

LAMPIRAN A

1. Bentuk Awal Mekanik Alat

2. Bentuk Akhir Mekanik Alat

3. Katup dan Tabung Penampung Pakan ½ Kg

4. Feed Tank

5. Pipa Penyebar pakan ke kolam

6. Keadaan Alat Saat Melakukan pemberian pakan pada kolam

7. Pengambilan Data

8. Tampilan Monitoring Di Aplikasi Blynk

LAMPIRAN B

MG995 High Speed

Metal Gear Dual Ball Bearing Servo

The unit comes complete with 30cm wire and 3 pin 'S' type female header connector that fits

most receivers, including Futaba, JR, GWS, Cirrus, Blue Bird, Blue Arrow, Corona, Berg,

Spektrum and Hitec.

This high-speed standard servo can rotate approximately 120 degrees (60 in each direction).

You can use any servo code, hardware or library to control these servos, so it's great for

beginners who want to make stuff move without building a motor controller with feedback &

gear box, especially since it will fit in small places. The MG995 Metal Gear Servo also comes

with a selection of arms and hardware to get you set up nice and fast!

Specifications

 Weight: 55 g

 Dimension: 40.7 x 19.7 x 42.9 mm approx.

 Stall torque: 8.5 kgf·cm (4.8 V), 10 kgf·cm (6 V)

 Operating speed: 0.2 s/60º (4.8 V), 0.16 s/60º (6 V)

 Operating voltage: 4.8 V a 7.2 V

 Dead band width: 5 µs

 Stable and shock proof double ball bearing design

 Temperature range: 0 ºC – 55 ºC

DOIT Esp32 DevKit v1

The DOIT Esp32 DevKit v1 is one of the development board created by DOIT to evaluate the

ESP-WROOM-32 module. It is based on the ESP32 microcontroller that boasts Wifi, Bluetooth,

Ethernet and Low Power support all in a single chip.

Pin Mapping

Flash Layout

The internal flash of the ESP32 module is organized in a single flash area with pages of 4096 bytes

each. The flash starts at address 0x00000, but many areas are reserved for Esp32 IDF SDK and

Zerynth VM. There exist two different layouts based on the presence of BLE support.

In particular, for non-BLE VMs:

Start address Size Content

0x00009000 16Kb Esp32 NVS area

0x0000D000 8Kb Esp32 OTA data

0x0000F000 4Kb Esp32 PHY data

0x00010000 1Mb Zerynth VM

0x00110000 1Mb Zerynth VM (FOTA)

0x00210000 512Kb Zerynth Bytecode

0x00290000 512Kb Zerynth Bytecode (FOTA)

0x00310000 512Kb Free for user storage

0x00390000 448Kb Reserved

For BLE VMs:

Start address Size Content

0x00009000 16Kb Esp32 NVS area

0x0000D000 8Kb Esp32 OTA data

0x0000F000 4Kb Esp32 PHY data

0x00010000 1216Kb Zerynth VM

0x00140000 1216Kb Zerynth VM (FOTA)

0x00270000 320Kb Zerynth Bytecode

0x002C0000 320Kb Zerynth Bytecode (FOTA)

0x00310000 512Kb Free for user storage

0x00390000 448Kb Reserved

Device Summary

 Microcontroller: Tensilica 32-bit Single-/Dual-core CPU Xtensa LX6

 Operating Voltage: 3.3V

 Input Voltage: 7-12V

 Digital I/O Pins (DIO): 25

 Analog Input Pins (ADC): 6

 Analog Outputs Pins (DAC): 2

 UARTs: 3

 SPIs: 2

 I2Cs: 3

 Flash Memory: 4 MB

 SRAM: 520 KB

 Clock Speed: 240 Mhz

 Wi-Fi: IEEE 802.11 b/g/n/e/i:

 Integrated TR switch, balun, LNA, power amplifier and matching network

 WEP or WPA/WPA2 authentication, or open networks

Power

Power to the DOIT Esp32 DevKit v1 is supplied via the on-board USB Micro B connector or

directly via the “VIN” pin. The power source is selected automatically.

The device can operate on an external supply of 6 to 20 volts. If using more than 12V, the voltage

regulator may overheat and damage the device. The recommended range is 7 to 12 volts.

Connect, Register, Virtualize and Program

The DOIT Esp32 DevKit v1 comes with a serial-to-usb chip on board that allows programming

and opening the UART of the ESP32 module. Drivers may be needed depending on your system

(Mac or Windows) and can be download from the official Espressif documentation page. In Linux

systems, the DevKit v1 should work out of the box.

Arduino Uno

Overview

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic

resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a computer with a USB

cable or power it with a AC-to-DC adapter or battery to get started.

The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver

chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version R2) programmed as a USB-

to-serial converter.

Revision 2 of the Uno board has a resistor pulling the 8U2 HWB line to ground, making it easier

to put into DFU mode.

Revision 3 of the board has the following new features:

1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins placed

near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided from the

board. In future, shields will be compatible both with the board that use the AVR, which operate

with 5V and with the Arduino Due that operate with 3.3V. The second one is a not connected pin,

that is reserved for future purposes.

Stronger RESET circuit.

Atmega 16U2 replace the 8U2.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno

and version 1.0 will be the reference versions of Arduino, moving forward. The Uno is the latest in

a series of USB Arduino boards, and the reference model for the Arduino platform; for a

comparison with previous versions, see the index of Arduino boards.

Summary

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://arduino.cc/en/Hacking/DFUProgramming8U2
http://arduino.cc/en/Main/Boards

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Power

The Arduino Uno can be powered via the USB connection or with an external power supply. The

power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The

adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack.

Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V,

however, the 5V pin may supply less than five volts and the board may be unstable. If using more

than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7

to 12 volts.

The power pins are as follows:

VIN. The input voltage to the Arduino board when it's using an external power source (as opposed

to 5 volts from the USB connection or other regulated power source). You can supply voltage

through this pin, or, if supplying voltage via the power jack, access it through this pin.

5V.This pin outputs a regulated 5V from the regulator on the board. The board can be supplied

with power either from the DC power jack (7 - 12V), the USB connector (5V), or the VIN pin of

the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can

damage your board. We don't advise it.

3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

GND. Ground pins.

Memory

The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It also has 2 KB of SRAM and

1 KB of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(),

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or

receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-

50 kOhms. In addition, some pins have specialized functions:

Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are

connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a

rising or falling edge, or a change in value. See the attachInterrupt() function for details.

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the

SPI library.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the

LED is on, when the pin is LOW, it's off.

http://www.arduino.cc/en/Reference/EEPROM
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/SPI

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of resolution

(i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible

to change the upper end of their range using the AREF pin and the analogReference() function.

Additionally, some pins have specialized functionality:

TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire library.

There are a couple of other pins on the board:

AREF. Reference voltage for the analog inputs. Used with analogReference().

Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and ATmega328 ports. The mapping for the Atmega8,

168, and 328 is identical.

PH

PH Probe Sensor Pinout

 TO – Temperature output

 DO – 3.3V Output (from ph limit pot)

 PO – PH analog output ==> Arduino A0

 Gnd – Gnd for PH probe (can come from Arduino GND pin) ==> Arduino GND Gnd –

Gnd for board (can also come from Arduino GND pin) ==> Arduino GND VCC – 5V DC

(can come from Arduino 5V pin) ==> Arduino 5V pin

 POT 1 – Analog reading offset (Nearest to BNC connector) POT 2 – PH limit setting

PH probe module Offset and how to use it.

This board have the ability to supply a voltage output to the analogue board that will represent a

PH value just like any other sensor that will connect to an analog pin. Ideally, we want a PH 0

represent 0v and a PH of 14 to represent 5V.

BUT there is a catch……, this board by default have PH 7 set to 0V (or near it, it differs from one

PH probe to another, that is why we have to calibrate the probe as you will see later on), This

http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Hacking/PinMapping168

means that the voltage will go into the minuses when reading acidic PH values and that cannot be

read by the analog Arduino port. The offset pot is used to change this so that a PH 7 will read the

expected 2.5V to the Arduino analog pin, the analog pin can read voltages between 0V and 5V

hence the 2.5V that is halfway between 0V and 5V as a PH 7 is halfway between PH 0 and PH 14,

You will need to turn the offset potentiometer to get the right offset, The offset pot is the blue pot

nearest to the BNC connector.

To set the offset is easy. First, you need to disconnect the probe from the circuit and short- circuit

the inside of the BNC connector with the outside to simulate a neutral PH (PH7). I took a piece of

wire, strip both sides, wrap the one side around the outside of the BNC connector and push the

other side into the BNC hole. This short-circuit represents about a neutral PH reading of 7.

I2C interface for LCD
Discription:

This LCD2004 is a great I2C interface for 2x16 and 4x20 LCD displays. With the limited pin

resources, your project may be out of resources using normal LCD shield. With this I2C interface

LCD module, you only need 2 lines (I2C) to display the information. If you already has I2C

devices in your project, this LCD module actually cost no more resources at all. Fantastic for

Arduino based projects.

Specification:

Compatible with 16x2 and 20x4 LCD's Default I2C Address = 0X27

Address selectable - Range 0x20 to 0x27

Board Layout:

I2C Address Setup:

The LCD2004 board utilized the PCF8574 I/O expander. This nifty little chip provides eight bits

of parallel I/O addressabl by a I2C bus address – 0x00 to 0x27. SainSmart tied all address leads to

Vcc, so the LCD2004 board’s I2C addressis permanently fixed at hex 27. This is rather limiting

since no additional LCD2004s can be added to the bus.Anyway, you simply address the board and

write an eight bit value which is then presented on the output pins of the PCF8574, which, in this

case, are connected to the HD44780 based LCD screen.

Tech Support: services@elecfreaks.com

Ultrasonic Ranging Module HC - SR04

Product features:

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact

measurement function, the ranging accuracy can reach to 3mm. The modules

includes ultrasonic transmitters, receiver and control circuit. The basic principle of

work:

(1) Using IO trigger for at least 10us high level signal,

(2) The Module automatically sends eight 40 kHz and detect whether there is

a pulse signal back.

(3) IF the signal back, through high level , time of high output IO duration

is the time from sending ultrasonic to returning.

Test distance = (high level time×velocity of sound (340M/S) / 2,

Wire connecting direct as following:

 5V Supply

 Trigger Pulse Input

 Echo Pulse Output

 0V Ground

Electric Parameter

Working Voltage DC 5 V

Working Current 15mA

Working Frequency 40Hz

Max Range 4m

Min Range 2cm

MeasuringAngle 15 degree

mailto:services@elecfreaks.com

Trigger Input Signal 10uS TTL pulse

Echo Output Signal Input TTL lever signal and the range in

proportion

Dimension 45*20*15mm

Timing diagram

The Timing diagram is shown below. You only need to supply a short 10uS pulse to

the trigger input to start the ranging, and then the module will send out an 8

cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance

object that is pulse width and the range in proportion .You can calculate the

range through the time interval between sending trigger signal and receiving

echo signal. Formula: uS / 58 = centimeters or uS / 148 =inch; or: the range =

high level time * velocity (340M/S) / 2; we suggest to use over 60ms

measurement cycle, in order to prevent trigger signal to echo signal.

Attention:

 The module is not suggested to connect directly to electric, if

connected electric, the GND terminal should be connected the module first,

otherwise,

it will affect the normal work of the module.

 When tested objects, the range of area is not less than 0.5 square

meters and the plane requests as smooth as possible, otherwise ,it will affect the

results of measuring.

www.Elecfreaks.com

http://www.elecfreaks.com/

DS18B20 Waterproof Temperature Sensor Cable

Product Description

This Maxim-made item is a digital thermo probe or sensor that employs DALLAS DS18B20. Its

unique 1-wire interface makes it easy to communicate with devices. It can converts temperature to

a 12-bit digital word in 750ms (max). Besides, it can measures temperatures from -55°C to

+125°C (-67F to +257F). In addition, this thermo probe doesn't require any external power supply

since it draws power from data line. Last but not least, like other common thermo probe, its

stainless steel probe head makes it suitable for any wet or harsh environment.

The datasheet of this DS18B20 Sensor can be found from:

https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/DS18B20.pdf

Feature:

Power supply range: 3.0V to 5.5V

Operating temperature range: -55°C to +125°C (-67F to +257F)

Storage temperature range: -55°CC to +125°C (-67F to +257F)

Accuracy over the range of - 10°C to +85°C: ±0.5°C

3-pin 2510 Female Header Housing

Waterproof Stainless steel sheath

Stainless steel sheath

Size of Sheath: 6*50mm

Connector: RJ11/RJ12, 3P-2510, USB.

Pin Definition: RED: VCC Yellow: DATA Black: G ND

Cable length: 1meter, 2m, 3m, 4m are available upon request

Application:

The DS18B20 Digital Temperature Probe provides 9 to 12 bit

http://www.quick-teck.co.uk/ElectronicElement/eeList.php?typeId=97&title

(configurable) temperature readings which indicate the temperature of the d evice. Information is

sent to/from the DS18B20 over a 1-

Wire interface, so that only one wire (and ground)

needs to be connected from a central microprocessor to a DS18B20. Power f or reading, writing,

and performing temperature conversions can be derived from the data line itself with no need for

an external power source.

Because each DS18B20 contains a unique silicon serial number, multiple DS 18B20s can exist on

the same 1Wire bus. This allows for placing temperatur e sensors in many different places.

Applications where this feature is useful i nclude HVAC environmental controls, sensing

temperatures inside buildings, equipment or machinery, and process Monitoring and control.

Details：

Quick-teck Electronics Components datasheet

Adafruit DS3231 Precision RTC Breakout

Power Pins:

Vin - this is the power pin. Since the RTC can be powered from 2.3V to 5.5V power, you do not

need a regulator or level shifter for 3.3V or 5V logic/power. To power the board, give it the same

power as the logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic pins:

 SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin has a 10K

pullup resistor to Vin

 SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin has a 10K

pullup resistor to Vin

 STEMMA QT (https://adafru.it/Ft4) - On the STEMMA QT version only! These

connectors allow you to connect to development boards with STEMMA QT connectors,

or to other things, with various associated accessories (https:// adafru.it/Ft6) .

Other Pins:

BAT - this is the same connection as the positive pad of the battery. You can use this if you want

to power something else from the coin cell, or provide battery backup from a different separate

batery. VBat can be between 2.3V and 5.5V and the DS3231 will switch over when main Vin

power is lost

32K - 32KHz oscillator output. Open drain, you need to attach a pullup to read this signal from a

microcontroller pin

SQW - optional square wave or interrupt output. Open drain, you need to attach a pullup to read

this signal from a microcontroller pin

RST - This one is a little different than most RST pins, rather than being just an input, it is

designed to be used to reset an external device or indicate when main power is lost. Open drain,

but has an internal 50K pullup. The pullup keeps this pin voltage high as long as Vin is present.

When Vin drops and the chip switches to battery backup, the pin goes low.

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

LAMPIRAN C

1. Pemograman Di Arduino Uno
#include <SoftwareSerial.h>

#include <OneWire.h>

#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);

DallasTemperature sensors(&oneWire);

//-------------------------- Komunikasi Serial

SoftwareSerial SuhuC(3, 4);// RX, TX

SoftwareSerial SuhuF(5, 6);// RX, TX

SoftwareSerial Phsensor(7, 8);// RX, TX

//--------------------------- pH Sensor

const int ph_Pin = A0;

float Po = 0;

float PH_step;

int nilai_analog_PH;

double TeganganPh;

//kalibrasi

float PH4 = 2.3;

float PH7 = 2.1;

void setup(void){

 Serial.begin(9600);

 pinMode (ph_Pin, INPUT);

 sensors.begin();

 SuhuC.begin(9600);

 SuhuF.begin(9600);

 Phsensor.begin(9600);

}

void loop(void){

 //------------------------------------ DS18B20 Sensor

 sensors.requestTemperatures();

 //Celcius

 Serial.print("Celsius temperature: ");

 Serial.print(sensors.getTempCByIndex(0));

 SuhuC.println(sensors.getTempCByIndex(0));

 //Fahrenheit

 Serial.print(" - Fahrenheit temperature: ");

 Serial.println(sensors.getTempFByIndex(0));

 SuhuF.println(sensors.getTempFByIndex(0));

 int tempC=sensors.getTempCByIndex(0);

 int tempF=sensors.getTempFByIndex(0);

 //------------------------------------ pH Sensor

 nilai_analog_PH = analogRead(ph_Pin);

 //Serial.print("Nilai ADC Ph: ");

 //Serial.println(nilai_analog_PH);

 TeganganPh = 5 / 1023.0 * nilai_analog_PH;

 Serial.print("TeganganPh: ");

 Serial.println(TeganganPh,3);

 PH_step = (PH4 - PH7) / 3;

 Po = 7.00 + ((PH7 - TeganganPh) / PH_step);

 Serial.print("Nilai PH Cairan: ");

 Serial.println(Po, 2);

 Phsensor.println(Po, 2);

 delay(1000);

}

2. Pemograman Di NodeMCU ESP32
#include "RTClib.h"

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include <BlynkSimpleEsp32.h>

#include "SoftwareSerial.h"

//

SoftwareSerial SuhuC(35, 34);// RX, TX

SoftwareSerial SuhuF(33, 32);// RX, TX

SoftwareSerial Phsensor(26 , 25);// RX, TX

#define BLYNK_TEMPLATE_ID "TMPLeLy4v2UU"

#define BLYNK_DEVICE_NAME "Alat Pakan Ikan Otomatis"

#define BLYNK_AUTH_TOKEN "uu8SPNb5Ukh0WdtQRQrEHaG6rNiariNs"

#define BLYNK_PRINT Serial

char auth[] = BLYNK_AUTH_TOKEN;

char ssid[] = "realme 5 Pro";

char pass[] = "00001111";

//Ultra

const int trigPin = 13;

const int echoPin = 12;

long tankDepth=45;

//RTC

RTC_DS3231 rtc;

char dataHari[7][12] = {"Minggu", "Senin", "Selasa", "Rabu",

"Kamis", "Jumat", "Sabtu"};

String hari;

int tanggal, bulan, tahun, jam, menit, detik;

float suhu;

//lCD

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

//servo

#include <Servo.h>

Servo mekanik;

//Manual Tombol

BLYNK_WRITE(V6){

 mekanik.write(20);

}

BLYNK_WRITE(V7){

 mekanik.write(150);

}

///

///////////////////////////////

void setup () {

 Serial.begin(9600);

 SuhuC.begin(9600);

 SuhuF.begin(9600);

 Phsensor.begin(9600);

//Ultra

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

 pinMode(echoPin, INPUT); // Sets the echoPin as an Input

//LCD

 lcd.begin();

//servo

 mekanik.attach(27);

 mekanik.write(20);

//RTC

 if (! rtc.begin()) {

 Serial.println("RTC Tidak Ditemukan");

 Serial.flush();

 abort();

 }

 //Atur Waktu

 //rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

 //rtc.adjust(DateTime(2022, 6, 12, 14, 40, 0));

//ESP

 lcd.clear();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 int wifi_ctr = 0;

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 Blynk.begin(auth, ssid, pass, "sgp1.blynk.cloud", 80);

}

///

///////////////////////////////

void loop () {

//ultrasonic

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

long t = pulseIn(echoPin, HIGH);

 long cm = t / 29 / 2;

 double level= tankDepth-cm;

 if(level>0){

 long percentage=((level/tankDepth))*100;

 Blynk.virtualWrite(V2,percentage);

 Serial.println(percentage);

 }

//Blynk

 kirimdatablynk();

//RTC

 DateTime now = rtc.now();

 hari = dataHari[now.dayOfTheWeek()];

 tanggal = now.day(), DEC;

 bulan = now.month(), DEC;

 tahun = now.year(), DEC;

 jam = now.hour(), DEC;

 menit = now.minute(), DEC;

 detik = now.second(), DEC;

 suhu = rtc.getTemperature();

 Serial.println(String() + hari + "," + tanggal + "-" + bulan

+ "-" + tahun);

 Serial.println(String() + jam + ":" + menit + ":" + detik);

//LCD

 lcd.setCursor(0, 0);

 lcd.print (String() + hari + "," + tanggal + "-" + bulan + "-

" + tahun);

 lcd.print(" ");

 lcd.setCursor(4, 1);

 lcd.print (String() + jam + ":" + menit + ":" + detik);

 lcd.print(" ");

//kondisi

 if(jam == 8 & menit == 00 & detik == 0){

 lcd.clear();

 lcd.setCursor(2, 0);

 lcd.print("Beri Pakan 1");//untuk tampilan saat waktu makan

 //Blynk.email("pakanikaniot@gmail.com","Alert","FEED 1 HAS

BEEN GIVEN");

 Blynk.logEvent("feed_alert","Pakan pertama jam 08.00 sudah

diberikan");

 delay(200);

 kasih_pakan(3);

 }

 if(jam == 12 & menit == 00 & detik == 0){

 lcd.clear();

 lcd.setCursor(2, 0);

 lcd.print("Beri Pakan 2");//untuk tampilan saat waktu makan

 //Blynk.email("pakanikaniot@gmail.com","Alert","FEED 2 HAS

BEEN GIVEN");

 Blynk.logEvent("feed_alert","Pakan kedua jam 12.00 sudah

diberikan");

 delay(200);

 kasih_pakan(3);

 }

 if(jam == 16 & menit == 00 & detik == 0){

 lcd.clear();

 lcd.setCursor(2, 0);

 lcd.print("Beri Pakan 3");//untuk tampilan saat waktu makan

 //Blynk.email("pakanikaniot@gmail.com","Alert","FEED 3 HAS

BEEN GIVEN");

 Blynk.logEvent("feed_alert","Pakan ketiga jam 16.00 sudah

diberikan");

 delay(200);

 kasih_pakan(3);

 }

//suhu dan PH

//-------------------------- Data temprature Celcius

 String data_suhuC = "";

 while (SuhuC.available())

 {

 data_suhuC += char(SuhuC.read());

 }

 //-------------------------- Data temprature Fahrenheit

 String data_suhuF = "";

 while (SuhuF.available())

 {

 data_suhuF += char(SuhuF.read());

 }

 //-------------------------- Data Ph sensor

 String data_Phsensor = "";

 while (Phsensor.available())

 {

 data_Phsensor += char(Phsensor.read());

 }

 //--------------------------- Agar tidak ada sepasi di serial

monitor

 data_suhuC.trim();

 data_suhuF.trim();

 data_Phsensor.trim();

 //---------------------------- Komunikasi Serial Ke Blynk

 Serial.println("Celsius temperature: " + data_suhuC);

 Serial.println("Fahrenheit temperature: " + data_suhuF);

 Serial.println("Nilai pH cairan: " + data_Phsensor);

 Blynk.virtualWrite(V3, data_suhuC);

 Blynk.virtualWrite(V4, data_suhuF);

 Blynk.virtualWrite(V5, data_Phsensor);

 delay(100);

}

///

///////////////////////////////

//servo

void kasih_pakan(int jumlah){

 for(int i = 1; i <= jumlah; i++){

 mekanik.write(150);

 delay(13000);

 mekanik.write(20);

 delay(19000);

 }

}

void kirimdatablynk()

{

 Blynk.virtualWrite(V0, (String() + hari + ", " + tanggal + "-

" + bulan + "-" + tahun));

 Blynk.virtualWrite(V1, (String() + jam + ":" + menit + ":" +

detik));

 Blynk.run();

}

LAMPIRAN D

