LAMPIRAN

Langkah-langkah simulasi CFD (*Computational Fluid Dynamic*) menggunakan *Software ANSYS*, sebagai berikut:

1. Buka aplikasi ANSYS, kemudian pilih simulasi fluid flow (fluent).

2. Kemudian, *import* geometri yang sudah di gambar menggunakan Autodesk Inventor.

Gambar 2. Import Geometry

3. Generate meshing

+	Display			
-	Defaults			
	Physics Preference	CFD		
	Solver Preference	Fluent		
	Element Order	Linear		
	Element Size	1,e-003 m	 Ourthe	
	Export Format	Standard	 Quality	No. Francisco
	Export Preview Surface Mesh	No	 Check Mesh Quality	Yes, Errors
-	Sizing		 Target Skewness	Default (0,9)
	Use Adaptive Sizing	No	 Smoothing	Medium
		Defecult (1.2)	 Mesh Metric	Skewness
		Default (1,2)	 Min	1,5748e-009
	Max Size	Default (2,e-003 m)	 Max	0.9999
	Mesh Defeaturing	Yes		0.24038
	Defeature Size	Default (5, e-006 m)	Standard Deviation	0 12048
	Capture Curvature	Yes	 Inflation	0,12040
	Curvature Min Size	Default (1,e-005 m)	 Advanced	
	Curvature Normal Angle	Default (18,°)	 Auvanceu	
	Capture Proximity	No	 Statistics	550000
	Bounding Box Diagonal	0.2161 m		550262
	Average Surface Area	9 3671e-004 m ²		2577069
	Minimum Edge Length	2 5049a 004 m	 Show Detailed Statistics	No
	winning Euge Length	5,5540E-004 M		

Gambar 3. Meshing Setup General

Gambar 4. *Meshing* pada *bushing* 1

Gambar 5. Nilai skewness pada bushing 1

Gambar 6. Meshing pada bushing 2

Gambar 7. Nilai skewness pada bushing 2

Gambar 8. Meshing pada bushing 3

Gambar 9. Nilai skewness pada bushing 3

Gambar 10. Meshing pada bushing 4

Gambar 11 Nilai skewness pada bushing 4

4. Setup

Setelah itu, tahap berikutnya adalah *setup* yang menentukan properti material dari fluida, model fisik, kondisi batas, pemodelan turbulensi, dan lain sebagainya. Pada penelitian ini parameternya adalah *pressure* (tekanan) dari pelumas sebesar P = 110 bar dan *velocity* (kecepatan putar) dari *bushing* sebesar n = 1486 rpm, seperti pada gambar dibawah.

Name		Material Type		Order Materials by
aluminum		solid	Ψ.	Name
Chemical Formula		Fluent Solid Materials	O Chemical Formula	
al		aluminum (al)	Ψ.	
		Mixture		Fluent Database
		none	Ψ.	GRANTA MDS Database.
				User-Defined Database
	Properties			
	Density [kg/m ³]	constant 💌	Edit	
		2719		

Gambar 12. Setup Material Alumunium

Name		Material Type		Order Materials by
steel		solid		 Name
Chemical Formula		Fluent Solid Materials		O Chemical Formula
		steel		,
		Mixture		Fluent Database
		none		GRANTA MDS Database
				User-Defined Database
Pro	operties			
	Density [kg/m ³]	constant 💌	Edit	
		8030		

Gambar 13. Setup Material Steel

Name	Material Type		Order Materials by
copper	solid	*	Name
Chemical Formula	Fluent Solid Materials		O Chemical Formula
cu	copper (cu)	*	
	Mixture		Fluent Database
	none	*	GRANTA MDS Database
			User-Defined Database
Properties			
Density [kg/	m³] constant 🔹 🖉	dit	
	8978		

Gambar 14. Setup Material Bronze

GREASE PE	RTAMINA	EPX-NL1, I	EPX-NL2
RODUCT DESCRIPTION REASE PERTAMINA EPX-NL 1 and EPX-NL ted from Lithium 1,2 Hydroxystearate so all additives and strengthened with non-L sg. Extreme Pressure additive.	. 2 are formu- oap base with Lead-contain-	DISKRIPSI PRODU GEMUK PERTA, diformulasikan Hydroxystearate dengan aditif Extr logam berat Pb.	IK MINA EPX-NL 1 dan EPX-N dari bahan sabun Lithium dengan aditif lengkap diperi eme Pressure yang tidak mengans
ECOMENDED APPLICATION CREATE PERSONNE DEV.AL 15 recom- heavy duty bearings served by comb- system and EP geer greese at non- temperature. CREATE PERTAMINA EPV-NA 25 recom- heavy duty rolling and plain bearing severe shock load conditions at temperature up to 222F (107C). CREATE PERTAMINA EPV-NA 1, EPX- these grease maybe mistakenly materials. YPICAL CHARACTERISTIC	mmended for al dispensing mai ambient mmended for gs and other rorunent and t operating NL 2 are not ipment where mixed with	PENGGUNAAN Y 1. GEMUK PER bearing tupos dispensing op 2. GEMUK PER manifotom yang bosh da suhu operasi. 3. GEMUK PER dianjurkan M melumasi me dengan makar KARAKTERISTIK	UNG DISARAMAN AMINA EPI-NI, dilaramkan un berdy yang terdigapot dalam cen berdy yang terdigapot dalam cen AMINA EPI-NI dianyurkan un dalam EPI-NI dianyurkan un taning berdigapot terdigapot terdigapot terdigapot ampai 2007 (120 C). AMINA EPI-NI, 2016 (120 C). TAMINA EPI-NI, 2016 (110 C) tassasnya di poberik makanan ta sin atau mungkin akan bercam tan.
Characteristics	GREASE PE	RTAMINA EP1-NL	GREASE PERTAMINA EP2-NL
NLGI	1 mbd. or b	1	2
Structure	Lithum	Smooth	Smooth
Penetration at 77 F (25 C) worked		10-340	265-295
Dropping point *C	Med	200 hum/Brown	200 Marilium /Brown
Mineral Oil Visc. At 40 °C, cSt	1	00-220	200-220
EALTH AND SAFETY lease contact our Marketing Branch Off hone: 62-21 3190 7195, Fax : 62-21 319 (debite: www.pertamina.com to get Na ata Sheet as information for Health rotection at work.	ice; 90 7992, aterial Safety 1 and Safety	KESEHATAN & KI Silahkan menghu Telip.: 62-21 319 Website::www.p E-mail:pelumasi Material Safety	ESELAMATAN bungi Pemasaran Kantor Pusat 0 7195, Fax : 62-21 3190 7992, ertamina.com atau pertamina.com untuk mendapai y Data Sheet sebagai inforn

lame .	Material Type		Order Materials by	
Lithium 12-hydroxystearate	fluid	Name		
Chemical Formula	Fluent Fluid Materials		O Chemical Formula	
C18H35Li03	Lithium 12-hydroxystearate (C18H35LiO3)			
	Mixture		Fluent Database	
	none	*	GRANTA MDS Database.	
			User-Defined Database	
Properties				
Density [kg/m] constant *	Edit		
	830			
Viscosity [kg/(m s] constant *	Edit		
	0.00220			

Gambar 15. Setup Fluida

Gambar 16. *setup pressure*

	and wat									×
	Zone Name									
	wall_shaft									
	Adjacent Cell Zon	ne								
	greace									
C TITNIDER OT	Momentum	Thermal	Radiation	Specie	is DPM	Multiphase	UDS	Potential	Structure	Ablation
A FLENDER	Wall Motion	Motion								
No. NFJ/46407137-000 10 10	O Stationary W	/all ® Rel	ative to Adiacent (ell Zone			S	peed [rev/min] 148	6	
1600 kg 20N = 242 KW	Moving Wall	O Abs	olute		Rotation-Axis O	rigin		Rotation-Axis Di	irection	
TASH 12 P2 89 WW					X [m] 0			X 1		
/min n, 29,32 ,		O Tra	nslational		Y [m] 0			YO		-
1480 ISO VG 320 921		• Rot	ational		Z [m] 0			Z 0		
Sil: CLR MINERAL 10-		0.00	iiponents							
HAB6013 06/2020404 M	Shear Conditio	n								
And the second second second	No Slip									
Partie Asia Agenter 0 1 281010	O Specified Sh	ear								
A HAIN A	O Specularity 0	Coefficient								
	O Marangoni S	tress								
A A A A A A A A A A A A A A A A A A A	Wall Roughnes	\$\$								
	Roughness Me	odels	Sand-Grain Ros	ghness						
	Standard		Roughness H	eight [m]	0		-			
	O High Rough	iness (Icing)	Roughness Cor	stant 0.5		į,	-			
	1									

Gambar 17. setup velocity

5. Result (Hasil Simulasi)

Setelah melakukan perhitungan, hasil dapat diwujudkan dalam bentuk gambar, grafik, dan bahkan animasi dengan menggunakan pola-pola khusus. Pada tahap ini, hasil perhitungan dari langkah sebelumnya akan ditampilkan secara visual. Berikut merupakan nilai *velocity* dan *pressure* yang didapat setelah melakukan simulasi CFD (*Computational Fluid Dynamic*).

A. Bushing 1

Gambar 18. Fluid Flow inlet bushing 1

Gambar 19. Fluid Flow bagian dalam bushing 1

Gambar 20. Pressure pada inlet bushing 1

Gambar 22. Pressure pada bagian luar bushing 1

B. Bushing 2

Gambar 23. Fluid Flow inlet bushing 2

Gambar 24. Fluid Flow bagian dalam bushing 2

Gambar 25. Pressure pada inlet bushing 2

Gambar 26. Pressure pada bagian dalam bushing 2

Gambar 27. Pressure pada bagian luar bushing 2

C. Bushing 3

Gambar 28. Fluid Flow inlet bushing 3

Gambar 29. Fluid Flow bagian dalam bushing 3

Gambar 30. Pressure pada inlet bushing 3

Gambar 31. Pressure pada bagian dalam bushing 3

Gambar 32. Pressure pada bagian luar bushing 3

D. Bushing 4

Gambar 33. Fluid Flow inlet bushing 4

Gambar 34. Fluid Flow bagian dalam bushing 4

Gambar 35. Pressure pada inlet bushing 4

Gambar 36. Pressure pada bagian dalam bushing 4

Gambar 37. Pressure pada bagian luar bushing 4

E. Bushing 5

Gambar 38. Fluid Flow inlet bushing 5

Gambar 39. Fluid Flow bagian dalam bushing 5

Gambar 40. Pressure pada bagian inlet bushing 5

Gambar 41. Pressure pada bagian luar bushing 5

Gambar 42. Pressure pada bagian dalam bushing 5

Pembimbing Laporan Skirpsi memberikan rekomendasi kepada,

Nama	:	Sri Wulandari
NIM	:	061940212240
Jurusan/Program Studi	:	Teknik Mesin/Produksi dan Perawatan
Judul Laporan	:	Optimalisasi Desain Groove Untuk Meningkatkan Kinerja Bushing Pada Roda Bogie Berbasis Simulasi CFD

Diketahui Pembimbing Akademik Palembang, Agustus 2023 Pembimbing Laporan Skripsi

19 23

(Ahmad Junaidi, S.T., M.T.) NIP.196607111990031001

(Fatahul Anffin, S.T., M.Eng. Sc., Ph.D) NIP.197201011998021004

Pembimbing Laporan Skirpsi memberikan rekomendasi kepada,

Nama	:	Sri Wulandari
NIM	:	061940212240
Jurusan/Program Studi	:	Teknik Mesin/Produksi dan Perawatan
Judul Laporan	:	Optimalisasi Desain Groove Untuk Meningkatkan Kinerja Bushing Pada Roda Bogie Berbasis Simulasi CFD

Diketahui Pembimbing Akademik Palembang, Agustus 2023 Pembimbing Laporan Skripsi

10 23

(Ahmad Junaidi, S.T., M.T.) NIP.196607111990031001

MAT - 23 4/8-23

(Drs. Irawan Malik, MSME.) NIP.195810151988031003

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI SRIWIJAYA Jalan Srijaya Negara, Palembang 30139 Telp. 0711-353414 Fax. 0711-355918 Website : www.polisriwijaya.ac.id E-mail : info@polsri.ac.id LEMBAR BIMBINGAN SIDANG LAPORAN SKRIPSI

Nama	:	Sri
NIM	:	061
Jurusan/Program Studi	:	Tel
Judul Laporan	:	Op

:

Sri Wulandari 061940212240 Teknik Mesin/Produksi dan Perawatan Optimalisasi Desain *Groove* Untuk Meningkatkan Kinerja *Bushing* Pada Roda *Bogie* Berbasis Simulasi CFD Fatahul Arifin, S.T., M.Eng. Sc., Ph. D

Pembimbing

No.	Tanggal	Uraian Bimbingan	Tanda Tangan Pembimbing
1.	6 - 3 - 2023	Pengajuan Indul	L Å
2.	7 - 3 - 2023	ACC Judui	× ·
3.	15-3-2023	Bimbirgan BAB 1	\$
4.	3 - 4 - 2023	Remain BABI	R
5.	12-4-2023	Bimbingan BAB 0	
6.	14 - 4 - 2023	Revisi BAB II	A F
7.	3 - 5 - 2023	Bimbingan BAB (1)	
8.	10-5-2023	Buiss BAB M	Å ſ
9.	24-5-2023	Bimbingan BAB 10 - Ù	R L
10.	20-6-2023	10 mis $10 m$	× I
11.	4 - 7 - 2023	Bevic Tatz tubr	
12.	8 -7 - 2023	ACC sidans skripsi	× T

Mengetahui, Ketua Jurusan/KPS,

(Ir. Sairul Effendi, M.T) NIP.1963091219893031005 Palembang, Agustus 2023 Pembimbing Akademik I I 23 (Ahmad Junaidi, S.T., M.T) NIP.19660711199031001

Catatan:

Ketua Jurusan/Ketua Program Studi & PA harus memeriksa jumlah pelaksanaan bimbingan sesuai yang dipersyaratkan dalam Pedoman Proposal TA (minimum dua belas kali bimbingan) sebelum menandatangani lembar bimbingan ini. Lembar pembimbingan Proposal TA ini harus dilampirkan dalam Proposal TA.

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI SRIWIJAYA Jalan Srijaya Negara, Palembang 30139 Telp. 0711-353414 Fax. 0711-355918	ISO 9001 Registred Gadity	UKAS
Website : www.polisriwijaya.ac.id E-mail : info@polsri.ac.id		915
LEMBAR BIMBINGAN SIDANG LAPORAN SKRIPSI		

Nama NIM Jurusan/Program Studi Judul Laporan

:

:

:

:

Sri Wulandari 061940212240 Teknik Mesin/Produksi dan Perawatan Optimalisasi Desain *Groove* Untuk Meningkatkan Kinerja *Bushing* Pada Roda *Bogie* Berbasis Simulasi CFD Drs. Irawan Malik, MSME :

Pembimbing

No.	Tanggal	Uraian Bimbingan	Tanda Tangan Pembimbing
1.	6/3/23	Pengajiuan Judul → Revisi Bantalan → Bushina	n
2.	1/3/23	Acc Judyi	Å
3.	15/3/23	Bimbingan BAB t > Tata Tulis	r
4.	3/4/23	Revisi BAB I	h
5.	12/4/23	Bimbingan BAB 13 → Analisis dan FEA → CFD	n
6.	14/4/23	Revin BAB 1	m
7.	3/5/23	Bimbingan BAB 10 → Diagram Alir diperbaiki	h
8.	10 15/23	Revisi BAB 11	r
9.	24/6/23	Bimbirgan BAB IV -> legend & Hidradiiramis	n
10.	28 16123	Review BAB IV DAN V	n
11.	4/7/23	Pevisi Tata Tulas	N
12.	8/7/23	Acc Sidong Shripsi 447-23	M

Mengetahui, Ketua Jurusan/KPS

(Ir. Sairul Effendi, M.T) NIP.1963091219893031005 Palembang, Agustus 2023 Pembimbing Akademik \$ 23

(Ahmad Junaidi, S.T., M.T) NIP.19660711199031001

Catatan:

Ketua Jurusan/Ketua Program Studi & PA harus memeriksa jumlah pelaksanaan bimbingan sesuai yang dipersyaratkan dalam Pedoman Proposal TA (minimum dua belas kali bimbingan) sebelum menandatangani lembar bimbingan ini. Lembar pembimbingan Proposal TA ini harus dilampirkan dalam Proposal TA.

	KEMENTERIAN PENDIDIKAN, KEBUDAYAAN,	_
\frown	RISET, DAN TEKNOLOGI	
ANNIE AN	POLITEKNIK NEGERI SRIWIJAYA	
	JURUSAN TEKNIK MESIN	
C MANUAR S	Jalan Srijaya Negara Bukit Besar Palembang 30139	
	Telepon. 0711-353414 fax. 0711-355918	
	Website : www.polsri.ac.id E-mail : info@polsri.ac.id	
	PELAKSANAAN REVISI TUGAS AKHIR	

Mahasiswa berikut,

Nama	:	SRI NULANDARI
NPM	:	061940212240
Jurusan/Program Studi	:	TEKNIK MESIN / ARODUKA DAN REPAWATAN
Judul Tugas Akhir	:	Optimalisasi derain groove untuk meningkattean
-		KINERJA BUSHING PADA RODA BOGIC BERBARIS SIMULARI CED

Telah melaksanakan revisi terhadap Tugas Akhir yang diujikan pada hari <u>Jum'at</u> tanggal <u>II.</u> bulan <u>Agustus</u> tahun <u>2023</u> Pelaksanaan revisi terhadap Tugas Akhir tersebut telah disetujui oleh Dosen Penguji yang memberikan revisi:

No.	Komentar	Nama Dosen Penguji *)	Tanggal	Tanda Tangan
۱.	Rumuzan Marciah direszaikan de kerimpulan	Almadona Anwar sani, M.ta	29/82023	Æ
2.	Rumus perhitungan manual, diagram alir,	tila Sundani, M.T	18	Au Au
	set up fluida dan Mateñal			V F
3.	Acc	theaturel Arifon	31/ 2023	Bus
				Ĺ
		*		

Agustur 2023 Palembang, Ketua Penguji D Ph. D Fatahul Anfin. (. ...) NIP 197201011998021004

Catatan: *) Dosen penguji yang memberikan revisi saat ujian Tugas akhir. **) Dosen penguji yang ditugaskan sebagai Ketua Penguji saat ujian TA. Lembaran pelaksanaan revisi ini harus dilampirkan dalam Tugas Akhir.

BADAN STANDARDISASI DAN KEBIJAKAN JASA INDUSTRI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN JI. Sisingamangaraja No.24, Telp.(061) 7867495, 7363471 Fax.(061) 7362830 e-mail: bind_medan@kemenperin.go.id

Dok.No. : F-LP-016/3-I-02/22

SERTIFIKAT HASIL UJI

Certificate of Analysis

Nomor	Sertifikat
Cortifica	to No

: 0866/BSKJI/BSPJI-Medan/MS-P/VI/2023

Nomor Pengujian Testing No.

No. Surat Permohonan Pengujian Testing Request No.

Halaman Page

: 1 dari 2 of

: Bronze

: 0481/BSKJI/BSPJI-Medan/LP/VI/2023

: PL-0057

Kepada Yth. To

Sri Wulandari Jl. Macan Kumbang Raya No.25, Palembang

IDENTITAS CONTOH

Identity of Sample

Nama / Jenis Contoh Sample Name / Type

Etiket / Merk Trademark / Brand

Kode Sampel Sample Code

Lembaga Pengambil Contoh Sampling Institution

Prosedur Pengambilan Contoh

Sampling Procedure

Keterangan Contoh Description of Sample

Tanggal Sampel Diterima Date of Sample Received

Tanggal Pengujian Date of Testing

Result of Analysis

: Diantar Langsung

: Tidak Disegel

: 14 Juni 2023 : 14 Juni 2023

Hasil Pengujian : Terlampir attached

Sertifikat ini hanya berlaku terhadap contoh tersebut diatas This Certificate relate only to sample that been analyzed Sertifikat hasil uji hanya bisa diproduksi ulang secara keseluruhan dan dengan persetujuan LP – BSPJI MEDAN Certificate of analysis shall only be reproduced entirely and with approval from LP – BSPJI Medan

LABORATORIUM PENGUJI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN (LP-BSPJI MEDAN) Testing Laboratory of Center for Standardization and Industrial Service Medan 1

Nomor Sertifikat Certificate Number

: 0866/BSKJI/BSPJI-Medan/MS-P/VI/2023

Halaman Page

2 dari 2 2 of 2

Validasi Validity

HASIL UJI THE TEST RESULT

No	Parameter	Unit	Hasil Uji	Metode Uji
1	Kekerasan	HRB	81,8*	SNI 8388 : 2017

Keterangan : * 80,3; 82,6; 83,7; 82,9; 81,0; 79,7; 81,7; 82,1; 81,7; 81,8

Medan, 23 Juni 2023 Deput Martano, Teknis Laboratorium Pengujian Seput Technica Manager of Testing Laboratory DAMPE AND SFI Chasnawati KHP 197012311993032008

BADAN STANDARDISASI DAN KEBIJAKAN JASA INDUSTRI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN JI. Sisingamangaraja No.24, Telp.(061) 7867495, 7363471 Fax.(061) 7362830 e-mail: bind_medan@kemenperin.go.id

Dok.No. : F-LP-016/3-I-02/22

SERTIFIKAT HASIL UJI

Certificate of Analysis

Nomor Sertifikat Certificate No. 0867/BSKJI/BSPJI-Medan/MS-P/VI/2023

Nomor Pengujian Testing No.

No. Surat Permohonan Pengujian Testing Request No.

Halaman Page Medan/LP/VI/2023 : 1 dari 2

of

: Aluminium

: 0481/BSKJI/BSPJI-

: PL-0058

Sri Wulandari Jl. Macan Kumbang Raya No.25, Palembang

Kepada Yth.

То

IDENTITAS CONTOH

Identity of Sample

Nama / Jenis Contoh Sample Name / Type

Etiket / Merk Trademark / Brand

Kode Sampel Sample Code

Lembaga Pengambil Contoh Sampling Institution

Prosedur Pengambilan Contoh Sampling Procedure

Keterangan Contoh

Tanggal Sampel Diterima Date of Sample Received

Description of Sample

Tanggal Pengujian
Date of Testing

Hasil Pengujian Result of Analysis : 14 Juni 2023 : Terlampir

attached

: Tidak Disegel

: 14 Juni 2023

: Diantar Langsung

Sertifikat ini hanya berlaku terhadap contoh tersebut diatas This Certificate relate only to sample that been analyzed Sertifikat hasil uji hanya bisa diproduksi ulang secara keseluruhan dan dengan persetujuan LP – BSPJI MEDAN Certificate of analysis shall only be reproduced entirely and with approval from LP – BSPJI Medan LABORATORIUM PENGUJI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN (LP-BSPJI MEDAN) Testing Laboratory of Center for Standardization and Industrial Service Medan

Nomor Sertifikat Certificate Number

: 0867/BSKJI/BSPJI-Medan/MS-P/VI/2023

Halaman Page

: 2 dari 2 2 of 2

Validasi Validity

HASIL UJI THE TEST RESULT

No	Parameter	Unit	Hasil Uji	Metode Uji
1	Kekerasan	HRB	-13.3*	SNI 8388 : 2017

Keterangan : *-14,0; -11,7; -11,2; -12,4; -14,4; -12,9; -11,6; - 15,4; -12,1; -17,1

Sertifikat ini hanya berlaku terhadap contoh tersebut diatas Tris Certificate relate only to sample that been analyzed Sertifikat hasil uji hanya bisa diproduksi ulang secara keseluruhan dan dengan persetujuan LP – BSPJI MEDAN Certificate of analysis shall only be reproduced entirely and with approval from LP – BSPJI Medan

BADAN STANDARDISASI DAN KEBIJAKAN JASA INDUSTRI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN ngaraja No.24, Telp.(061) 7867495, 7363471 Fax.(061) 7362830 e-mail: bind_medan@kemenperin.go.id II. Sising

Dok.No.: F-LP-016/3-I-02/22

SERTIFIKAT HASIL UJI

Certificate of Analysis

Nomor	Sertifikat
Certificat	te No.

0868/BSKJI/BSPJI-Medan/MS-P/VI/2023

Nomor Pengujian Testing No.

No. Surat Permohonan Pengujian Testing Request No.

Halaman Page

: 1 dari 2 of

: Besi

: 0481/BSKJI/BSPJI-

Medan/LP/VI/2023

: PL-0059

Sri Wulandari JI. Macan Kumbang Raya No.25, Palembang

Kepada Yth.

То

IDENTITAS CONTOH

Identity of Sample

Nama / Jenis Contoh Sample Name / Type

Etiket / Merk Trademark / Brand

Kode Sampel Sample Code

Lembaga Pengambil Contoh Sampling Institution

Prosedur Pengambilan Contoh Sampling

Hasil Pengujian Result of Analysis

: Diantar Langsung

Sampling Procedure	
Keterangan Contoh Description of Sample	: Tidak Disegel
Tanggal Sampel Diterima Date of Sample Received	: 14 Juni 2023
Tanggal Pengujian Date of Testing	: 14 Juni 2023
Hasil Penguijan	: Terlampir

Sertifikat ini hanya berlaku terhadap contoh tersebut diatas This Certificate relate only to sample that been analyzed Sertifikat hasil uji hanya bisa diproduksi ulang secara keseluruhan dan dengan persetujuan LP – BSPJI MEDAN Certificate of analysis shall only be reproduced entirely and with approval from LP – BSPJI Medan

attached

LABORATORIUM PENGUJI BALAI STANDARDISASI DAN PELAYANAN JASA INDUSTRI MEDAN (LP-BSPJI MEDAN) Testing Laboratory of Center for Standardization and Industrial Service Medan

Nomor Sertifikat Certificate Number

: 0868/BSKJI/BSPJI-Medan/MS-P/VI/2023

Halaman

Page

2 dari 2 2 of 2

Validasi 578 Validity

HASIL UJI THE TEST RESULT

No	Parameter	Unit	Hasil Uji	Metode Uji	
1	Kekerasan	HRB	81,4*	SNI 8388 : 2017	

Keterangan : * 83,1; 78,0; 81,7; 82,0; 80,0; 80,4; 81,8; 81,6; 82,9; 82,4

Sertifikat ini hanya berlaku terhadap contoh tersebut diatas This Certificate relate only to sample that been analyzed Sertifikat hasil uji hanya bisa diproduksi ulang secara keseluruhan dan dengan persetujuan LP – BSPJI MEDAN Certificate of analysis shall only be reproduced entirely and with approval from LP – BSPJI Medan

PM Smart	SNr. 57X005	2 Optik	Nr. 57X0050					
Sample	:							
Alloy	: FE_T_000	Mode	: PA 21/0	5/2023 06	:43:53			
	Fe	С	Si	Mn	Cr	Мо	Ni	
1	10.0	0.238	0.304	0.179	0.147	0.573	54.1	
2	10.0	0.293	0.395	0.191	0.149	0.653	>55.0	
3	10.0	0.264	0.285	0.191	0.139	0.661	54.3	
Average	10.0	0.265	0.328	0.187	0.145	0.629	54.5	
	Al	Co	Cu	Nb	Ti	v	W	
1	0.176	0.599	> 9.00	0.562	0.108	0.139	3.91	
2	0.179	0.684	> 9.00	0.590	0.103	0.144	4.47	
3	0.165	0.687	> 9.00	0.573	0.0967	0.137	4.42	
Average	0.174	0.657	> 9.00	0.575	0.103	0.140	4.27	
	Pb							
1	> 0.400							
2	> 0.400							
3	> 0.400							
Average	> 0.400							

Sample	:							
Alloy	: FE_T_00	0 Mode	: PA 21/	05/2023 06	:39:16			
	Fe	С	Si	Mn	Cr	Мо	Ni	
1 -	10.0	> 4.50	1.74	0.270	0.115	1.19	0.329	
2	10.0	> 4.50	1.81	0.301	0.133	1.36	0.346	
3	10.0	> 4.50	1.82	0.271	0.125	1.36	0.378	
Average	10.0	> 4.50	1.79	0.281	0.124	1.30	0.351	
	Al	Co	Cu	Nb	Ti	v	W	
1	> 1.50	0.553	0.488	0.790	0.294	0.331	5.35	
2	> 1.50	0.710	0.249	0.854	0.322	0.382	5.38	
3	> 1.50	0.592	0.199	0.788	0.310	0.384	4.93	
Average	> 1.50	0.618	0.312	0.810	0.309	0.366	5.22	
	Pb							
1	> 0.400							
2	> 0.400							
3	> 0.400							
Average	> 0.400							

PM Smart	SNr. 57X0052	Optik N	Nr. 57X005	0				
Sample	:WII	1200 Bar						
Alloy	: FE_T_100	Mode	: PA 10/	03/2023 03	:04:18			
	Fe	С	Si	Mn	P	S	Cr	
1	98.2	0.120	0.211	1.34	< 0.0030	< 0.0020	0.0064	
2	98.2	0.120	0.211	1.34	< 0.0030	< 0.0020	0.0078	
3	98.3	0.120	0.190	1.29	< 0.0030	< 0.0020	0.0087	
Average	98.3	0.120	0.204	1.32	< 0.0030	< 0.0020	0.0077	
-								
	Mo	Ni	Al	Co	Cu	Nb	Ti	
1	< 0.0030 <	0.0050	0.0462	< 0.0020	0.0101	0.0296	< 0.0010	
2	< 0.0030 <	0.0050	0.0445	< 0.0020	0.0099	0.0291	< 0.0010	
3	< 0.0030 <	0.0050	0.0423	< 0.0020	0.0104	0.0268	< 0.0010	
Average	< 0.0030 <	0.0050	0.0443	< 0.0020	0.0101	0.0285	< 0.0010	
morage								
	v	W	Pb	Sn	в	Zr	As	
1	< 0.0010 <	< 0.0400	< 0.0150	< 0.0020	< 0.0010	< 0.0020	< 0.0040	
2	< 0.0010 <	< 0.0400	< 0.0150	< 0.0020	< 0.0010	< 0.0020	< 0.0040	
3	< 0.0010 <	< 0.0400	< 0.0150	< 0.0020	< 0.0010	< 0.0020	< 0.0040	
Average	< 0.0010	0 0400	< 0.0150	< 0.0020	< 0.0010	< 0.0020	< 0.0040	
Average	0.0010	. 0.0400						
	Bi							
1	< 0.0100							
2	< 0.0100							
3	< 0.0100							
Average	< 0.0100							