BAB II

TINJAUAN PUSTAKA

2.1 Beton

Beton adalah suatu material yang terdiri dari campuran semen, air,agregat (kasar dan halus) dan bahan tambahan bila diperlukan. Beton yang banyak dipakai pada saat ini yaitu beton normal. Beton adalah suatu komposit dari beberapa bahan batu-batuan yang direkatkan oleh bahan ikat. Singkatnya dapat dikatakan pasta bahwa semen mengikat pasir dan bahan- bahan agreget lain (kerikil, basalt, dll). Sifat-sifat beton pada suhu tinggi di pengaruhi dalam batas tertentu oleh jenis agregat.

Beton merupakan bahan dari campuran antara *Portland cement*, agregat halus (pasir), agregat kasar (kerikil), air dengan tambahan adanya rongga-rongga udara. Campuran bahan-bahan pembentuk beton harus ditetapkan sedimikian rupa, sehingga menghasilkan beton basah yang mudah dikerjakan, memenuhi kekuatan tekan rencana setelah mengeras dan cukup ekonomis (Sutikno, 2003:1)

Beton adalah suatu elemen struktur yang terdiri dari partikel-partikel agregat yang dilekatkan oleh pasta yang terbuat dari semen portland dan air. Pasta itu mengisi ruang-ruang kosong di antara partikel-partikel agregat dan setelah beton segar dicorkan, ia akan mengeras sebagai akibat dari reaksi-reaksi kimia eksotermis antara semen dan air membentuk suatu bahan struktur yang padat dan dapat tahan lama (Saifullah et al., 2013).

Nilai kuat tekan beton didapat dari pengujian standar dengan benda uji yang lazim digunakan berbentuk slinder. Dimensi benda uji slinder adalah tinggi 300 mm dab diameter 150 mm. Tata cara pengujian pada umumnya dipakai adalah standar ASTM C39-86. Kuat tekan masing-masing benda uji ditentukan oleh tegangan tekanan tertinggi (fc) yang dicapai benda uji umur 28 hari akibat beban tekan selama percobaan. (Dipohusodo: 1996).

Kelemahan beton sebagai bahan konstruksi adalah kuat lentur yang rendah dan sifatnya yang getas, karena itu beton membutuhkan solusi lain untuk menahan kuat lentur yang terjad. Pada beberapa negara maju seperti Amerika dan Inggris, telah dikembangkan konsep perbaikan kelemahan sifat beton tersebut dengan menambah serat (*fiber*) pada adukan beton. Konsep dasarnya adalah untuk menulangi beton secara alami dengan serat yang disebarkan acak kedalam adukan beton, sehingga dapat mencegah terjadinya retakan yang terlalu dini dini baik akibat beban maupun akibat panas hidrasi.(Amna et al., 2014).

Beton terbagi menjadi 2 yaitu:

- 1. Beton biasa (Normal) yang mempunyai kekuatan antara 2000 sampai 6000psi (13 sampai 40 MPa).
- 2. Beton berkinerja tinggi mempunyai kekuatan antara lain di atas 6000 psi (40 Mpa) disebut beton mutu tinggi, 80 Mpa disebut beton bermutu sangat tinggi, dan 120 Mpa beton bermutu ultra tinggi.

Beton sangat dipengaruhi oleh bahan dasarnya yaitu semen, agregat kasar, agregat halus dan air. Pada saat ini telah dikembangkan jenis bahan tambah (*admixture* dan *addictive*) untuk meningkatkan kinerja beton untuk semakin lebih mudah dikerjakan, lebih cepat atau lebih tinggi mutunya.

Faktor-faktor yang mempengaruhi beton bermutu baik adalah sebagai berikut:

- 1. Karakteristik semen dan jumlahnya
- 2. w/c (water per cement) rasio
- 3. Kualitas agregat dan interaksinya dengan pasta semen
- 4. Tambahan bahan kimia yang digunakan
- 5. Tambahan material yang digunakan
- 6. Pemilihan prosedur dan waktu pencampuran bahan susun beton
- 7. Quality control

2.2 Bahan Campuran Beton

2..2.1 Semen

Semen adalah bahan perekat kimia yang memberikan perkerasan terhadap material campuran lainnya menjadi suatu bentuk yang kaku dan tahan lama. Secara umum semen merupakan bubuk berwarna abu-abu gelap yang terbuat dari Alkali, Magnesium Oksida, Alumina, kapur, Sulfur Trioxide, Iron Oxide dan Silika.

Semen dapat dibedakan menjadi dua kelompok, yaitu:

- Semen non-hidrolik adalah semen yang tidak dapat mengeras di dalam air, akan tetapi dapat mengeras di udara. Contoh utama dari semen non- hidrolik adalah kapur.
- 2. Semen hidrolik adalah semen yang mempunyai kemampuan untukmengikat dan mengeras di dalam air. Contoh semen hidrolik antara lain kapur hidrolik, semen pozzolan, semen terak, semen alam, semen organik, semen organik-pozzolan, semen alumina, dan semen expansif.

Semen portland didefinisikan sebagai semen hidrolis yang dihasilkan dengan cara menggiling terak semen terutama yang terdiri atas kalsium silikat yang bersifat hidrolis dan digiling bersama-sama dengan bahan tambahan berupa satu atau lebih bentuk kristal senyawa kalsium sulfat dan boleh ditambah dengan bahan tambahan lain (SNI 15-2049-2004).

Standar Industri Indonesia SII 0013-1977 menetapkan lima jenis tipe semen portland yaitu :

- 1. Tipe I adalah semen portland yang digunakan untuk pembuatan konstruksi bangunan secara umum. Untuk penggunaannya tidak memerlukan persyaratan khusus.
- 2. Tipe II adalah semen portland yang mempunyai ketahanan sedang terhadap garam-garam sulfat di dalam air. Semen ini digunakan untuk konstruksi bangunan atau beton yang berhubungan terus menerus dengan air kotor atau air tanah.
- 3. Tipe III adalah semen portland yang mempunyai sifat yang mengeras cepat atau mempunyai kekuatan awal tinggi pada umur muda. Semen ini

- digunakan untuk pekerjaan konstruksi atau beton yang mempunyai suhu rendah terutama di negara-negara beriklim dingin.
- 4. Tipe IV adalah semen portland yang mempunyai panas hidrasi rendah,semen jenis ini pengerasan dan perkembangan kekuatannya rendah. Semen ini 7 digunakan untuk pembuatan konstruksi beton berdimensi dan bentuknya gemuk.
- 5. Tipe V adalah semen portland tahnan sulfat, artinya tahan terhadap larutan garam sulfat di dalam air. Semen ini digunakan untuk konstruksi yang berhubungan dengan air laut, air limbah pabrik, untuk bangunan yang terkena pengaruh gas atau uap kimia yang agresif.

2.2.2 Agregat

Agregat adalah butir-butir batu pecah, kerikil, pasir atau mineral lain, baik yang berasal dari alam maupun buatan yang berbentuk mineral padat berupa ukuran besar maupun kecil atau fragmen-fragmen. Agregat merupakan butiran mineral alami yang berfungsi sebagai bahan pengisi dalam campuran mortar atau beton. Kira-kira 70% volume mortar atau beton diisi oleh agregat. Agregat dapat dibedakan atas dua jenis yaitu agregat alam dan agregat buatan (batu pecah). Agregat alam dan buatan inipun dapat dibedakan berdasarkan beratnya, asalnya, diameter butirnya (gradasi) dan tekstur permukaannya. Sedangkan berdasarkan ukurannya, secara garis besar agregat dibedakan menjadi dua yaitu agregat halus dan agregat kasar.

1. Agregat Halus

Agregat halus untuk beton dapat berupa pasir alam sebagai hasil desintegrasi alami dari batuan-batuan atau berupa pasir buatan yang dihasilkan oleh alat pemecah batu. Agregat ini berukuran 0,063 mm - 4,76 mm yang meliputi pasir kasar dan pasir halus.

Menurut PBI 1971, syarat-syarat agregat halus adalah sebagai berikut :

- a. Agregat halus berbentuk butiran-butiran yang kuat serta tajam, bersifat tidak mudah hancur karena cuaca panas ataupun hujan.
- b. Tidak boleh mengandung lumpur lebih dari 5% terhadap berat agregat kering. Apabila mengandung lumpur lebih dari 5%, agregat halus harus

dicuci terlebih dahulu agregat kasar tidak boleh mengandung zat-zat yang dapat merusak beton, seperti zat-zat yang reaktif alkali.

- c. Agregat halus tidak boleh mengandung bahan organik terlalu banyak.
- d. Agregat halus terdiri dari butiran-butiran yang beranekaragam besarnya dan apabila diayak dengan susunan ayakan yang ditentukan dalam Pasal
 3.5 ayat 1 (PBI 1971), harus memenuhi syarat sebagai berikut :
 - 1) Sisa diatas ayakan 4 mm, harus minimum 2% berat
 - 2) Sisa diatas ayakan 1 mm, harus minimum 10% berat
 - 3) Sisa diatas ayakan 0,25 mm, harus berkisar antara 80% 90% berat.

Pemeriksaan material ini dilaksanakan sesuai dengan standar menurut SNI, Agregat halus diteliti terhadap:

- a. Modulus kehalusan
- b. Berat jenis dan penyerapan
- d. Kadar air
- e. Kadar lumpur
- f. Berat isi

2. Agregat Kasar

Menurut SNI 1970-2008, agregat kasar adalah kerikil sebagai hasil disintegrasi alami dari batuan atau berupa batu pecah yang diperoleh dari organik pemecah batu dan mempunyai ukuran butir antara 4,75 mm (No.4) sampai 40 mm (No. 1½ inci). Menurut PBI (1971), Pasal 3.4 syarat-syarat agregat kasar (kerikil) adalah sebagai berikut :

- a. Disebut agregat kasar karena tidak memiliki pori-pori yang lebih dari 20% dari berat agregat seluruhnya. Agregat kasar harus memiliki ketahanan yang baik dalam keadaan cuaca panas ataupun dingin.
- b. Tidak boleh mengandung lumpur lebih dari 1% yang ditentukan terhadap berat kering. Jika melebihi 1% maka agregat kasar tersebut harus dicuci terlebih dahulu.
- c. Agregat kasar tidak boleh mengandung zat-zat yang dapat merusak beton, seperti zat-zat yang reaktif alkali.

- d. Berdasarkan SNI 2847-2013 (Persyaratan beton struktural untuk bangunan gedung) ukuran maksimum agregat kasar harus tidak melebihi
 - 1) 1/5 jarak terkecil antara sisi cetakan
 - 2) 1/3 ketebalan slab
 - 3) ³/₄ jarak bersih minimum antara tulangan atau kawat, 10rgani tulangan, atau tendon prategang, atau selongsong.

Pemeriksaan material agregat kasar ini sesuai dengan standar ASTM C33 (1986), agregat kasar diteliti terhadap :

- a. Modulus kehalusan
- b. Berat jenis dan penyerapan
- c. Kadar air
- d. Kadar lumpur
- e. Berat isi
- f. Keausan agregat

2.2.2 Air

Air yang digunakan untuk campuran pada beton harus bersih bebas dari asam, alkali dan minyak atau yang dapat dikonsumsi (diminum). Air sangatlah berpengaruh terhadap komposisi beton, hal ini dapat terlihat bahwa w/c sangat mempengaruhi kekuatan tekan terhadap beton. Air digunakan sebagai pereaksi terhadap semen, serta untuk menjadi bahan pelumas antara butir-butir agregat supaya mudah dikerjakan dan dipadatkan.

Fungsi dari air pencampur adalah sebagai berikut ini:

- 1. Membasahi agregat dan melindungi dari organik dari reaksi kimia.
- 2. Menjadi formulasi terhadap semen untuk menjadikan pasta yang gabungan antara keduanya menjadi reaksi kimia yang berubah menjadi panas hidrasi.
- 3. Menjadi *flux* material semen untuk melewatkan ke seluruh permukaan

- 4. Membuat adukan beton mudah dikerjakan.
- Melumasi campuran beton agar mudah ditempatkan dan seragam pada pengecoran disudut maupun pada kolom dan balok

Menurut (Departemen Pekerjaan Umum, 1982), pemakaian air yang memenuhi syarat sebagai berikut :

- 1. Air harus bersih, tidak mengandung lumpur lebih dari 2 gr/lt, minyak dan benda terapung lainnya yang dapat dilihat secara visual.
- 2. Tidak mengandung benda-benda tersuspensi lebih dari 2 gr/lt.
- 3. Tidak mengandung garam-garam yang dapat merusak beton lebih dari 15 gr/lt.
- 4. Tidak mengandung senyawa sulfat lebih dari 1 gr/lt.
- 5. Tidak mengandung klorida (CI) lebih dari 0,5 gr/lt.

2.3 Bahan Tambahan

Dalam Standard Definitions of Terminology Relating to Concrete and Concrete Aggregates (ASTM C. 125-1995:61) dan dalam Cement and Concrete Terminology (ACI SP-19), bahan tambah didefinisikan sebagai material selain air, agregat dan semen hidrolik yang dicampurkan dalam beton atau mortar yang ditambahkan sebelum atau selama pengadukan berlangsung.

Tujuannya untuk mengubah satu atau lebih sifat-sifat beton sewaktu masih dalam keadaan segara atau setelah mengeras. Bahan tambah dibagi menjadi dua yaitu bahan tambah yang dapat larut dalam air (*Chemical Admixture*) dan bahan yang tidak dapat larut dalam air (*Mineral Admixture*).

2.3.1 Abu Arang

Abu arang adalah hasil perubahan secara kimiawi dari pembakaran arang kayu. Pada saat arang kayu dibakar akan menghasilkan abu yang berwarna cerah keunguan. Perbedaan pada umur pohon akan memberikan pengaruh yang berbeda

2.4 Perencanaan Campuran Beton Standar Menurut SNI 03-2834-2000

Ada beberapa Langkah-langkah pokok perencanaan campuran beton standar menurut SNI 03-2834-2000 sebagai berikut ini :

- 1. Menentukan kuat tekan beton yang disyaratkan (fc') pada umur tertentu
- Penghitungan nilai deviasi standar (S)
 Menurut SNI 03-2834-2000, faktor pengali untuk standar deviasi dengan hasil uji < 30 sebagaimana ditunjukkan pada Tabel 2.1 berikut ini.

Tabel 2.1 Faktor pengali untuk standar deviasi berdasarkan jumlah benda uji yang
Tersedia

Jumlah Pengujian	Faktor Pengali Deviasi Standar			
< 15	fc'+ 12 Mpa			
15	1,16			
20	1,08			
25	1,03			
≥ 30	1,00			

(sumber : SNI 03-2834-2000)

Menurut SNI 03-2834-2000, nilai deviasi standar untuk berbagai tingkat pengendalian mutu pekerjaan sebagaimana ditunjukkan pada tabel 2.2 sebagai berikut

Tabel 2.2 nilai deviasi standar untuk berbagai tingkat pengendalian mutu pekerjaan

Tingkat Pengendalian Mutu	Sd (Mpa)
Memuaskan	2,8
Sangat Baik	3,5
Baik	4,2
Cukup	5,6
Jelek	7,0
Tanpa Kendali	8,4

(sumber : SNI 03-2834-2000)

3. Perhitungan nilai tambah atau margin

Nilai tambah (M) untuk kuat tekan rencana dapat dihitung dengan menggunakan persamaan berikut.

$$M = 1,64 \text{ x Sd}....(2.1)$$

Keterangan:

M = Nilai tambah (Mpa)

1,64 =Tetapan statistic yang nilainya tergantung pada persentase kegagalan hasil uji sebesar maksimum 5%

Sd = Deviasi standar rencana (Mpa)

4. Kuat tekan rata-rata perlu (f'cr)

Kuat tekan rata-rata perlu diperoleh dengan rumus:

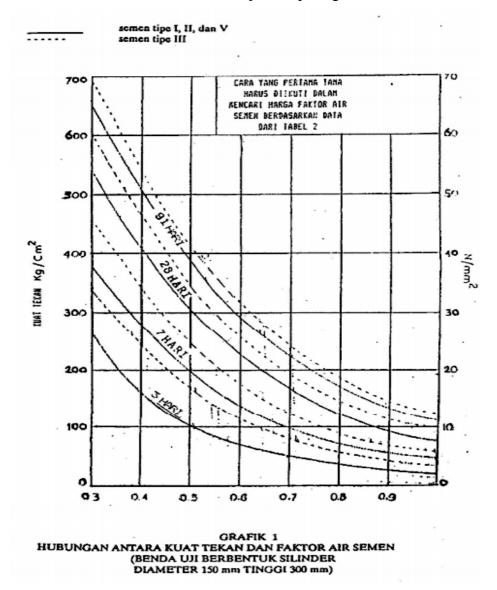
$$f'cr = f'c + M....(2.2)$$

Keterangan:

f'cr = Kuat tekan rata-rata perlu (Mpa) fc' = Kuat tekan yang disyaratkan (MpaM = Nilai tambah (Mpa)

- 5. Menentukan jenis semen yang digunakan
- 6. Penetapan jenis agregat
- 7. Penetapan nilai faktor air semen (FAS)

Penetapan nilai faktor air semen diperoleh berdasarkan jenis semen, jenis agregat kasar, dan umur kekuatan tekan beton. Menurut SNI 03-2834-2000sebagaimana ditunjukkan pada Tabel 2.3 berikut ini.


Tabel 2.3 Perkiraan kuat tekan beton dengan FAS

	Jenis Agregat		Kekuatan Tekan (Mpa)					
Jenis Semen	Kasar	Pada Umur (hari)			Bentuk			
		3	7	28	95	Benda Uji		
Semen	Batu tak dipecahkan	17	23	33	40	Silinder		
PortlandTipe	Batu pecah	19	27	37	45			
I								

		Kekuatan Tekan MPa					
Jenis Agregat Kasar	Pa	ada U	Bentuk				
	3	7	28	95	Benda Uji		
Batu tak dipecahkan	20	28	40	48	Kubus		
Batu pecah	25	32	45	54			
Batu tak dipecahkan	21	28	38	44	Silinder		
Batu pecah	25	33	44	48	Simileo		
Batu tak dipecahkan	25	31	46	53	Kubus		
Batu pecah	30	40	53	60	Kuous		
	Batu tak dipecahkan Batu pecah Batu tak dipecahkan Batu pecah Batu tak dipecahkan	Batu tak dipecahkan Batu pecah Batu tak dipecahkan Batu pecah Batu tak dipecahkan Batu pecah 25 Batu tak dipecahkan 21 Batu pecah 25	Jenis Agregat Kasar37Batu tak dipecahkan2028Batu pecah2532Batu tak dipecahkan2128Batu pecah2533Batu tak dipecahkan2531	Pada Umur (3 7 28 Batu tak dipecahkan 20 28 40 Batu pecah 25 32 45 Batu tak dipecahkan 21 28 38 Batu pecah 25 33 44 Batu tak dipecahkan 25 31 46	Pada Umur (hari) 3 7 28 95 Batu tak dipecahkan 20 28 40 48 Batu pecah 25 32 45 54 Batu tak dipecahkan 21 28 38 44 Batu pecah 25 33 44 48 Batu tak dipecahkan 25 31 46 53		

(Sumber: SNI 03-2834-2000)

Grafik hubungan antara kuat desak dan faktor air semen untuk benda uji slinder berdasarkan SNI 03-2834-2000, ditunjukkan pada gambar 2.1 berikut ini.

Gambar 2.1 Grafik hubungan antara kuat desak dan faktor air semen untuk benda uji slinder

8. Menentukan air semen maksimum dan jumlah semen minimun. Air seme maksimum dan jumlah semen minimum dapat ditentukan sesuai dengan jenis pembetonannya, selengkapnya dapat dilihat pada Tabel 2.4 berikut ini.

(Sumber: SNI 03-2834-2000)

Tabel 2.4 Persyaratan jumlah semen minimum dan faktor air maksimum

Jenis Pembetonan	Jumlah Semen	Nilai FAS		
	Minimum Per-	Maksimum		
	m ³ Beton (Kg)			
Beton di dalam ruang bangunan :				
a. Keadaan keliling non-korosif	275	0,60		
b. Keadaan keliling korosif	325	0,52		
disebabkan oleh kondensasi				
atau uap korosif				
Beton diluar ruangan bangunan:				
a. Tidak terlindungi dari hujan	325	0,60		
dan terik matahari langsung				
b. Terlindungi dari hujan dan terik				
matahari langsung	275	0,60		
Beton masuk kedalam tanah :				
a. Mengalami kedaan basah dan	325	0,55		
kering berganti-ganti				
b. Mendapat pengaruh sulfat dan				
alkali dari tanah		Lihat tabel 5		
Beton yang kontinu berhubungan :		(SNI03-2834-		
		2000)		
a. Air laut				
b. Air tawar		Lihat tabel 6		
		(SNI03-2834-		
		2000)		
		·		

(Sumber : SNI 03-2834-2000)

9 Penetapan nilai slump

Penetapan nilai slump ditentukan, berupa 0-10 mm, 10-30 mm, 30-60 mmatau 60-180 mm.

10 Penetapan besar butir agregat maksimum

Penetapan besar butir maksimum agregat pada beton standar ada 3, yaitu 10 mm, 20 mm atau 40 mm.

11 Menentukan jumlah kadar air bebas.

Menurut SNI 03-2834-2000, Kadar air bebas dapat ditentukan sesuai dengan ukuran besar butir agregat dan jenis agregat sebagaimana ditunjukkan pada Tabel 2.5 berikut ini.

Tabel 2.5 perkiraan kadar air bebas (kg/m³) yang dibutuhkan beberapa tingkat kemudahan pengerjaan adukan beton

Ukuran Besar Butir Agregat	Jenis Agregat	Slump (mm)			
Maksimum (mm)		0-10	10-30	30-60	60-180
10	Batu tak dipecah	150	180	205	225
	Batu pecah	180	205	230	250
20	Batu tak dipecah	137	160	180	195
	Batu pecah	170	190	210	225
40	Batu tak dipecah	115	140	160	175
	Batu pecah	155	175	190	205

(Sumber: SNI 03-2834-2000)

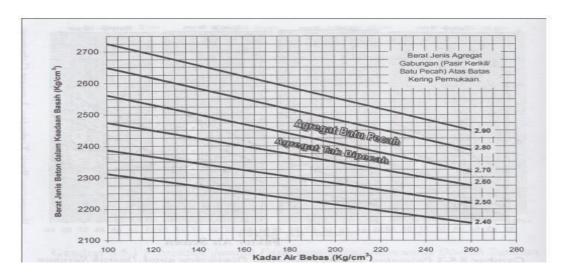
- 12. Agregat campuran (tak pecah dan dipecah)
- 13. Berat semen yang diperlukan per meter kubik beton
- 14. Jumlah semen maksimum jika tidak ditetapkan, dapat diabaikan

15. Menentukan jumlah semen seminimum mungkin

Dari Tabel 2.5 tersebut dapat diperoleh jumlah semen minimum maupun nilai faktor air semen maksimum menurut kondisi beton yang akan dicetak

16. Menentukan faktor air semen yang disesuaikan

Jika jumlah semen berubah karena lebih kecil dari jumlah semen minimum yang ditetapkan (atau lebih besar dari jumlah semen maksimum yang disyaratkan), maka faktor air semen harus diperhitungkan kembali.


17. Penetapan jenis agregat halus

Agregat halus diklasifikasikan menjadi 4 jenis, yaitu pasir kasar, agak kasar, agak halus dan pasir halus.

- 18. Penetapan jenis agregat kasar
- 19. Proporsi berat agregat halus terhadap agregat campuran Proporsi berat agregat halus ditetapkan dengan cara menghubungkan kuat tekan rencana dengan faktor air semen menurut slump yang digunakan secara tegak lurus berpotongan
- 20. Berat jenis agregat campuran

21. Perkiraan berat isi beton

Pada perkiraan berat isi beton berdasarkan SNI 03-2834-2000 dapat dilihat Pada gambar 2.2

Gambar 2.2 Hubungan Kandungan Air, Berat Jenis Agregat Campuran, dan Berat isi Beton

(Sumber: SNI 03-2834-2000)

- 22. Menghitung kebutuhan berat agregat campuran
- 23. Menghitung berat agregat halus yang diperlukan

Kebutuhan agregat halus dihitung dengan rumus :

Wagregat halus = Kh x W
$$_{agregat campuran}$$
 (2.3)

Keterangan:

Kh = persentase berat agregat halus terhadap agregat campuran (%)

 $W_{agregat\ campuran}$ = kebutuhan agregat campuran per meter kubik beton (kg/m³)

24. Hitung berat agregat kasar yang diperlukan

Kebutuhan agragat kasar dihitung dengan rumus:

$$W_{\text{agregat kasar}} = Kk \times W_{\text{agregat campuran}}.$$
 (2.4)

Keterangan:

Kk = persentase berat agregat kasar terhadap agregat campuran (%)

 $W_{agregat\ campuran} = kebutuhan\ agregat\ campuran\ per\ meter\ kubik\ beton$ (kg/m^3)

- 25. Menghitung proporsi campuran, kondisi agregat dalam kejadian jenuh kering permukaan semen, air, agregat halus dan agregat kasar harus dihitung dalam per m³ adukan.
- 26. Koreksi proporsi campuran menurut perhitungan

Apabila agregat tidak dalam keadaan jenuh kering permukaan proporsi campuran harus dikoreksi terhadap kandungan air dalam agregat. Koreksi proporsi campuran harus dilakukan terhadap kadar air dalam agregat paling sedikit satu kali dalam sehari dan harus dihitung menurut rumus sebagai berikut:

A.
$$Air = B - (CK - Ca)$$

$$x \frac{c}{100} - (Dk - Da) x \frac{D}{100}$$
....(2.5)

B. Agregat Halus = C +
$$(Ck-Ca) x \frac{c}{100}$$
....(2.6)

C. Agregat Kasar = D +
$$(Dk-Da) x \frac{D}{100}$$
....(2.7)

Keterangan:

B = Jumlah air (kg/m³)

C = Agregat halus (kg/m³)

D = Jumlah agregat kasar (kg/m³)

Ca = penyerapan air pada agregat halu (%)

Da = penyerapan agregat kasar (%)

Ck = kandungan air dalam agregat halus(%)

Dk = kandunagn air dakam agregat kasar (%)

- 27. Menghitung kadar serbuk kayu dari berat total agregat beton
- Menghitung kadar zat adiktif *besmittel* dari berat semen yang telah di dapatkan

2.5 Slump Test

Slump test beton adalah pengujian yang dilakukan untuk mengetahui seberapa besar adukan beton yang akan di produksi. Untuk menentukan kualitas sebuah *mix design* beton, perlu dilakukan pengujian kadar kekentalan beton untuk mencapai kuat tekan beton rencana.

Pengambilan nilai *slump* dilakukan untuk setiap campuran baik pada beton standar maupun beton yang menggunakan zat adiktif dan bahan tambahan. Pengujian *slump* dilakukan pada beton segar yang dituangkan kedalam kerucut abrams. Pengisian dilakukan dalam tiga lapisan yaitu 1/3 dari tinggi kerucut abrams. Setiap lapisan harus dipadatkan dengan cara ditusuk-tusuk sebanyak 25 kali menggunakan tongkat besi anti karat. Setelah penuh sampai permukaan atasnya diratakan. Kemudian kerucut abrams diangkat secara vertikal dan slump dapat diukur dengan cara mengukur perbedaan tinggi antara kerucut dengan tinggibeton.

Pada pengujian nilai slump menggunakan kerucut abrams merupakan pengetesan tertua di Indonesia. Penggunaan cara ini didasarkan atas standar ASTM C-143. Terdapat beberapa alat yang dibutuhkan dalam proses pengujian diantaranya:

1. Penggunaan kerucut abrams dengan diameter sekitar 20 cm di bagian bawah. Diameter bagian atas berkisar 10 cm dan tingginya mencapai

- 30 cm. Kedua sisi pada kerucut tersebut saling berhadapan dan memiliki pegangan untuk mempermudah saat proses pengangkatan kerucut padates *slump*.
- 2. Penumbuk dengan diameter 16 mm dan panjangnya mencapai 60 cm terbuat dari bahan baja. Memiliki ujung yang tumpul dan berfungsi untuk memadatkan campuran beton yang telah diisikan ke dalam kerucut abrams.
 - Slump dibagi menjadi tiga macam tipe, yaitu:
- 3 *Slump* sebenarnya, terjadi apabila penurunannya seragam tanpa ada yangruntuh.
- 4. *Slump* geser, terjadi bila separuh puncaknya bergeser dan tergelincir \$kebawah pada bidang miring.
- 6. *Slump* runtuh, terjadi bila kerucut runtuh semuanya.

2.6 Perawatan Beton (Curing)

Perawatan beton dilakukan saat beton sudah mulai mengeraskan bertujuan untuk menjaga agar beton tidak cepat kehilangan udara dan sebagai tindakan menjaga kelembaban atau suhu sehingga beton dapat mencapai mutu beton yang diinginkan. Proses perawatan ini meliputi pemeliharaan kelembaban dan kondisi suhu, baik dalam maupun di permukaan beton dalam periode waktu tertentu.

Perawatan beton sangat berpengaruh terhadap sifat-sifat beton keras seperti keawetan, kekuatan, sifat rapat air, ketahanan abrasi, stabilitas volume dan ketahanan terhadap pembekuan. Tujuan perawatan beton :

- 1 Menjaga beton dari kehilangan air semen yang banyak pada saat-saat setting time concrete
- 2 Menjaga perbedaan suhu beton dengan lingkungan yang terlalu besar
- 3. Stabilitas dari dimensi struktur
- 4. Mendapatkan kekuatan beton yang tinggi
- Menjaga beton dari kehilangan air akibat penguapan pada hari pertama
- 6. Menjaga supaya tidak terjadi keretakan pada beton

Menurut SNI 03-2847-2002 curing disyaratkan selama:

- 7. 7 hari untuk beton normal
- 8. 3 hari untuk beton dengan kuat tekan awal tinggi
 Menurut ASTM C-150 waktu *curing* dibagi menjadi 4
 berdasarkan tipesemen, yaitu :
 - 1. Semen tipe I, waktu minimum curing 7 hari
 - 2. Semen tipe II, waktu minimum curing 10 hari
 - 3. Semen tipe III, waktu minimum *curing* 3 hari
 - 4. Semen tipe IV atau V minimum *curing* 14 hari

Temperatur maksimum perawatan beton terletak diantara 40-100°c. Akan tetapi, temperatur optimum terletak diantara 65-80°c. Lebih tinggi temperatur maka semakin rendah batas kekuatan. Sedangkan jika temperaturnya lebih rendah maka membutuhkan perawatan yang lebih lama tetapi memberikan kekuatan batas yang lebih baik (Angjaya et al., 2013).

2.7 Pengujian Kuat Tekan Beton

Uji kuat tekan beton adalah upaya mendapatkan nilai estimasi kuat tekan beton pada struktur eksisting, dengan cara melakukan tekanan pada sampel beton dari struktur yang sudah dilaksanakan. Uji kuat tekan beton umumnya dilakukan pada usia 3 hari, 7 hari dan 28 hari. Kemudian hasil uji diambil dari nilai rata-rata paling tidak 2 beton yang diuji. Dengan cara ini, dapat diperoleh hasil yang akurat.

$$\Sigma = \frac{P}{A}$$

Keterangan:

 $\sigma = Kuat$ tekan benda uji (Kg/cm^2) P = Besar beban maksimum (Kg)

A = Luas penampang benda uji (cm²)

Kuat tekan beton dipengaruhi oleh hal-hal sebagai berikut ini:

1. Water cement ratio

Water cement ratio berpengaruh pada porositas dari pasta semen padat pada setiap proses hidrasi semen. Proses pemadatan juga memberikan efek terhadap porositas. Semakin rendah w/c semakin rendah porositas yang terjadi. Jika beton sedikit porositas (padat) maka kinerja beton semakin tinggi. Dalam pelaksanaan dilapangan w/c rendah tentunya workability nya semakin sulit sehingga diperlukan zat admixture (terhadap air). Ratio w/c menjadi berubah setelah masuknya bahan tambahan. Proses ini disebut sebagai water to cementitious ratio.

2. Kualitas agregat halus

Pada kualitas yang ditinjau dipengaruhi oleh bentuk butiran, tekstur, modulus kehalusan, bersih dari bahan organik, gradasinya.

- 3. Kualitas agregat kasar
 - Segi kualitasnya dipengaruhi oleh tingkat porositas, bentuk dan ukurannya, bersih dari bahan organik kuat tekan hancur dan gradasinya.
- 4. Kadar bahan tambah yang dicampurkan harus dengan dosis yang tepat (Saifullah, 2011).
- 5. Prosedur yang benar dan tepat dalam pelaksanaan proses pembuatan beton, yang meliputi uji material, pemilihan material yang baik, penimbangan dan pencampuran material, pengadukkan pengangkutan, pengecoran, perawatan, dan pengawasan pengendalian.

Agregat halus terdiri dari butiran-butiran yang beranekaragam besarnya dan apabila diayak dengan susunan ayakan yang ditentukan dalam Pasal 3.5 ayat 1 (PBI 1971), harus memenuhi syarat sebagai berikut :

- 1. Sisa diatas ayakan 4 mm, harus minimum 2% berat
- 2. Sisa diatas ayakan 1 mm, harus minimum 10% berat
- 3. Sisa diatas ayakan 0,25 mm, harus berkisar antara 80% 90% berat Pemeriksaan material ini dilaksanakan sesuai dengan standar menurut SNI, agregat halus diteliti terhadap :

- a. Modulus kehalusan
- b. Berat jenis dan penyerapan
- c. Kadar air
- d. Kadar lumpur
- e. Berat isi