	TITLE		REVIEWER TEAM
137	Design And Developme Automated Monitoring	nt Of Hardware-Agnostic Solar PV System	Chairman: Dr. Noor Akhmad Setiawan
	Rifky Raymond, Aripriantoni - and Dimas Kaharudin Indra Rupawan		Co-Chairman:
139	The Aplication Process of the Data Logger Results for Renewable Energy Potential Projection		Mochammad Facta, S.T., M.T., Ph.D.
	Irwandi Gunanda and Avip Zainhag		Secretary:
160	Controlling Energy Cons Innovative CLC Brick und	sumption of Building with Using An der Smart Grid Program	Akhmad Dahlan, M.Kom
	Marwan Marwan		
168	Predicting Rooftop Photovoltaic Adoption In The Residential Consumers of PLN Using Agent-Based Modeling		

	PROCEEDING:
	Fajar Haryadi, Harry Indrawan and Meiri Triani
172	Electric Vehicle Charging Load Forecasting Model Considering Road Network-Power Grid Information
	Jun Yang, Xuemei Long, Xueli Pan, Fuzhang Wu, Xiangpeng

	Ag	ung Room 1 (Topic : Generat	tion)
Date	e : 22 October 2019	Session 3 (07.30 – 16.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
29	Investigation the Influence of Height and Length of the Magnet Edge Slotting of Fractional Slot Number in Permanent Magnet Generator on the Cogging Torque Reduction		Chairman: Dr. Zainal Arifin Co-Chairman: Dr. Rachmawan Budiarto, S.T., M.T
82	Reducing the Cogging Torque of Integral Slot Number in Inset-Permanent Magnet Generator Tajuddin Nur, Sri Mawar and Marsul Siregar Readiness Index for Indonesian Power Plant toward Industry 4.0		Secretary:
115			
134	Paryanto Paryanto, Harry Indrawan and Nur Cahyo Water Supply System Based on Renewable Energy in Rawasari Village, Berbak District, Tanjung Jabung Timur Regency, Jambi Province, Indonesia		
	Dwi Novitasari, Dimas Deworo Puruhito, Zakariya Arif Fikriyadi, Rachmawan Budiarto and Fitrotun Aliyah		
141	New and renewable catalyst based on electro-activated carbon for hydrogen generation		
	Deni Shidqi Khaerudini, Hanifah Winarto, Andri Hardiansyah, Sagir Alva, Cecep Rustana, Denawati Junia and Fharuq Dirza Dirgantara		
169	Implementation of Low Wind Turbines for Direct Muldi Yuhendri		

	Agı	ung Room 1 (Topic : Generati	ion)
Dat	e : 22 October 2019	Session 4 (10.00 – 12.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	
66	Development of Alternative Clean Fuel for Co-firing in Coal Fired Power Plant		Chairman: Dr. Rachmawan Budiarto, S.T., M.T.
77	Mochamad Soleh, Yudi Hidayat and Zaenal Abidin		Co-Chairman:
77	The estimation of the waste heat recovery in prime cookstove by using Thermoelectric Generators		Dr. Zainal Arifin
	Andrya Muhamad Zuhud, W Widayat and Muhammad Facta		
89	The characteristic of TEC prime stove	6 module installed at the wall of the	Secretary: Hendi Wijaya, ST, MT
	Widayat Widayat, Facta Mohammad and Andrya Muhammad Zuhud		

		PROCEEDING:	DOI:
	119	Modelling Hybrid PV-Generator System Using MATLAB/SIMULINK At Jifak Village, Papua	
		Dwi Handoko Arthanto, Bernardus Galih Dwi Wicaksono, Arga Iman Malakani and Agus Purwadi	
	165	Boiler Reliability of 100 MW Power Plant using Reliability Block Diagram (RBD)	
		Ariyana Dwiputra, M. Iqbal Felani and Nurcahyo Nurcahyo	

	Ag	ung Room 1 (Topic : Generat	ion)
Date	: 22 October 2019	Session 5 (13.00 – 15.30)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
7	Combustion in the HRS	cteristic of Non-Premixed G Supplementary Firing and Safitra and Teguh Ariwibowo	Chairman: Dr. Rachmawan Budiarto, S.T., M.T
22	Process Control and Ins Treatment by using Lab	trumentation Design of Biogas	Co-Chairman: Dr. Zainal Arifin
31	Evaluation Of Improvement Balancing Procedure As Proactive Maintenance Activity At Induced Draft Fan (Idf) Of Coal Fired Power Plant (CFPP) Lontar		Secretary: Hendi Wijaya, ST, MT
33	Andi Rinaldi Hasan and Abdul Rokhim Al Apit Flyback Transformer As A Generator High Voltage In Frequency 3 - 10 Khz		
157	Yuli Hermanto and Agus Kiswantono Energy Losses Analysis using Value Stream Mapping (VSM) Method: Power Plant Case Study Walnu Ica Arifin and Juan Vangay		
170	Wahyu Isa Arifin and Iwan Vanany Excessive Water Content Identifying Approach Using Sweep Frequency Response Analysist and Electrical Individual Test for Power Transformer Muhammad Helmi Prakoso and Rizky Fajar Maulana		

	Agung Roon	n 2 (Topic : Transmission and	l Distribution)
Date	e : 22 October 2019	Session 3 (07.30 – 10.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
13	Optimization Of Distance Impedance Difference N Alfi Yulianta	te Relays Fault Locator With The Method	Chairman: Dr. Eng. Ardyono Priyadi, S.T., M.Eng.

Bali Electrical Power System

Yogyakarta, Indonesia, October 21st-24th, 2019

Current Transformer Challenges: Respond and Improvement for detecting Saturated CT and Reliability Line Current Differential Relay's outside zone fault experience Reza Widya Hutama 86 Impact of Plug In Electric Vehicle on Uniformly Distributed System Model Kevin Gausultan Hadith Mangunkusumo, Dhandis R Jintaka, Joko Hartono, Aristo Adi Kusuma and Buyung Sofiarto Munir 92 Modeling the Temperature of the Distribution Transformer Oil Using Transformer Body Temperature and Power Quality Parameters Based on Artificial Neural Network Anang Tjahjono, Septian Wahyu Arjunady, Rosmaliati Rosmaliati, Rika Novita W and Taufik Taufik 145 Placement and Capacity Optimization of Unified Power Flow Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono 153 Comparison Of Static Var Compensator (Svc) And Unified Power Flow Controller (Upfc) For Static Voltage Stability		T NO CEEDING.	5011
Secretary: Aji Hanggoro, ST, MT System Model Kevin Gausultan Hadith Mangunkusumo, Dhandis R Jintaka, Joko Hartono, Aristo Adi Kusuma and Buyung Sofiarto Munir Modeling the Temperature of the Distribution Transformer Oil Using Transformer Body Temperature and Power Quality Parameters Based on Artificial Neural Network Anang Tjahjono, Septian Wahyu Arjunady, Rosmaliati Rosmaliati, Rika Novita W and Taufik Taufik Placement and Capacity Optimization of Unified Power Flow Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono Comparison Of Static Var Compensator (Svc) And Unified	18	Improvement for detecting Saturated CT and Reliability Line Current Differential Relay's outside zone fault experience	
Joko Hartono, Aristo Adi Kusuma and Buyung Sofiarto Munir 92 Modeling the Temperature of the Distribution Transformer Oil Using Transformer Body Temperature and Power Quality Parameters Based on Artificial Neural Network Anang Tjahjono, Septian Wahyu Arjunady, Rosmaliati Rosmaliati, Rika Novita W and Taufik Taufik 145 Placement and Capacity Optimization of Unified Power Flow Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono 153 Comparison Of Static Var Compensator (Svc) And Unified	86	Impact of Plug In Electric Vehicle on Uniformly Distributed	
Oil Using Transformer Body Temperature and Power Quality Parameters Based on Artificial Neural Network Anang Tjahjono, Septian Wahyu Arjunady, Rosmaliati Rosmaliati, Rika Novita W and Taufik Taufik 145 Placement and Capacity Optimization of Unified Power Flow Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono 153 Comparison Of Static Var Compensator (Svc) And Unified			
Rosmaliati, Rika Novita W and Taufik Taufik Placement and Capacity Optimization of Unified Power Flow Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono Comparison Of Static Var Compensator (Svc) And Unified	92	Oil Using Transformer Body Temperature and Power Quality	
Controller using Imperialist Competitive Algorithm Rini-Nur Hasanah, Rionaldi Wika Yuniatmoko and Hadi Suyono Comparison Of Static Var Compensator (Svc) And Unified			
Suyono Comparison Of Static Var Compensator (Svc) And Unified	45		
	153		

Based On Sensitivity Analysis: A Case Study Of 500 Kv Java-

Chico Hermanu Brillianto Apribowo and Oktavian Listiyanto

PROCEEDING:

	Agung Roon	n 2 (Topic: Transmission and	Distribution)
Date	e : 22 October 2019	Session 4 (10.00 – 12.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
10	On Digital Power Transr Dodi Garinto	nission Systems	Chairman: Dr. Umar Khayam, S.T., M.T.
20	Re-Engineering GIS Sala Muhammad Alamin, Am Qory and Fajar Andy Set	mar Syahid Rabbani, Chairun Nisa	Co-Chairman: Dr. Eng. Ardyono Priyadi, S.T.,
109	Corona Discharge in Cloud Voltage Variation Eko Supriyanto, Indhika Fauzhan Warsito, Muhammad Akmal Abu Taib, Muhammad Faudzi M Yasir and Indhina Reihannisha		M.Eng. Secretary: Aji Hanggoro, ST, MT
138	Protection Scheme 150 Kv Overhead Transmission Line Of T- Connection Configuration Siantan – Tayan – Sei Raya Substation Andreas Simanjuntak, M. Ariansyah Putra and M Sabli		
146	Optimal Tuning of PID Control on Single Machine Infinite Bus Using Ant Colony Optimization A. M. Shiddiq Yunus and Muhammad Ruswandi Djalal		
152	System using Lagrange	nic Dispatch of 150 kV Sulselrabar Approach Muhammad Ruswandi Djalal	

Agung Room 2 (Topic : Transmission and Distribution)

		PROCEEDING:	DOI:
Date	e : 22 October 2019	Session 5 (13.00 – 15.30)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
23	Implementation Of Faul Transmission System Johanno Wibowo, Abdui Muhammad and Syah Jo		Chairman: Dr. Umar Khayam, S.T., M.T. Co-Chairman:
49	The Effect of Variations Artificial Aging and Nat	in Aging Time and Cooling Media of ural Aging of Alumunium 6061 Alloy sile Strength, Hardness, and	Dr. Eng. Ardyono Priyadi, S.T., M.Eng. Secretary: Aji Hanggoro, ST, MT
71	KV Transmission Tower	ductor As Lightning Safety For 150 vin Saputra and Azharizal Fajar	
73	IOT For Data Communic PLN (Persero)	cation of Energy Meter at amr PT.	
83			
107	Voltage Deviation Minir Algorithm) to obtain the (Distributed Generation Radial Distribution Netv	mization Using GA (Genetic e Optimal Placement of the DG) and Capacitor on the three-phase work Idan Arif Febrianto, Ontoseno	

		Ballroom 1 (Topic : Policy)	
Date	e : 22 October 2019	Session 3 (07.30 – 10.00)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
45	,	casting Using a Simple-E Expanded rsero) of Kotamobagu Area From	Chairman: Dr Matthew Stocks. Co-Chairman:
81	Generation Cost	d on MIQP Method for Reducing Sarjiya Sarjiya, Lesnanto Multa and Yasirroni	Dr. Telisa Aulia Falianty. Secretary: Norayati binti Nordin
100	,	ost Compensation of Power n Composite System Reliability by	_

	PROCEEDING:	DOI:
nd Ariesa Budi	Zakaria	

	Diff: Fatalous and Adiana D. di Zalonia
	Rifqi Fatchurrahman and Ariesa Budi Zakaria
105	Opportunity Cost Allocation for Wheeling Using Power Flow
	Tracing
	Yusuf Susilo Wijoyo, Sasongko Pramonohadi and Sarjiya
123	Coal-Fired Steam Power Plant Source of Pollution,
	Government Policy on Energy Needs to be Revised
	Ryan Perdana Putra and Oslo Simanjuntak
154	Household Welfare and Targeted Subsidy Policy: Has the
	Rationalization of Electricity Tariffs Helped?
	Andri Yudhi Supriadi, Mohamad Ikhsan, Benedictus Raksaka
	Mahi and Montty Girianna

	Ballroom 1 (Topic : Generation)			
Date	e : 22 October 2019	Session 4 (10.00 – 12.00)	HYATT REGENCY, YOGYAKARTA	
ID Paper		TITLE	REVIEWER TEAM	
30	Number in Permanent N	orque Reduction of Integral Slot Magnet Machine Nur and Dolly Ramly Wohon	Chairman: Dr. Telisa Aulia Falianty.	
42		co-Energy (WTE) Power Plant in ste and marine-waste treatment in	Co-Chairman: Dr Matthew Stocks.	
	Mirza Prasetya Kurniawa Hartanto and Anrizal Riz	an, Jhibril Marshall, Hafidz Nufi zal	Secretary: Norayati binti Nordin	
50		ized Hybrid Energy System onesia's Telecommunication Base		
	Mochamad Mardi Marta	Dinata and Joko Slamet Saputro		
61	System In Cilegon Powe	Bromide (Li-Br) Absorption Chiller er Plant Utilizing Waste Heat From Compressor Air Intake Cooling		
		Johannes Silitonga and Sayuti		
161	Design and Analysis of Partial Discharge Sensor	Toothed Log Periodic Antenna as r in Power Apparatus		
	Umar Khayam, Miftahul	Husna and Rachmawati Rachmawati	:	

		Ballroom 1 (Topic : Policy)	
Date	: 22 October 2019	Session 5 (13.00 – 15.30)	HYATT REGENCY, YOGYAKARTA
ID PAPER		TITLE	REVIEWER TEAM
4	Sustainability of Indone	s a New Business Model for Business sia's Electricity Industry Il Muhammad Rakhmat Setiawan	Chairman: Dr Matthew Stocks.

	PROCEEDING:	DOI:
44	The Influence Of Primary Energy (Fuel) Price And Levelized Cost Of Electricity (LCOE) On Optimal Portfolio Of Power Generation In Indonesia	Co-Chairman: Dr. Telisa Aulia Falianty.
	Lutfiari Erlianto and Lutfiari Erlianto	Secretary:
76	Losses Management of PT. PLN (Persero) Rayon Siak by Using Rumus Susut Jogja Calculation Method Ainur Rohmah and Edy Ervianto	Norayati binti Nordin
113	Regulatory and Bankability for Mid-sized Coal Mine Mouth Power Plant Development for Technology, Coal Specification and Tariff Economy Issues	
	Ahmad Romadun	
130	Feasibility Study on Installation of Solar Cell Renewable Energy Generators	
	Husein Mubarok and Bsyu Prastowo	
131	Partner Selection Methods for IPP Development by PLN Subsidiaries as an Implementation of Presidential Regulation 4 (2016)	
	Nyoman Ngurah Widiyatnya, M. Aulia Akbar Muzakki and Amir Wahyu Al Karim	

Ballroom 2 (Topic : Smart Grid and Renewable Energy)				
Date	e : 22 October 2019	Session 3 (07.30 – 10.00)	HYATT REGENCY, YOGYAKARTA	
ID PAPER		TITLE	REVIEWER TEAM	
3		ent Method In PV Farm Using The rmal/Partial Shaded Conditions	Chairman: Mochammad Facta, S.T., M.T., Ph.D	
62	Optimization Technique of Unit Commitment Implementation in Microgrid Electricity System With Renewable Energy Sources – A Review		Co-Chairman: Dr. Noor Akhmad Setiawan	
	Ignatius Rendroyoko, Ngapuli Irmea Sinisuka and Deddy P Koesrindartoto		Secretary: Aji Hanggoro, ST, MT	
97	Hybrid Energy For Insulated Island From Peoples Independent Power Producers			
	Muhamad Hami Pradipta, Peri Indriyanto and Herda Dwi Cahyanova			
106		e Heat Recovery Using TEG d Agung Rahardian Puntaran		
149		For PV Panel Using Adaptive ntroller Based On Fuzzy Logic		
159	Implementation of Option	nization Techniques for Unit or Variable RES Power Plant		
	Ignatius Rendroyoko, Ng Koesrindartoto	apuli Irmea Sinisuka and Deddy P		

Yogyakarta, Indonesia, October 21st-24th, 2019

PROCEEDING: DOI:

	Ball	room 2 (Topic : Generation)		
Date	e : 22 October 2019	Session 4 (10.00 – 12.00)	HYATT REGENCY, YOGYAKARTA	
ID PAPER		TITLE	REVIEWER TEAM	
28	Improvement of Cogging Torque Reduction by Combining the Gradually Inclined Surface End and Dummy Slot in Armature Core of Fractional Slot Number in Permanent Magnet Machine		Chairman: Dr. Noor Akhmad Setiawan	
	Tajuddin Tajuddin Nur Tajud Marsul Siregar	ddin Nur, Feri Yusivar, Liza Evelyn Joe and	Co-Chairman:	
43		lant Utilize Discharge Channel Teluk Fired Power Plant by Finite Element Method	Mochammad Facta, S.T., M.T., Ph.D.	
	Hafidz Nufi Hartanto, Mirza and Anrizal	Secretary: Aji Hanggoro, ST, MT		
59	Numerical Study of the Cha of USC 1000 MW Superheat	racteristics of Flow and Heat Transfer Design er Boiler		
	Ronny Sirait			
64	4.3 Switchgear for the Appli	Based on IEEE 1584-2002 Standard on 6 kV GT cation of Personal Protective Equipment (PPE) Pembangkitan Jawa Bali UP Muara Tawar		
	Arief Rahman, Akhmad Hab	ibi and Riswandha Prasdiatmaja		
68	Development of Fly Ash and Absorption on Coal Fired Po	Bottom Ash Utilization As Hazardous Waste ower Plant		
	Mochamad Soleh, Yudi Hida	yat and Zaenal Abidin		
70	Overview Turbine's Rotor Re Powerplant	epair Methodology in 55 MW Geothermal		
	Dwi Handoyo, Sugeng Triyor	no and Cayhono Soesetyo		

В	Ballroom 2 (Topic : Smart Grid and Renewable Energy; Generation; Policy)			
Date	Date : 22 October 2019 Session 5 (13.00 – 15.30)			
ID PAPER		TITLE	REVIEWER TEAM	
8				
	I Gde Agung Chandra Satriya Wibawa, Muhammad Yunus Qomarul Huda and Muhammad Kamal Wisyaldin		Co-Chairman: Dr. Noor Akhmad	
48	Risk Analysis of Change: Energy Policy (Policy)	s in Coal Quality in Coal Fired Power Plant for	Setiawan Secretary:	
	Septian Surya Pradana and Ashari Didik Hardianto		Aji Hanggoro, ST, MT	
126	126 Characteristics of Temperature Changes Measurement on photovoltaic Surfaces, Against Quality of Output Flow at Solar Power Plants (Smart Grid and Renewable Energy)			
	Andi Makkulau, Christiono Christiono and Samsurizal Samsulrizal			
147	Smart grid technology for learnt from six years' op (Smart Grid and Renewa			

International Conference on Technology and Policy in Electric Power & Energy (ICT-PEP)

	PROCEEDING: DOI:
	Muhammad Indra Al Irsyad, Anthony Halog and Rabindra Nepal
91	Double Air Terminal in Lightning Protection System
	Eko Supriyanto, Indhika Fauzhan Warsito, Muhammad Akmal Abu Taib, Muhammad Faudzi M Yasir and Indhina Reihannisha
94	Effectiveness of Tip Designs in Reducing Fire Risk at Cold Vent Stack
	Eko Supriyanto, Indhika Fauzhan Warsito, Muhammad Akmal Abu Taib, Muhammad Faudzi M Yasir and Indhina Reihannisha

Effect of Sodium Chloride Solution Concentration on Hydrogen Gas Production in Water Electrolyzer Prototype

Rusdianasari Chemical Engineering Department Politeknik Negeri Sriwijaya Palembang, Indonesia rusdianasari@polsri.ac.id

Ahmad Taqwa Electrical Engineering Department Politeknik Negeri Sriwijava Palembang, Indonesia a taqwa@yahoo.com

Yohandri Bow Chemical Engineering Department Politeknik Negeri Sriwijaya Palembang, Indonesia yohandribow@polsri.ac.id

Tresna Dewi Electrical Engineering Department Politeknik Negeri Sriwijaya Palembang, Indonesia tresna dewi@polsri.ac.id

Lin Prasetyani Mechatronics Department Politeknik Manufaktur ASTRA Jakarta, Indonesia lin.prasetyani@polman.astra.ac.id

Abstract— Energy is an essential component of human life because all human activities require energy. The current consumed energy comes from fossil fuels that are not renewable in a short time; therefore, they are decreasing over time. The current research shows the possibility of producing energy source from water in which Indonesia as an archipelago country has an abundant source of water. Therefore, Indonesia has a high possibility of developing renewable energy sourced from water. The process of getting hydrogen from water is called the electrolysis process of water. In this study, a water electrolyzer prototype was designed, and an experiment in producing hydrogen was conducted. The water used in this study is 6 liters with a variable that changes the concentration of sodium chloride solution (NaCl) starting from 10, 20, 30, 40, and 50%. The optimal production of hydrogen gas is at the concentration of 50% NaCl solution with the amount of gas produced at 11.29 liters and the mol percent of hydrogen in the product which is 78.45%.

Keywords-electrolysis, hydrogen, sodium chloride solution, water electrolyzer

I. INTRODUCTION

Some solutions are offered in facing energy deficiency by researching and developing renewable energy such as nuclear, solar, wind, and tidal power. Those emerging renewable energies come with advantages and disadvantages in their applications. One of the new energies that have sound potential is hydrogen [1, 11].

Hydrogen fuel is energy composed of a single element called hydrogen H₂. This energy is environment-friendly energy whose emission is water. With the right developing technology, this energy has great potential and economically beneficial with almost zero pollution [4].

Hydrogen gas is formed by electrolyzing water using metal electrodes. Indonesia is an archipelago country whose 2/3 territory is the ocean; therefore, Indonesia has a great potential in developing hydrogen fuel to solve energy deficiency in Indonesia [11].

It is predicted that hydrogen becomes the primary energy supply for electricity generation known as hydrogen fuel. This hydrogen fuel can be used for transportation and domestic due to its environmentally friendly nature and easiness to produce.

During the electrolysis process, hydrogen will be produced in cathode; the electrode connected to negative pole and oxygen will be in anode; the electrode connected to the positive pole. The amount of hydrogen produced is twice as the amount of the produced oxygen, and both produced elements are proportional with electric power used in generating them. The electrolysis of water takes a long time to complete [5].

The rate of water electrolysis in producing hydrogen and oxygen can be increased by adding electrolyte material such as salt, base, acid. Those electrolytes are added to the water to increase the solution conductivity. The most used salt is Sodium Chloride due to its low price and easiness to solute in water. The electrolysis chemical reaction is: [6]

Energy (Electricity) +
$$2H_2O \longrightarrow O_2 + 2H_2$$
 (1)

Electric pressure is applied to the negative electrode (cathode) pushing electrons to the water, and in the anode (positive electrode) in absorbing electron. The water molecule in cathode consists of positive hydrogen ion (H+) and hydroxide (OH⁻). $H_2O \longrightarrow H^+ + OH^-$

$$H_2O \longrightarrow H^+ + OH^-$$
 (2)

H⁺ is an open proton, free to capture electrons from the cathode, then into ordinary and neutral hydrogen.

$$H^+ + e^- \longrightarrow H$$
 (3)

The hydrogen atom is assembled with other hydrogen atoms and make molecules in the gas to bubble and then rise to the surface.

$$H + H \longrightarrow H_2$$
 (4)

Positive electrodes have caused hydroxide ions (OH⁻) to move to the anode. When it reaches the anode, the anode releases excess electrons taken by the hydroxide from the previous hydrogen atom, then the hydroxide ion joins with another hydroxide molecule and forms 1 molecule of oxygen and 2 molecules of water:

$$4 \text{ OH}^{-} \longrightarrow O_2 + 2H_2O + 4e^{-}$$
 (5)

This oxygen molecule is very stable, and then the bubble rises to the surface, and the process is repeating. The reactions at the cathode (reduction) depend only on the type of cation in the solution. If the cation comes from metal with a lower electrode potential, then the water will be reduced [7].

In the process of electrolysis, electrodes are electrified (by DC current) so that the compounds in the electrolyte break down to form ions, and the oxidation-reduction process occurs to produce gas. The electrolysis process requires a high electric current to ensure the chemical reaction process becomes effective and efficient [8].

If both electrode poles (cathodes and anodes) are electrified by electric current, the electrodes will be interconnected since the electrolyte solution becomes a conductor that causes gas bubbles to emerge in electrodes. The electrolysis process states that oxygen atoms form a negatively charged ion (OH-) and a hydrogen atom forms a positively charged ion (H⁺). At the positive pole, the H⁺ ions are attracted to the negatively charged cathode pole; therefore, the H⁺ ion converges to the cathode. Hydrogen atoms will form hydrogen gas shown as gas bubbles at the cathode which floats upward. The same thing happens to OH ions which fuse at the anode then form oxygen gas in the form of gas bubbles. In the Electrolyzer Water Prototype, various concentrations of NaCl solution are used to be the starters and function to increase the number of ions in the feed solution to produce more hydrogen gas [9, 10].

II. EXPERIMENTAL DESIGN

In general, the design of the prototype is divided into three parts; container feed water reservoir, H₂, and O₂ gas storage tube, and electrode pipe. The feed water container has a length of 27 cm, a width of 13 cm, and a height of 17 cm. The container for feed water is made of plastic with the form of a beam. The bottom of the feed container consists of two outputs. The first is the output for the feed stream to the electrode pipe, and the second one is the output to the product storage tube. This second output hole is made slightly upward because the feed must first come out through the first output hole. The flow leading to the electrode pipes is connected to a pipe with 100 cm vertically and 85 cm horizontally as the entry point for feed water.

Electrodes are 40 cm stainless steel with 40 cm for the cathode and 8 cm for the anode. Cathodes and anodes are connected using a tee. This tee connection is installed parallel with another pipe as a pathway for the produced hydrogen and oxygen gas that comes out from the top of the anode. The pipe is connected to each storage tube. The electrodes used are 5 pairs and arranged in parallel. The cables are connected between the anode and cathode and then to the regulator. At the bottom of the electrode pipe, an outlet is placed to remove the remaining water after the electrolysis process and as a place for cleaning/draining tools.

For H_2 and O_2 gas storage tubes, two expenditure streams are made. The first flow is located at the bottom of the tube and connected directly to the container of water (the raw material). The second flow is on the top of the tube, which is given a pressure gauge and a check valve as a safety valve. The H_2 and O_2 gas storage tubes are 27 cm in height and 9 cm in diameter. At the end of the pipe, a nozzle is installed to ensure the gas can be burned directly.

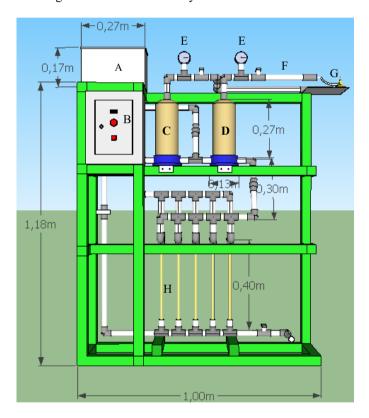


Fig. 1. Water electrolyzer design

Where:

A: Water storange B: Panel Box

C: O₂ gas storage

D: H₂ gas storage E: Pressure Gauge F: Arestor Flashback G: Nozzle Burner

H: Electrodes (Stainless Steel)

I: Drain

III. RESULT AND DISCUSSION

A. Literature study on Effect of NaCl Electrolyte Solution Concentration to the Volume of Hydrogen Gas Produced

The relationship of the concentration of NaCl electrolyte solution to the volume of electrolyzed hydrogen gas for 20 minutes can be seen in Fig 2. It shows that hydrogen gas production has a linear increase in the concentration of sodium chloride solution. This condition shows the greater the concentration of NaCl electrolyte solution, the more significant electrons formed and denser to facilitate the transfer of electrons from the solution to the electrode [2].

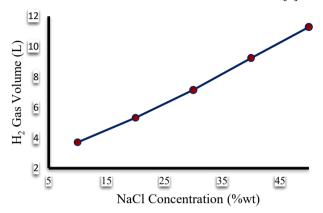


Fig. 2. Literature study on Effect of NaCl Electrolyte Solution Concentration to the Volume of Hydrogen Gas Produced

The increment of NaCl concentration is proportional to the increase in hydrogen gas volume. The more sodium chloride is used, the more Na⁺ and Cl⁻ ions have formed that increase the conductivity of the water. With the increase in conductivity, this makes the electric current also produced primarily. Thus, the process of decomposing water into hydrogen and oxygen becomes faster.

Electrolysis proses in this study used stainless steel electrodes. A direct electric voltage is applied to the electrode to create a potential difference between the two electrodes. This potential difference creates ions in the electrolyte solution migrate towards the electrode opposite the charge with the ion. In this research, the ions in solution come from the dissociation of NaCl. The dissociation that occurs in the NaCl solution produces Na⁺ and Cl⁻ ions. Positively charged ions such as sodium ions (Na⁺) and hydrogen ions (H⁺) in electrolyte solutions migrate towards the cathode. Negatively charged ions such as chloride ions (Cl⁻) and hydroxyl ions (OH⁻) migrate to the anode. Migration of these ions creates an electric current in the solution, giving rise to a redox reaction on the electrode.

Theoretically, the volume of hydrogen gas is obtained by calculating using the equation of the reaction of water with sodium chloride. The amount of water as the raw material used in this process is 6 liters. By knowing the temperature, molecular weight, and density data, the moles of water can be determined to calculate the moles of reactants reacting and the moles of the product produced. This mole data is used to calculate the volume of hydrogen.

Based on the results of the calculation, the higher the concentration of the NaCl electrolyte solution used, the greater the volume of hydrogen gas produced. Fig. 2 shows the tendency increment. This trend is caused by the variation in the concentration of NaCl solution is in a short rance, which is only 10 grams difference; therefore, the difference in the increment in yield of hydrogen volume produced is not too significant; ± 2 liters.

B. Experiment results on Effect of NaCl Electrolyte Solution Concentration on Hydrogen

Hydrogen gas production increases proportionally with the difference in NaCl concentration used in the electrolysis process of water. When the electrolysis process takes place, water fills the hydrogen and oxygen gas storage tubes. After the electrolysis time is reached, which is 20 minutes, the gas fills the gas storage tube. Based on observations made during the process, hydrogen gas is formed quickly enough that it starts to appear at around the 20th second. The increment of hydrogen gas level indicates the decrease in water level. From the gas height data in this tube, the volume of gas formed can be calculated using the cylinder volume equation (cylindrical reservoir tube)

In line with the literature study, the formation of hydrogen gas in the experiment is affected by the concentration of NaCl. The effect of NaCl solution concentration on the produced hydrogen gas is shown in Fig. 3.

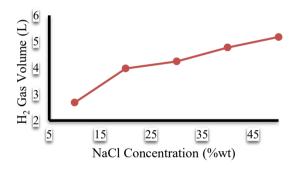


Fig. 3. Effect of NaCl Solution Concentration on the Volume of Hydrogen Gas Produced in Experiment

The data collection process was carried out five times according to variations in the concentration of NaCl solution used; 10, 20, 30, 40, and 50%. From the experiment data, it can be seen that the higher the concentration of NaCl solution is used, the more hydrogen gas is produced. In the first round (the concentration of 10% NaCl solution) the hydrogen gas volume is 2.68 liters, while in the second round the volume of hydrogen is around 3.98 liters. This increase in hydrogen volume is quite high, which is around 1.3 liters. Unlike the next round, the increase in hydrogen gas is only about 0.3 liters. Hydrogen gas production is still increasing from the previous round, but the increase is less than before. The function of NaCl solution as an electrolyte solution in this process is still quite optimal, but based on experiments that

have been carried out, the use of electrolytes containing sodium (Na) will lead to crystallization of sodium salt in the electrode pipeline where reaction and decomposition of water molecules into hydrogen and oxygen [2].

The formation of sodium salt in the electrode pipe results in the production of hydrogen gas gradually decreasing. This condition can be observed in Fig. 3. On the next process, the produced hydrogen gas is only about \pm 0.5 Liter increment for different NaCl concentration solution. This condition is very different from the first round because the tool still has not accumulated sodium salt.

At the specific application time of electrolysis, the performance of the prototype water electrolyzer tool is reduced due to the accumulation of sodium salt in the electrode pipe. This accumulation can be identified by changing the color of the water in the hydrogen gas and oxygen storage tubes becoming red brick color due to the nature of sodium when dissolved in water, and it will change color. The deposition of sodium salt can result in reduced work function and electrode reactivity; therefore, hydrogen production will tend to decrease.

The volume of the produced hydrogen gas achieved from the experiment is compared to literature study. In the literature study, the increment is linear and constant, while in the experiment, there is a tendency of decreasing the production of hydrogen gas. Fig. 3 shows that the highest hydrogen volume is 5.17 Liter, while in literature study, the highest hydrogen volume produced is 11.29 Liters.

The difference that occurs is quite apparent, at the concentration of 10% NaCl solution. Theoretically, the hydrogen volume is 3.71 Liter, while in the experiment, the hydrogen volume is 2.68 Liter. This difference is not so far in the first use of experiment tools that the electrode pipe used is clean. In the results of the second experiment, at a concentration of 20% NaCl, the difference began to occur a little bigger; 5.32 Liter in theory and 3.98 Liter in the experiment. This difference is increasing until the concentration of NaCl solution used is 50%. The highest difference is at the 5th round, which is 11.29 Liter in theory and 5.17 Liter in the experiment; the difference is around 6 liters. The loss of the volume of hydrogen is as much as 6 liters in the experiment. This loss is due to a decrease in the performance of the electrode, which is increasingly saturated. This condition occurs because more sodium salt is formed and heaps on the tool components. This inhibition if no corrective action is taken or repairs on the part of the contaminated equipment, will make hydrogen production increasingly inefficient and not maximum.

C. Effect of NaCl Concentration on Hydrogen Gas Composition

Fig. 4 shows the result of chromatography gas to show the effect of the concentration of NaCl solution on the composition of hydrogen gas and impurity gases.

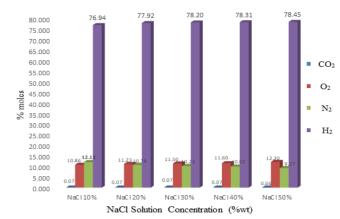


Fig.4. Effect of NaCl Concentration on Hydrogen Gas in Gas Chromatography
Analysis

The analysis of gas products using gas chromatography is carried out by the principle of separating the mixture into its components. This analysis is conducted by using gas as a moving phase that passes through a layer of absorption (sorbent) that is stationary. The results of the analysis show that not only hydrogen gas is contained in the gas product, but also other gases are formed; therefore, the hydrogen produced is not 100% pure. Other components include carbon dioxide, oxygen, and nitrogen.

The presence of other gases causes hydrogen gas to become impure. Other gas contaminants in the form of carbon dioxide, nitrogen, and oxygen can come from the air that enters during the product storage process in the sample bag. Air is a mechanical mixture of various gases. Average air composition consists of nitrogen gas 78.1%, oxygen 20.93%, and carbon dioxide 0.03%, while the rest is argon, neon, krypton, xenon, and helium [12].

At the time of the product, the shelter process has been carried out and endeavored as much as possible, to ensure no direct contact with air. The problem in tool design is an absence of a vacuum system to eliminate the air content in a room. When the process takes place, the hydrogen gas storage tube is filled with water but is not 100% full, leaving a residual space filled with air. When hydrogen gas begins to fill the reservoir tube, then a little air is mixed with hydrogen. When the gas product valve is opened, some of the gas is discharged into the air but does not rule out the possibility that there is still homogenized air with hydrogen. Therefore, by using gas chromatography, the existences of other gasses are still detected.

D. Effect of% Heat Loss, Electric Efficiency and SFC (specific fuel consume) on hydrogen produced

The heat loss in the water electrolyzer water prototype is not influenced by electric current, electric voltage, and the number of electrodes because those three components are fixed variables in this study. The value of efficiency can influence heat loss in this process, the higher the efficiency of the gas produced, the lower the heat loss that occurs since the heat loss is inversely proportional to efficiency. In this process,

the heat loss value tends to be constant, which is around 17.91%, and this condition can be stated for each rotation since all rounds use the same operating conditions. In the literature study, the electric power used in the process is around 79.8 W with a 13.3 V voltage setting, 6 A electric current, and 20 minutes, while the actual conditions that occur are the power used is 65.5 W, 13, 1 V voltage, 5 A electric current, and 20 minutes. With this difference, the heat loss can occur due to the difference in operating conditions during the device setting, referring to the actual conditions.

By reviewing the differences in operating conditions, electrical efficiency can also be calculated. Based on the results of the calculation of electrical efficiency in this water electrolyzer is 82.08%. This is still said to be good because in general, electrolysis efficiency is theoretically 80%. This value only refers to the efficiency of converting electrical energy into hydrogen chemical energy [3, 12].

Electrical efficiency can be calculated by using the differences in operating condition, and in this research, the electrical efficiency achieved is 82.08%. This efficiency is sufficient, more than the standard of 80%. This value only refers to the efficiency of converting electrical energy into hydrogen chemical energy [3].

Energy requirements in the electrolysis process of water are determined by calculating the amount of energy needed in electrolysis per number of moles of H_2 gas produced. Based on the literature study, the higher the concentration of electrolytes, the conductivity will increase; therefore, the energy requirements per gas volume of H_2 produced will be smaller.

Water electrolysis requires a minimum of 286 kJ of electrical energy input to separate each mole [3]. Water electrolysis does not convert 100% of electrical energy into hydrogen chemical energy. This process requires more extreme potential than what is expected based on the reversible cell number reduction potential.

In this electrolysis process, SFC is needed, which varies in the concentration of NaCl solution. This SFC value is directly proportional to the volume of hydrogen gas produced both theoretically and in the experiment. It should be noted that the results of this SFC calculation are that the SFC value tends to decrease with the increasing volume of hydrogen gas produced. The condition is the same as the electrode performance described in the previous section. This decrease in SFC value is due to the function or performance of the electrode pipe which begins to experience saturation, where even though the volume of hydrogen produced is still increasing, the SFC given is decreasing. Information on gas volume comparison data in theory and practice versus SFC can be seen in Fig. 5 Fig. 5 indicates that there was a significant decrease which occurs due to the energy needed to produce hydrogen gas in the second and subsequent rounds is not as much as in the first round; therefore, this process requires energy that is not as much as the first round.

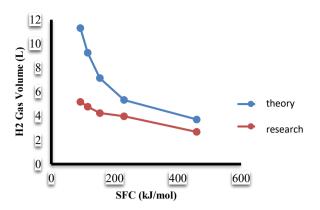


Fig. 5. Graph of SFC (Specific Fuel Consume) Relationship to Hydrogen Gas Volume Generated in Theory and Experiment

IV. CONCLUSION

The water electrolyzer prototype designed in this study has a capacity of 6 liters of raw material, each hydrogen and oxygen gas canister is 3.58 liters, into hydrogen and oxygen gas with various NaCl concentrations. In this process, hydrogen gas produced with the highest volume produced in the electrolysis process is 11.29 liters, so the optimum NaCl concentration in this study is 50%. The results of gas chromatography analysis show that on average for 5 samples of hydrogen content in the product is 77.96%; oxygen 11.48%, nitrogen 10.49%; and carbon dioxide 0.07%.

REFERENCES

- [1] G. Eason, B. Noble, and I. N. Sneddon, "On Certain Integrals of Lipschitz-Hankel Type Involving Products of Bessel Functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955. (references)
- [2] Jumiati, "Effect of Catalyst and Electrode Solution Concentration in Electrolysis Process to Produce Brown Gas," Jurnal Positron Vol.3(1). 2014.
- [3] Sebastian, Otto, Evawani, "Efficiency Analysis of Water Analysis of Hydrofil in Fuel Cells," Jurnal USU, 2013.
- [4] Rusdianasari, Y. Bow, T. Dewi, "HHO Gas Generation in Hydrogen Generator using Electrolysis," IOP Conf. Ser.:Earth Environ. Sci. 258 012007, 2019, doi:10.1088/1755-1315/258/1/012007.
- [5] Putra, A.M, "Hydrogen Gas Productivity Analysis and Oksigen Gas in the Solution Electrolysis of KOH," Jurnal Neutrino, Vol. 2(2), Malang. 2012.
- [6] Bird, B. Byron, "Transport Phenomena," 2nd Edition, Jon Wiley and Sons, Inc. New York, 2002.
- [7] W.D. Calister, "Material Science and Engineering: An Introduction," 7th edition, John Wiley and Sons, Inc. 2002.
- [8] Sierens, An Overview oh Hydrogen Fueled Internal Combustion Engines, Ghent University, Belgium, 2005.
- [9] Gracia, R.V., N Espinosa, A. Urbina, "Optimized Method for Photovoltaic-Water Electrolyser Direct Coupling," International Journal of Hydrogen Energy, Vol 37(7), 10576-10586, 2011.
- [10] Henning, G.L., "Large Scale Hydrogen Production: Renewable Energy and Hdrogen Export," Tradheim, Norwey, 2015.
- [11] R Ploetz, R Rusdianasari, E Eviliana, "Renewable Energy" Advantages and Disadvantages," Proceeding Forum in Research, Science, Technology (FIRST), 2016.

[12] A Syakdani, Y. Bow, Rusdianasari, M. Taufik, "Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process using Pressure Swing Adsorption (PSA) Method," J. Phys: Conf. Ser. 1167 012055, 2019, doi: 10.1088/1742-6596/1167/1/012055.

CERTIFICATE OF COMPLETION

This is to certify that

Yohandri Bow

PLN INTERNATIONAL CONFERENCE AND LIKE

International Conference on Technology and Policy in Energy and Electrical Power
(PUBLISHED IN IEEE XPLORE)

Yogyakarta, Oktober 21st -22nd, 2019

Bagus Setiawan
General Manager of
PLN Research Institute

Dr. Noor Akhmad

IEEE Indonesia Section 2019