LAMPIRAN

































BUKTI PENERIMAAN JURNAL SINTA 2 SCIENTIFIC JOURNAL OF INFORMATICS (SJI)

Editor Decision

Decision Accept Submission 2023-08-27

Notify Editor =1 EditorfAuthor Email Record = 2023-08-27

Editor Version 45420-117548-1-ED.DOCX 2023-07-04

Author Version 45420-119351-1-ED.DOCX 2023-07-28 DELETE

Upload Author | Choose File | No file chosen | Upload |
WVersion

Scientific Journal of Informatics (5JI)

p-ISSN 2407-7658 | e-ISSN 2460-0040

Fublished By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index_php/sji

Email: sji@mail.unnes.ac.id

This work is licensed under a Creative Commons Attribution 4.0 International License.



M Gmall M. Fadli ! inisasi il.com> |

[SJI] Manuscript Acceptance Letter: 45420

5 messages

SJl Unnes <sji@mail.unnes.ac.id> Thu, Aug 24, 2023 at 3:35 PM
To: fadlinisasilzader@gmail.com

Dear L Lindawati, Muhammad Fadli Ramadhan, Sopian Soim, Nabila Rizgi Novianda,

Thank you for submitting yeur manuscript to our journal, Scientific Jeurnal of Informatics.

It's our pleasure to inform you that your paper entitled “Fake News Detection Models Performance Improvement Using Long Short-Term Memory Hyperparameter Optimization™ has been ACCEPTED (Conditional) to be
published in the upcoming issue of Scientific Journal of Informatics. In addition, we kindly request you to Proofread your final manuscript in order to prepare the submission of the Scientific Journal of Informatics te Scopus, and
please send a certificate of proofreading via this email reply.

Based on the Author Fee Policy for the accepted paper, you may submit publication fee (IDR 1.705.000) to our official bank account:
Bank Account Number 127001008677534
Bank Name - Bank Republik Indonesia (ERI)
Bank Account Name - Apri Dwi Lestari

Please complete the transaction before 28 August 2023 23:00:00

Once you do full payment, please do the confirmation by sending your payment proof to this email.
After the payment has been made and the final proofread manuscript has been uploaded, the status of the manuscript will be updated from "Accepted (Conditional)” to "Accepted”

For more information, please do not hesitate to contact us.

Thank you for your censideration.

This electronic mail and/ or any files transmitted with it may contain ial or copyright infc ion of Universitas Negeri and/ or its Subsidiaries. If you are not an intended recipient, you must not keep, forward,
copy, use, or rely on this electronic mail, and any such action is unauthorized and prohibited. If you have received this electronic mail in ermor, please reply to this electronic mail to notify the sénder of its incarreet delivery, and
then delete both it and your reply. Finally, you should check this electronic mail and any attachments for the presence of viruses. Universitas Negeri Semarang accepts no liability for any damages causéd by any virusescows.
transmitted by this electronic mail.

Editor Subject: [SJI] Editor Decision DELETE

2023- ;
03-27 Mr. Muhammad Fadli Ramadhan:

09:15

AM  We have reached a decision regarding your submission to Scientific Journal of
Informatics, "Fake News Detection Models Performance Improvement Using Long Short-
Term Memory Hyperparameter Optimization”.

Our decision is to: Accept Submission

Much Aziz Muslim
Universitas Negeri Semarang, Indonesia
a212muslim@yahoo.com

Scientific Journal of Informatics
http://journal.unnes.ac.id/nju/index.php/sji



Scientific Journal of Informatics
Vol. 10, No. 3, Aug 2023

p-ISSN 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-ISSN 2460-0040

Perfor mance I mprovement of Fake News Detection M odels Using
L ong Short-Term Memory Hyper parameter Optimization

Lindawati'", Muhammad Fadli Ramadhan?, Sopian Soim?, Nabila Rizgia Novianda*
123Department of Electrical Engineering, Politeknik Negeri Sriwijaya, Indonesia
“Department of Electronics Engineering, National Chin-yi University of Technology, Taiwan

Abstract.

Purpose: The proposed model was developed based on prior research that distinguished between fake and real news
using a deep learning-based methodology and an LSTM neura network, with amodel accuracy of 99.88%. This study
uses hyperparameter tuning techniques on a Long Short-Term Long Memory (LSTM) neural network architecture to
improve the accuracy of afake news detection model.

Methods: To improve the accuracy of the fake news detection model and optimize the model from previous research,
this study usesthe hyperparameter tuning technique on modelswith Long Short-Term Memory (LSTM) neural network
architecture. For thistechnique, three different types of experiments, hyperparameter tuning on the LSTM layer, Dense
layer, and Optimizer, were conducted to obtain the best hyperparameters in each layer of the model architecture and
the model parameters proposed. The fake and real news dataset, which has also been used in earlier studies, was used
in this study.

Results: The proposed model could detect fake news with ahigh accuracy of 99.97%, surpassing the previous research
models with an accuracy of 99.88%.

Novelty: The novelty of this study was hyperparameter tuning technique on different layers of the LSTM neura
network to optimize the fake news detection model. The research aims to improve upon previous approaches and
increase the accuracy of the model.

Keywords: Fake news detection, Long short-term memory, Hyperparameter optimization, Performance
improvement, Machine learning models.
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INTRODUCTION

Many emerging technologies help understand human behavior in this technological world. Emerging
technologies can assist governments in developing safety policies. One of the unique technologies
developed by John McCarthy in 1955 is artificial intelligence. Afterward, neural networks, machine
learning, deep learning, natural language processing, and predictive analytics were developed [1]. The
emergence of new technologies has significantly advanced in every field of life [2].

One of the emerging technologies that is altering how we handle business issues is artificial intelligence
[3], [4]. Machine learning and advanced data analytics are being used by more and more companies to solve
problems. Natural Language Processing (NLP), which has improved during the artificial intelligence era,
provides much potential for companies wishing to interpret human behavior using existing data [5].

All forms of communication in social and natural settings, including audio, video, and text, can be used
with NLP. Text mining has been helping identify numerous relevant patterns and trends in the textual
collection. By strategically utilizing NLP in today’s market environments, organizations can gain an edge
over rivals. The vast amounts of unstructured data in various fields, as well as public opinion in the
government sectors, in areas including healthcare, education, fake news, economic sectors, security, and
trust, can be fought with artificial intelligence and natural language processing. The use of natural language
processing improves communication between humans and robots, which improves decision-making and
increases overall company productivity [6].

*Correspondi ng author.
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Unrecognized fake news tends to spread more quickly. Fake news is currently more popular on social media
platforms, such as Facebook News Feed, than in the past when it was prevalent in print. The rise of fake
news has been connected to post-truth politics and political extremism. To better comprehend how fake
news spreads, the authors [7] examined a dataset of Twitter rumor chains spanning from 2006 to 2017. The
study aimed to understand and evaluate the influence of fake news on society. The authors observed the
wide-scale distribution of inaccurate information, with around 3 million people spreading approximately
126,000 instances of fake news. Therefore, for the benefit of society and government backing, bogus news
must be removed. Recognizing fake news before being spread is meaningful and valuable because of the
fast-growing social media database and technological advances.

The importance of identifying fake news has been highlighted. A method has been devised to detect fake
news, such as neural network method used in research [2], [8]-[12], which is very commonly used for
classification cases. Apart from deep learning techniques, several traditional learning methods are also used
for classification, such as Support vector machines (SVM) [13] and decision trees [14]. However, using
deep learning methods such as neural networks is superior to these two methods because they are more
scalable, and higher accuracy can be achieved by increasing the network size or training data set [15]. In
addition, [16] shows that traditional decision trees and Support Vector Machine learning methods are
inefficient for many modern applications. This means that traditional learning methods require a large
number of observations to achieve generalization and impose significant manpower to determine prior
knowledge in models. The neural network method can solve the problem of binary text classification to
identify fake and real news. However, the neural network method has weaknesses, as it is difficult to select
the optimal hyperparameter layers of the neural network model and requires much experimentation to
determine a parameter. In addition, it is optimally used for a particular dataset.

Previous studies regarding the detection of fake news, [2], [8]-[12], used various optimization techniques
and methods to enhance the performance of the neural network model. Studies [8]-[12] were chosen since
they were compared in [2], so it is related to the comparison of the performance of the detection model in
this research. The datasets used in these six studies differ, but in essence, the accuracy of the models
proposed was assessed in the six studies, comparing the techniques used to create models for the fake news
identification [17]. Kaliyar in [9] used the DeepFake multi-layer deep neural network method with a model
accuracy of 88.64%. In addition to the DeepFake method, Goswami in [10] used the Echo FakeD method
to optimize the coupled matrix-tensor factorization approach with the obtained model accuracy of 92.30%.
Raj [12] used optimization of the neural network model using the coupled ConvNet method or the CNN
framework for detecting fake news with a model accuracy of 93.56%. The BERT (Bidirectional Encoder
Representations from Transformers) method can also be used to optimize deep learning techniques like
CNN and LSTM to deal with the ambiguity of natural language understanding by models [18]. The method
used by Narang in [8] achieved a model accuracy of 98.90%. Ozbay in [11] also used the neural network
model optimization method using the improved Salp Swarm Optimization (SSO) method to detect fake
news on social media, with a model accuracy of up to 99.50%. The effectiveness of the neural network
model in the five previous studies was surpassed with the LSTM method by Chauhan [2], where the
parameters used can achieve a model accuracy of 99.88%.

Referring to the background, a better neural network model to use for performing NLP tasks, especially for
detecting fake news, is the LSTM neural network model. However, higher accuracy can be achieved by
increasing the network size or training data set. This indicates that by choosing efficient and optimal
hyperparameters for the fake news detection model and further research, the accuracy of neural network
model can be increased [1], [19]. Therefore, we use the hyperparameter tuning method on the LSTM neural
network model to improve the performance of the model for fake news detection. In this paper, the authors
would optimize the hyperparameters in the LSTM neural network architectural model using the
Hyperparameter tuning method to get better model accuracy performance achieved by [2]. Thus, the model
proposed could help researchers and machine learning developers in the development of neural network
models to prevent the spread of fake news on social media, such as Twitter.
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METHODS

A system block diagram of the entire system is created as the first step in the research design process. In
the research design process, flowchart is essential to give a genera overview of how the research suite
functions. Thisflowchart hel ps understand the stepsin the research methodology. Consequently, athorough
research block diagram aidsin developing a system that can work effectively. The stepstaken in conducting
the research method are shown in Figure 1.

Data Research

Input
Dataset

Data Visualization
v
Data Preprocessing

!
Word Embedding with
GloVe

Model Development
v
Modeling

Hyperparameter Tuning on
LSTM i\nodel

Model Evaluation

End

Figure 1. Flowchart of research methodol ogy

Data Research

Data research examines the model used in previous research to get a better model evaluation value. Data
research uses the Code feature on Kaggle in Jupyter Notebook and Python. The stages and detailed
explanations of the data research are presented in the following sections.

Datasets

The public dataset? used is obtained from the Kaggle website, which has been tested in [20] and [2]. The
dataset contains around 40,000 articles covering fake and real news. The fake and real news data are
separated into two sets of around 20,000 articles. The dataset contains four labels, namely title, text, subject,
and date. Glove Twitter® is also used with pre-trained word embedding data available on the Kaggle
website, which has been identified in [21]. The word embedding data has specifications of 2B tweets, 27B
tokens, 1.2M vocabs, and 100-dimensional tweet vector word embedding. This information is useful for
the input layer that embeds the model.

Data Visualization
Data visualization simplifies the understanding of comparative data by visually representing it using graphs
or maps. This enhances the ability to identify trends and insights in large datasets, leveraging the human
mind’s natural analytical capabilities. The dataset is divided into two categories: real news (class '1") and
fake news (class '0").

2 https://www.kaggle.com/datasets/cl mentbi saill on/f ake-and-real -news-dataset
3 Glove Twitter Source: https://nlp.stanford.edu/projects/glove/
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Figure 2. Dataset visualization

Figure 2 shows an article on the corresponding fake and real class labels. There are not many differences
between the two datasets, so they look balanced. In addition, class '0' (blue) represents the wrong news
category while 'l' (orange) represents the real news category. After observing the graph, the number of
datasets representing the original news category is 21,417 data, and the fake news category is 23,481,
making it 44,898 total data. The corresponding subject, title, and date of each story can be omitted, leaving
only the main text for further processing because the content in the subject section differs in the two
categories.
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Figure 3. Topics on fake and real news categories

Figure 3 describes the various subjects that make up the dataset. The quantity of pertinent topics reflects
how widely news is spread throughout the populace. The blue bar displays unreliable or false information,
while the orange bar displays trustworthy and accurate news. Real news includes, among its topics,
coverage of politics and world news. On the other hand, fake news discusses politics, the government, the
left news, the United States, and Middle Eastern news.

Figures 4 and 5 display the keywords found in the real and fake news datasets, respectively. A word cloud

is generated for each category, including up to 2000 words. Word clouds visualize groups of words by
representing and emphasizing them in various sizes and lengths.

316 | Scientific Journal of Informatics, Vol. 10, No. 3, Aug 2023



S--President

Figure 4. Word cloud representation for the real news dataset

Figure 4 shows the louder and bigger words observed are Us, Said, United, State, Donald, and Trump,
contributing to the real news dataset.

Hill

200 a00 = 1000 1400

Figure 5. Word cloud representation for the fake news dataset
In Figure 5, the bold and prominent words such as "one," "said," "Donald," "Trump," "Hillary," and
"Clinton" indicate their contribution to the fake news dataset. The size and boldness of a term in the word
cloud represent its frequency and significance within the document. The words are extracted from separate
categories, one for fake news and the other for real news, and individual word cloud is created based on
each category.

Data Preprocessing

At this stage, data are manipulated from the fake news dataset used before being executed by the LSTM
model network, which involves data cleansing and transformation techniques. The data cleaning stage aims
to process unwanted noise in text data, so it is easier for the dataset to input LSTM model data, such as
removing stop words. Stop words are common English words that have minimal impact on the overall
meaning of a sentence. They can be disregarded without altering the sentence’s significance. Examples of
stop words include "the," "he," and "have." [22]. Data transformation is the second stage of data
preprocessing. Tokenization is used in data transformation to make the processed data easier for the input
model to understand. The process of turning each word into a number is known as tokenization.
Tokenization divides a given corpus into units called tokens [23]. Moreover, tokenization parses texts to
eliminate specific words (tokenization) so textual data can be used for predictive modeling. Feature
extraction is the process of converting words into integers or floating-point numbers for use as input in
machine-learning techniques.

Word Embeddings: Glove

In this step, word vector representations are generated to capture meaningful relationships within the word
vector space. Thisis achieved through training on a statistical corpus that measures global word-by-word
co-occurrence [24]. This study uses GloVe Twitter, a pre-trained word embedding obtained on a dataset
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provider site for data scientists and machine learning developers, namely Kaggle4. Glove Twitter has a
Massive data scale and Relevance to natural language processing. Twitter is a very popular socia media
platform, with millions of users sending millions of tweets every day. The data available from Twitter is
huge, coversawide variety of topics, and reflects the diversity of languages and writing stylesthat exist on
the internet. This datais used for datainput at the embedding layer of the neural network architecture. The
model demonstrates how co-occurrence probability can be applied to the corpus to extract particular
underlying meanings [24]. Consider the words a and b from the corpus to clarify this idea. The ratio of

these two words’ co-occurrence probabilities with probe words, ¢, can be used to confirm the relationship
Pa|c

between them. For c related to a but not b, theratio—= > 1. Similarly, for c related to b but not a, theratio

Pb|c
iZ—:E < 1. If cis either related to both a and b or not related to both a and b, the ratio %:z iscloseto 1.
Therefore, it implies that determining the ratio of the probabilities of word co-occurrenceisthefirst stepin

learning word vectors. Eq.1 shows the model’s general form.

F (Wa, Wh, W) = 221C (1)

Pb|c

where w € R%are word vectors and w* € R9 are probe word vectors in the corpus.

Model Development

The research model is developed to create a fake news detection model with greater model accuracy than
what earlier studies proposed. After conducting research on the processed dataset, this stage is attained.
The process of creating a model, or modeling, and developing the model using Hyperparameter Tuning
optimization are both included in the model development stage.

Modeling

After transforming the data at the data preprocessing stage, the next step is building a neural network model.
The LSTM model has the advantage of solving sequential data  problems.
The challenge lies in dealing with sequences of different lengths, diverse vocabulary of input symbols, and
the need for models to grasp long-term context and relationships within the input sequence of symbols. The
Long Short-Term Memory (LSTM) model is employed for fake news detection.

Thefollowing isthe LSTM and Hyperparameter model layer architecture in [2] which wasused asaninitial
model for the hyperparameter tuning technique.

Table 1. LSTM layer architecturein previous research [2]

Layer (type) Output size Number of Paramet
Embedding_1 (embedding) 300 x 100 1.000.000
Lstm 1 (LSTM) 300 x 128 117,248
Lstm 2 (LSTM) 128 49,408
Dense 1 (Dense) 64 2080
Dense 2 1 33

Table 2. Hyperparametersin previous research [2]

Parameter Vaue
Embedding layer 1
LSTM layer 2
Dense layer 2
Loss Function Binary cross entropy
Activation function Relu
Optimizer Adam
Learning_rate 0.01
Number of epochs 10
Embedding size 100
Batch size 256

4 https://www.kaggle.com/datasets/bertcarremans/glovetwitter27b100dtxt
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Hyperparameter Tuning on the LSTM Model
In this research, we used the Hyperparameter Tuning method on the LSTM model for the fake news
detection model. This method contributes to improving the accuracy of the detection model in [2].

In the context of the LSTM (Long Short-Term Memory) model, hyperparameter tuning optimizes the
hyperparameter values used to construct the LSTM model. Hyperparameters are parameters that the model
does not directly learn, but they have an impact on the model’s functionality, rate of convergence, and
capacity. Finding the right mix of hyperparameters to produce the model with the best or optimal
performance is the goal of this hyperparameter tuning. Model performance can be evaluated using metrics
like accuracy, precision, recall, F1-score, and mean squared error (MSE), depending on the type of problem
being solved or other pertinent evaluation metrics. Model accuracy is the evaluation metric used in this
research.

To find the ideal combination that results in the best model performance, hyperparameter tuning involves

experimenting with different combinations of these hyperparameter values. Finding the ideal

hyperparameter combination can be done manually by repeatedly trying different values, or it can be done
using optimization techniques like grid search, random search, or other heuristic methods [25]. The

Hyperparameter Tuning process in this study is the LSTM model hyperparameter tuning. It can be done

manually, and the hyperparameter combinations are used in the LSTM model architecture, as in Table 1

and Table 2. In this research, the Hyperparameters in the LSTM model optimized in this study are as

follows:

1. The LSTM Layer includes the number of layers, the number of LSTM units, and dropouts. For
hyperparameter tuning experiments on the LSTM layer, 4 hyperparameter combination experiments are
conducted.

2. Layer Dense includes the number of layers, number of dense units, and dropouts. For hyperparameter
tuning experiments on the LSTM layer, 8 hyperparameter combination experiments are conducted.

3. Optimizer includes the learning rate. For hyperparameter tuning experiments on the LSTM layer, 3
hyperparameter combination experiments are conducted.

The hyperparameters in this LSTM model are selected based on the results of the best model accuracy of
each combination in the Hyperparameter Tuning experiment at each layer. Moreover, they are used as the
proposed LSTM model architecture for comparison with the models in [2], which used the same fake news
datasets and detection models.

The LSTM model architecture that has been optimized using the hyperparameter tuning technique is
expected to be able to build a fake news detection model with better model accuracy performance than the
detection model in [1].

Model Evaluation

Testing the system'’s capacity to recognize fake newsis the main goal of system evaluation. Measuring the
degree to which the LSTM model can identify and differentiate between real and fake news is a key
component of evaluating the accuracy of the LSTM model on the fake news detection model. The model
evaluation metric used in this research is model accuracy.

Table 3. Confusion matrix

FALSE POSITIVE (FP) FALSE NEGATIVE (FN)
TRUE POSITIVE TP FN
TRUE NEGATIVE FP TN

The effectiveness of the classification model is assessed using a confusion matrix. It provides a visual
summary of the model's predicted results by comparing the actual predictions with those predicted by the
model.

In the context of fake news detection, the confusion matrix can be used to measure how well the model can
distinguish between fake news and true news. For example, the confusion matrix can show how much fake
news is successfully detected correctly (TP), how much correct news is detected correctly (TN), how much
correct news is incorrectly detected as fake (FP), and how many false news is detected as true (FN).
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Accuracy in the confusion matrix is one of the evaluation metrics calculated based on its entries [26].
Accuracy measures the proportion of accurate predictions among all predictions made:

Accuracy = (TP + TN) /(TP + TN + FP + FN) 2

Based on entries in the confusion matrix, accuracy shows a general idea of how well the model can
distinguish between false and real news. It should be understood, though, that accuracy can provide
inaccurate information if the data is class unbalanced. The accuracy of the model under consideration in
thisresearch is expressed as accuracy metrics for the LSTM model’s performance in identifying fake news
from the dataset under consideration by the detection model .

RESULTSAND DISCUSSIONS

The LSTM model employed in the previous studies obtained the accuracy value of the detection model for
predicting fake news datasets at 99.88%. The hyperparameter tuning optimization method, on the other
hand, could enhance model accuracy by carrying out experiments to obtain the best LSTM model
hyperparameter selection.

The results of this study are expected to improve the fake news detection model in [2] and increase the
accuracy of the model in detecting fake and real news on social media by optimizing the hyperparameter
setting of the LSTM Model.

The initial plan for the proposed LSTM optimization model architecture shows the hyperparameters for
each layer in the LSTM neural network (Table 1). This model architecture was the experimental basis for
better LSTM model optimization by modifying the hyperparameters for each layer in the LSTM model.

Real and fake news are distinguished by the LSTM model. The modeling processes were conducted in 15
experiments to determine the best hyperparameter to be used as the architecture of the LSTM model.

The following sections describe the experiments conducted in optimizing the LSTM model architecture
Hyperparameters on the LSTM input layer, Dense layer, and Optimizer to get the Hyperparameter
optimization results for each layer in the Proposed LSTM model.

Results of the Hyperparameter Optimization for Each Layer in the Proposed LSTM M odel
The hyperparameters with the highest accuracy in each LSTM model layer as the LSTM model proposed
are asfollows:

1. Resultsof the Hyperparameter Tuning Experimentson the LSTM Layer
The LSTM layer, which serves to remember and process input sequences, is the fundamental layer in
the LSTM model architecture. The results of hyperparameter optimization experiments on the LSTM
layer are shown in the following table.

Table 4. Results of the hyperparameter tuning experiments on the LSTM layer

Test Hyperparameter Tuning Model
Number of Layers  Layer 1 Units  Layer 2units  Dropout  Accuracy

1 2 64 32 0.2 0.9932

2 2 128 64 0.2 0.9980

3 2 256 128 0.2 0.9962

4 2 128 64 05 0.9962

Table 4 shows four experiments conducted to obtain the LSTM layer hyperparameters with the best
model accuracy. The values for the hyperparameter in the LSTM layer were obtained through two
stages: determining the LSTM memory unit and the Dropout value. The experiment results show that
the second experiment obtained the best model accuracy among the other experiments, with a model
accuracy of 0.9980.

2. Resultsof the Hyperparameter Tuning Experimentson the Dense L ayer
The Dense layer in the LSTM model is used as an output layer to classify whether atext is fake news.
The results of hyperparameter optimization experiments on the dense layer are shown in the following
table.
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Table 5. Results of the hyperparameter tuning experiment on the dense layer

Test Hyperparameter Tuning Model Accuracy
Number of Layers  Number of Neurons1  Number of Neurons2  Dropout
1 1 16 - 0.2 0.9969
2 1 32 - 0.2 0.9922
3 1 64 - 0.2 0.9953
4 1 128 - 0.2 0.9979
5 2 32 16 0.2 0.9936
6 2 64 32 0.2 0.9918
7 2 128 64 02 0.9981
8 2 128 64 05 0.9970

Table 5 shows eight experiments with three different selections of hyperparameters for the dense layer,
including the number of layers, the number of neuron units, and the dropout value. the experiment results
show that the 7" experiment obtained the highest dense layer hyperparameter, with a mode! accuracy of
0.9981.

3. Resultsof the Hyperparameter Tuning Experiment on the Optimizer
In this process, amodel was arranged to be ready for training. The number of weighted inputs and biases
in neura networks was determined using the activation function [27]. The results of the hyperparameter
optimization experiment on the optimizer output layer are shown in the following table.

Table 6. Results of the hyperparameter tuning experiment on the optimizer
Hyperparameter Tuning

Test Learning Rate Mode Accuracy
1 0.001 0.9798
2 0.01 0.9965
3 0.1 0.5234

Table 6 shows that the hyperparameters on the Optimizer are the existing parameters for the model
training process, meaning that the Optimizer is configured before the modeling process. In the
hyperparameter optimization on the optimizer, the function of optimizer and activation of loss are the
same, namely Optimizer Adam and loss Binary Cross Entropy. At the same time, the Learning Rateis
only configured to be three tries. As aresult, the second experiment with a 0.01 learning rate obtained
amodel accuracy of 0.9965.

The Proposed M odel

The LSTM neural network model is proposed in this study. Tables 4, 5, and 6 show that the architecture of
this model has been optimized using a hyperparameter selection technique or hyperparameter tuning for
each layer inthe LSTM model. This proposed model was trained and tested to show the performance of the
model optimized using this technique.

Table 7. The proposed model of LSTM model architecture

Layer (type) Outputsize  Number of Paramet
Embedding_25 (embedding) 300 x 100 1.000.000

Lstm 50 (LSTM) 300 x 128 117,248

Lstm 51 (LSTM) 64 49,408

Dense 57 (Dense) 128 8320

Dense 58 (Dense) 64 8256
Dropout_11 (Dropout) 64 0

Dense_59 (Dense) 1 65

The proposed model of LSTM network architecture is shown in Table 7. The proposed model includes
details on the model architecture’s layer type, output size, and parameter count. The output sizein LSTM
depends on how many units or output dimensions the LSTM layer generates. At every step, the LSTM
layer’sindividual units generate output. The output size of the LSTM layer depends on how many unitsare
present there. The weights and biases in the LSTM layer are included in the number of parametersin the
LSTM model architecture. The input size, output size, and configuration of each LSTM layer affect the
number of parametersin that layer.
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Table 8. Hyperparametersin the proposed model

Parameter Value
Embedding layer 1
LSTM layer 2
Dense layer 3
Dropuout 0.2
Loss Function Binary cross entropy
Activation function RelLu
Optimizer Adam
Learning_rate 0.01
Number of epochs 10
Embedding size 100
Batch size 256

Table 8 shows the hyperparameters in the model proposed in this study. Compared with the
hyperparameters in [1] as in Table 2, the difference is only in the number of dense layers, with 3 layers,
and dropouts. The LSTM model performe better dueto the larger number of memory units giving the model
more ability to capture complex patterns in the input data. However, using too many memory units may
result in overfitting or raise model complexity. Thereisan additional hyperparameter (retaining probability)
introduced by the dropout function [28]. Dropout hyperparameters were employed to counteract this
overfitting and stop it from occurring inthe model. Inasingle LSTM layer, dropout during training disabled
several units at random. Thus, the risk of overfitting was reduced, and the units did not overly reliant on
one another. Dropouts improved model generalizability and lowered reliance on particular features in the
training data.

The Performance of the Proposed M odel

Prior to the modeling process, the dataset in this study was divided into train and test subsets with aratio
of 75:25. The proposed model was trained using a train subset and evaluated using a test subset. Model
performance can be measured using model eval uation metrics of accuracy. The accuracy evaluation results
for the proposed model are shown in Figure 6. Meanwhile, the Confusion Matrix Model isshown in Figure
7.

Figure 6. Accuracy of the proposed LSTM model

Figure 6 shows two indicators in the graph, namely Training accuracy (green line) and Testing accuracy
(red line). Model performance on training and test datasets was evaluated using two metrics, training and
test accuracy.

The term “training accuracy” describes how well the model can predict the training dataset. Calculated is
the ratio of the number of accurate predictions to the total sample size of the training dataset. The model’s
training accuracy describes how well it recognizes patternsin the training data and how well it can feature
the data. Cal culated accuracy measures the model’s capacity for accurate prediction on atest dataset unused
for training. The test dataset’s sample size is divided by the percentage of correct predictions, which is
calculated.
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The accuracy test shows how well the model is able to generalize to new data that has never been seen
before. The test accuracy is used to objectively measure model performance on independent data. If the test
accuracy is not much different from the training accuracy, the model can generalize well and not overfit
the training data.

In the model accuracy graph above, the training accuracy value in 10 epochsis 99.9703049659729%, while
the test accuracy value is 99.7861921787262%. The accuracy value of this model shows that the test and
training accuracy values are not significantly different, allowing for proper generalization and preventing
overfitting of the training data. Thisis also influenced by the dropout layer used in the model architecture
so the model accuracy is not too high or overfitting.

Figure 7. Confusion matrix on the proposed model

Figure 7 shows the confusion matrix table in the proposed model taken from the training data subset. The
Confusion Matrix shows that the data tested/evaluated was 11225 data because the dataset division for the
test data subset in this study was 25% of the total dataset. In this test data, it appears that the model can
recognize fake news data and real news well. From 11225 test data, the model can recognize 5849 fake
news data and 5352 real news data. The real news detected as fake news are 15 data, while the fake news
detected asthereal newsare 9 data. Accuracy isdetermined by cal culating the percentage of correct positive
and negative predictions compared to the total data[29]. Theresult isan accuracy rate of 99.78619 percent.
Accuracy = (TP+TN) / (TP+ TN + FP + FN) x 100%

Accuracy = (5352 + 5849) / (5352 + 5849 + 9 + 15) x 100%

Accuracy = 99.78619% of test accuracy.

Comparison of the Model Evaluation Results

After completing the model evaluation and obtaining information about the accuracy metrics of the
proposed model, the next step isto compare the performance of the fake news detection model between the
model proposed in this study and in [2]. This study compares the effectiveness of fake news detection
models using model training accuracy metrics describing how well the model |earns patternsin the training
data and measures the extent to which the model can predict accurately on the training dataset, rather than
giving ageneral overview of how well the model is able to generalize to new data that has never been seen
before. This is done because this study uses the same dataset asin [2], To improve the performance of the
fake news detection model compared with [2] , certain factors must be taken into account when devel oping
the proposed model[2]. Table 9 and Figure 8 show the conclusions of this comparison.

Table 9. Comparison of detection model accuracy

Author Method Model Y ear
Accuracy

Lindawati, Muhammad Fadli The LSTM neura network

Ramadhan, Sopian Soim, model with Hyperparameter  99.97% 2023

Nabila Rizgia Novianda Tuning

Tavishee  Chauhan, ME, The LSTM neura network

0,
Hemant Palivela, PhD model 99.88% 2021
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The LSTM neural network model [1] - 99.88%
The LSTM neural network model with 199.97%
Hyperparameter Tuning

99.80% 99.85% 99.90% 99.95% 100.00%
Model Accuracy

Figure 8. Comparative analysis of the proposed model with previous models

Table 9 shows a comparison of model accuracy performance of the Hyperparameter tuning method in this
study with the modelsin[2]. To improve the performance of the fake news detection model, this study uses
the hyperparameter tuning technique to determine the most effective hyperparameters, whereas [2] did not
use optimization techniques in its model. This comparison allows us to assess how well each detection
model performed when it came to identifying fake news in the dataset. A comparison of the proposed
model’saccuracy performance with modelsfrom earlier studiesis shown in Figure 8. The comparison chart
help better understand the di screpanci es between the proposed model’s accuracy and that of earlier research
methods. In particular, the neural network-based model uses the hyperparameter tuning method for each
layer of the LSTM model to determine how accurate the model isin differentiating between fake and rea
news data based on the training dataset. In addition, the comparison helps better understand how to increase
the accuracy performance of the model.

It can be concluded that the hyperparameter tuning technique on the LSTM model to detect fake news
training datasets was more accurate than the previous research models with an accuracy value of 99.97%
and outperformed [2] with an accuracy of 99.88%. These results indicate that the LSTM model optimized
using the Hyperparameter tuning technigque on the model isable to improve the performance of the detection
model. It was more accurate in detecting fake news datasets compared to the performance of models in
previous studies even though the difference is only dightly, namely 0.09%, considering that the accuracy
of the model in the prevuous study was very high and close to 100% accuracy. However, the results of this
study contribute to enhancing the fake news detection model’s performance, which is more accurate than
earlier models. It is expected that these findings are able to assist other authors in enhancing the LSTM
model’s performance for identifying fake news with the methodology used in this study and be applied as
fake news detection systems to assist people in deding with the spread of fake news.

CONCLUSION

This study uses the Hyperparameter Tuning method to optimize the LSTM (Long Short-Term Memory)
model to detect fake news more accurately than previous model. Despite using the same deep learning
algorithm as earlier model, choosing an accurate hyperparameter can have an impact on how well the fake
news detection model performs. The number of layers, memory units, and cells in each layer, the learning
rate value on the pre-trained parameters, the pre-trained word embedding that serves as the input layer
embedding, i.e., Glove, the number of epochsin the model training process, the type of activation function
utilized, and the Dropout function to overcome overfitting arejust afew of the variablesthat have an impact
on the accuracy of this model. The results of this research can be a reference and consideration for
researchers when optimizing the performance of the LSTM model in NLP (Natural Language Processing)
cases using the Hyperparameter Tuning method. In the future, it is expected that there will be other neural
network methods that can be used to improve the model’s accuracy in detecting fake news and a project to
implement a fake news detection model to assist the public in dealing with the spread of fake news.
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# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file 1/0 (e.g. pd.read_csv)

# Input data files are available in the “../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))

# Any results you write to the current directory are saved as output.

/kaggle/input/fake-and-real-news-dataset/True.csv
/kaggle/input/fake-and-real-news-dataset/Fake.csv
/kaggle/input/glovetwitter27bleedtxt/glove. twitter,278.1088d. txt
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TENTANG PENELITIAN INI

Tugas akhir ini akan melakukan penelitian mengenai peningkatan performa model neural network menggunakan optimasi hyperparameter
model Long Short Term Memory (LSTM) untuk deteksi berita palsu. Tujuan dari penelitian ini yaitu mendapatkan peningkatan akurasi model
neural network apabila optimasi hyperparameter Long Short Term Memory diterapkan pada teknik pemilihan parameter model yang optimal
sehingga untuk deteksi berita palsu menjadi lebih akurat dan lebih baik dari penelitian termutakhir sebelumnya dalam deteksi berita palsu
menggunakan model jaringan LSTM dan teknik penyematan kata GloVe untuk memperbaiki model neural network dan meningkatkan akurasi
model sebesar 99.88%[1]. Metode yang diusulkan adalah metode optimasi hyperparameter model jaringan saraf LSTM pada masing-masing
lapisan jaringan saraf LSTM melalui berbagai percobaan untuk memodifikasi hyperparameter lapisan jaringan saraf model LSTM agar optimal
dan meningkatkan performa model. Metrik evaluasi model menggunakan metrik akurasi model dan hasil percobaan ini akan mendapatkan
model pembelajaran mesin baru berbasis neural network dan LSTM dengan akurasi mode| yang lebih tinggi dari model penelitian termutakhir
sebelumnya.
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ABOUT THIS RESEARCH

This final project will conduct research on improving the performance of neural network models using hyperparameter optimization of the Long
Short Term Memory (LSTM) model for fake news detection. The purpose of this study is to obtain an increase in the accuracy of the neural
network model when optimization of the Long Short Term Memory hyperparameter is applied to the optimal model parameter selection
technique so that the detection of fake news becomes more accurate and better than previous recent research in detecting fake news using the
LSTM network model and the GloVe word embedding technique to improve the neural network model and increase the model accuracy by
99.88% [1]. The proposed method is a method of optimizing the hyperparameters of the LSTM neural network model in each layer of the LSTM
neural network through various experiments to modify the hyperparameters of the LSTM neural network layer so that it is optimal and improves
model performance. Model evaluation metrics use model accuracy metrics and the results of this experiment will get a new machine learning
model based on neural networks and LSTM with higher model accuracy than the previous latest research models.

Keywords: neural network, long short-term memory, hyperparameter optimization, fake news detection

[1] T. Chauhan and H. Palivela, "Optimization and improvement of fake news detection using deep learning approaches for societal benefit,” int.
J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100051, 2021, doi: 10.1016/].jjimei.2021.100051.

HYPERPARAMETER TUNING OF LSTM MODEL

Hyperparameter model LSTM yang akan dioptimasi:
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1. Hyperparameter Layer LSTM

« Jumlah Unit Memori pada Layer LSTM
= Nilai Regularisasi Dropout pada Layer LSTM

2. Hyperparameter Layer Dense

» Jumlah Layer Dense
= Jumlah Unit Neuron pada Layer Dense
« Nilai Regularisasi Dropout pada Layer Dense

3. Hyperparameter Optimizer

= Nilai Learning Rate pada Optimizer Adam

HYPERPARAMETER TUNING OF LSTM MODEL
LSTM model hyperparameters to be optimized:
1. LSTM Layer Hyperparameters

= Number of Memory Units in the LSTM Layer
» Dropout Regularization Value on the LSTM Layer

2. Layer Dense Hyperparameters

« Number of Dense Layers
» Number of Neuron Units in the Dense Layer
» Dropout Regularization Value on Layer Dense

3. Hyperparameter Optimizer

= Learning Rate value on Optimizer Adam

IMPORT LIBRARIES

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import nltk

from sklearn.preprocessing import LabelBinarizer

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

from wordcloud import WordCloud,STOPWORDS

from nltk.stem import WordNetLemmatizer

from nltk.tokenize import word_tokenize,sent_tokenize
from bs4 import BeautifulSoup

import re,string,unicodedata

from keras.preprocessing import text, sequence

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
from sklearn.model_selection import train_test_split
from string import punctuation

from nltk import pos_tag

from nltk.corpus import wordnet

import keras

from keras.models import Sequential

from keras.layers import Dense,Embedding,LSTM,Dropout
from keras.callbacks import ReducelLROnPlateau

import tensorflow as tf

IMPORT DATASET

true = pd.read_csv("../input/fake-and-real-news-dataset/True.csv")
false = pd.read_csv("../input/fake-and-real-news-dataset/Fake.csv")

DATA VISUALIZATION AND PREPROCESSING
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df = pd.concat([true,false]) #Merging the 2 datasets
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df.title.count()

44898
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Name: subject, dtype: int64

COMBINING ALL TEXT DATA INTO 1 COLUMN namely ‘text’

plt.figure(figsize = (12,8))

sns.set(style

= "whitegrid",font_scale = 1.2)

text

WASHINGTON (Reuters) - The head of a
conservat...

WASHINGTON (Reuters) - Transgender people
will....
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21st Century Wire says As 21WIRE reported earl...
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chart = sns.countplot(x = “"subject", hue = "category" , data = df)
chart,set_xticklabels(chart.get_xticklabels(),rotation=9@)
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stop = set(stopwords.words('english'))
punctuation = list(string.punctuation)
stop.update(punctuation)

DATA CLEANING

def strip_html{text):
soup = BeautifulSoup(text, "html.parser®)
return soup.get_text()

#Removing the square brackets
def remove_between_square_brackets(text):
return re.sub(‘\[[*]]*\]', ', text)
# Removing URL's
def remove_between_square_brackets(text):
return re.sub{(r'http\s+', '’, text)
#Removing the stopwords from text
def remove_stopwords(text):
final_text = []
for 1 in text.split():
if i.strip().lower() not in stop:
final_text.append(i.strip())
return " ".join(final_text)
#Removing the noisy text
def denoise_text(text):
text = strip_html(text)
text = remove_between_square_brackets(text)
text = remove_stopwords(text)
return text
#Apply function on review column
df['text']=df['text'].apply(denoise_text)

/opt/conda/lib/python3.7/site-packages/bs4/__init__.py:439: MarkupResemblesLocatorWarning: The input looks more like a filename tha
MarkupResemblesLocatorWarning

WORDCLOUD FOR REAL TEXT (LABEL - 1)

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2t#scroliTo=I_JPKIATgMU5&printMode=true 5/23
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plt.figure(figsize = (20,28)) # Text that is not Fake
wc = WordCloud(max_words = 2608 , width = 16ee , height = 8808 , stopwords = STOPWORDS).generate("

plt.imshow(wc , interpolation = 'bilinear')

".join(df[df.category == 1].text))

¢matplotlib.image.AxesImage at 8x7f35279%baedo>

‘, ‘Trl\'

WORDCLOUD FOR FAKE TEXT (LABEL - 0)

plt.figure(figsize = (20,28)) # Text that is Fake
wc = WordCloud(max_words = 2000 , width = 168@ , height = 8@@ , stopwords

plt.imshow(wc , interpolation = ‘bilinear')

= STOPWORDS).generate(" ".join(df[df.category == @].text))

<matplotlib.image.AxesImage at @x7f353b485bde>

_ 2w . 1nton
IMALE V1D mattierrg COME o Re)ubl 1can

Number of characters in text
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fig, (ax1,ax2)=plt.subplots(1,2,figsize=(12,8))
text_len=df[df[ 'category']==1]["text'].str.len()
axl.hist(text_len,color="red")
axl.set_title('Original text')
text_len=df[df['category']==0][ "text'].str.len()
ax2.hist({text_len,color="green')
ax2.set_title('Fake text')
fig.suptitle('Characters in texts')

plt.show()
Characters in texts
Original text
12000 20000
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B000
6000 10000
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] bo— ]
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Number of words in each text

fig, (ax1,ax2)=plt.subplots(1,2,figsize=(12,8))
text_len=df[df['category']==1]["text'].str.split().map(lambda x: len(x))
ax1.hist(text_len,color="red"')

axl.set_title('Original text')

text_len=df[df['category']==0][ "text'].str.split().map(lambda x: len(x))
ax2.hist(text_len,color='green')

ax2.set_title('Fake text')

fig.suptitle('Words in texts')

plt.show()
Words in texts
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40060
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Average length of words in a text

fig, (ax1,ax2)=plt.subplots(1,2,figsize=(20,10))
word=df[df['category']J==1]["text'].str.split().apply(lambda x : [len(i) for i in x])
sns.distplot(word.map(lambda x: np.mean(x)),ax=axl,color="red")
axl.set_title('Original text')

word=df[df[ 'category’]==0]["text'].str.split().apply(lamhda x : [len(i) for i in x])
sns.distplot(word.map(lambda x: np.mean(x)),ax=ax2,color="green")
ax2.set_title('Fake text')

fig.suptitle('Average word length in each text')

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: "distplot’ is a deprecated function and will b
warnings.warn(msg, FutureWarning)
/opt/conda/1ib/python3.7/site-packages/numpy/core/fromnumeric.py:3441: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)
Jopt/conda/1ib/python3.7/site-packages/numpy/core/_methods.py:189: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureMWarning: "distplot” is a deprecated function and will b
warnings.warn(msg, FutureWarning)
Text(@.5, ©.98, 'Average word length in each text')
Average word length in each text

onginal text Fake text
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text

def get_corpus(text):

words = []

for 1 in text:

for j in i.split():
words.append(j.strip())

return words
corpus = get_corpus{df.text)
corpus[:5]

[ 'WASHINGTON®, ‘(Reuters)‘, ‘head', 'conservative', 'Republican‘]

from collections import Counter
counter = Counter(corpus)
most_common = counter.most_common(1@)
most_common = dict(most_common)
most_common

{'Trump': 111583,
‘said': 93162,
‘'would': 54613,
‘U.5.": 58441,
‘President’: 33188,
'people’: 33115,
‘also': 38325,

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4uq2t#scrollTo=I_JPKIATgMUS&printMode=true ' 8/23
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‘one': 2937@,
‘Donald': 27795,
'said.': 26194}

from sklearn.feature_extraction.text import CountVectorizer
def get_top_text_ngrams(corpus, n, g):
vec = CountVectorizer(ngram_range=(g, g)).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[@, idx]) for word, idx in vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]

Unigram Analysis

plt.figure(figsize = (16,9))

most_common_uni = get_top_text_ngrams(df.text,10,1)

most_common_uni = dict(most_common_uni)
sns,barplot(x=1ist(most_common_uni.values()),y=1ist(most_common_uni.keys()))

<AxesSubplot:>

tump
said
president
would

people

state

obama

Bigram Analysis

plt.figure(figsize = (16,9))

most_common_bi = get_top_text_ngrams(df.text,1e,2)

most_common_bi = dict{most_common_bi)
sns.barplot(x=1ist(most_common_bi.values()),y=1ist(most_common_bi.keys()))

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDvduq2t#scrollTo=|_JPKIATgMU5&printMode=true
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¢AxesSubplot:»

donald trump

united states

Trigram Analysis

plt.figure(figsize = (16,9))

most_common_tri = get_top_text_ngrams(df.text,10,3)

most_common_tri = dict(most_common_tri)
sns.barplot(x=1ist(most_common_tri.values()),y=1ist(most_common_tri.keys()))

<AxesSubplot:>

president donald trump

pic twitter com

featured image via

president barack obama

new york times

21st century wire

donald trump realdonaldtrump
reuters president donald
washington reuters president

black lives matter

Dividing data into 2 parts - data train and test
x_train,x_test,y_train,y_test = train_test_split(df.text,df.category,random_state = @)

max_features = 1602e
maxlen = 388

Tokenization Text -> Represent each word with a number

The original word-to-number mapping is preserved in the word_index property of the tokenizer
Tokenized implements basic processing such as converting it to lowercase, explicitly setting it as False
Keep all stories to 300, add padding to stories less than 300 words, and trim long ones

tokenizer = text.Tokenizer(num_words=max_features)
tokenizer.fit_on_texts(x_train)

tokenized_train = tokenizer.texts_to_sequences(x_train)

x_train = seq e,pad_seq es(tokenized_train, maxlen=maxlen)

tokenized_test = tokenizer.texts_to_sequences(x_test)
X_test = sequence.pad_sequences(tokenized_test, maxlen=maxlen)

EMBEDDING_FILE = '/kaggle/input/glovetwitter27ble@dtxt/glove.twitter.278.100d.txt’

def get_coefs(word, *arr):
return word, np.asarray(arr, dtype='float32')
embeddings_index = dict(get_coefs(*o.rstrip().rsplit(’ ")) for o in open(EMBEDDING_FILE))

(1

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2t#scrollTo=l_JPKiATgMUS&printMode=true
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all_embs = np.stack(embeddings_index.values())
emb_mean,emb_std = all_embs.mean(), all_embs.std()
embed_size = all_embs.shape[1]

word_index = tokenizer.word_index
nb_words = min{max_features, len(word_index))
#change below line if computing normal stats is too slow
embedding_matrix = embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))
for word, i in word_index.items(}:
if i »= max_features: continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None: embedding_matrix[i] = embedding_vector

/opt/conda/1lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472: FutureWarning: arrays to stack must be passed as a "s

if (await self.run_code(code, result, async_=asy)):

learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience = 2, verbose=1,factor=2.5, min_lr=8.080001)

~ TRAINING MODEL

Experiment 1 LSTM Layer

# Hyperparameter LSTM Layer 1

batch_size = 1824
epochs = §

embed_size = 180 # Output_dim
max_features = 16880 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model . add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=64 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))

model.add(LSTM(units=32 , recurrent_dropout = @.2 , dropout = @.2))

model . add(Dense(units = 32 , activation = 'relu’))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(lr = ©.81), loss="binary_crossentropy', metrics=['accuracy'])

model . summary()

history = model,fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni
Model: "sequential_1e@"
Layer (type) Output Shape Param #
embedding_18 (Embedding) (None, 380, 18@) 1860000
1stm_2@ (LSTM) (None, 382, 64) 42248
Istm_21 (LSTM) (None, 32) 12416
dense_2@ (Dense) (None, 32) 1056
dense_21 (Dense) (None, 1) 33
Total params: 1,855,745
Trainable params: 55,745
Non-trainable params: 1,808,eee
Epoch 1/5
33/33 [ ] - 1@5s 3s/step - loss: 8.3166 - accuracy: @.8646 - val_loss: @.1294 - val_accuracy: 8.9561
Epoch 2/S
33/33 [ ] - 995 3s/step - loss: ©.8959 - accuracy: ©.9673 - val_loss: 0.8682 - val_accuracy: 8.9787
Epoch 3/5
33/33 [ ] - 1@3s 3s/step - loss: ©.8784 - accuracy: ©.9720 - val_loss: 8.1821 - val_accuracy: 8.9782
Epoch 4/5
33/33 [=m==s=====coc=coccossooonanaas ] - 1@4s 3s/step - loss: 8.8614 - accuracy: ©.9804 - val_loss: 8.8275 - val_accuracy: 8.9918
Epoch 5/5
33/33 [ ] - 99s 3s/step - loss: ©8.8215 - accuracy: 0.9932 - val_loss: 8.9182 - val_accuracy: ©.9948

# Hyperparameter LSTM Layer 2

batch_size = 1824
epochs = §

https://colab.research.google.com/drive/1 Au3rRcbeM23Q7XTWC_KSh20dXDvaug2t#scrollTo=|_JPKIATgMUS&printMode=true
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embed_size = 180 # Output_dim
max_features = 16820 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model . add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = .2 , dropout = 8.2))

model.add(LSTM(units=64 , recurrent_dropout = 8.2 , dropout = @.2))

model.add(Dense(units = 32 , activation = 'relu'))

model . add(Dense(1, activation="sigmoid'))

model, compile(optimizer=tf.keras.optimizers.Adam(lr = 8.81), loss="binary_crossentropy', metrics=["accuracy'])

model . summary ()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential_11"

Layer (type) Output Shape Param #
embedding_11 (Embedding) (None, 3@@, 1ee) 1600080
1stm_22 (LSTM) (None, 3ee, 128) 117248
1stm_23 (LSTM) (None, 64) 49408
dense_22 (Dense) (None, 32) 208@
dense_23 (Dense) (None, 1) 33

Total params: 1,168,769
Trainable params: 168,769
Non-trainable params: 1,000,008

Epoch 1/S
33/33 [ ] - 1e5s 3s/step - loss: @.3097 - accuracy: ©.8601 - val_loss: @.8954 - val_accuracy: 8.9668
Epoch 2/5
33/33 [=s=s====== == ] - 1ees 3s/step - loss: B.P656 - accuracy: ©.9779 - val_loss: €.8334 - val_accuracy: @.99e8
Epoch 3/5
33/33 [=====s=s===s=== ] - 1ees 3s/step - loss: ©8.8182 - accuracy: ©.9943 - val_loss: @.0129 - val_accuracy: 8.9967
Epoch 4/5
33/33 [ ] - 1@es 3s/step - loss: 0.8141 - accuracy: ©.9956 - val_loss: ©.8889 - val_accuracy: 8.9972
Epoch §/5
33/33 [ ] - 1e@s 3s/step - loss: @.8@63 - accuracy: ©.998@ - val_loss: ©.8@63 - val_accuracy: 8.9985

# Hyperparameter LSTM Layer 3

batch_size = 1824

epochs = §

embed_size = 1080 # Output_dim
max_features = 18000 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model.add(Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add (LSTM(units=256 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))

model.add(LSTM(units=128 , recurrent_dropout = 0.2 , dropout = @.2))

model.add(Dense(units = 32 , activation = 'relu’))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(1r = 9.81), loss='binary_crossentropy', metrics=[‘accuracy'])

model . summary()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential_12"

Layer (type) Output Shape Param #
embedding_12 (Embedding) (None, 308, 108) lede0ee
lstm_24 (LSTM) (None, 3@e@, 256) 365568
1stm_25 (LSTM) (None, 128) 197128
dense_24 (Dense) (None, 32) 4128
dense_25 (Dense) (None, 1) 33

Total params: 1,566,849

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2t#scrollTo=|_JPKIATgMUS&printMode=true ' 12/23
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Trainable params:

566,849

Non-trainable params: 1,000,808

optimasi-hyperparameter-model-Istm.ipynb - Colaboratory

Epoch 1/5

33/33 [==
Epoch 2/5

33/33 [
Epoch 3/S

33/33 [======

Epoch 4/5
33/33 [

Epoch 5/5

33/33 [

# Hyperparameter LSTM Layer 4
batch_size = 1824

epoch

s =95

embed_size = 100 # Output_dim
max_features = 18080 # Input_dim

#iDefining Neural Network

model

= Sequential()

#Non-trainable embeddidng layer

model.

HLSTM

model.
model.
model.
madel.
model.

model.

summary()

add(LSTM(units=128 , return_sequences
add(LSTM{units=64 , recurrent_dropout = 8.5 , dropout = @.5))
add(Dense(units = 32 , activation = 'relu’))
add(Dense(1, activation='sigmoid'))
compile(optimizer=tf.keras.optimizers.Adam(lr = @.81), loss="binary_crossentropy’, metrics=[ ‘accuracy’])

1@6s 3s/step
1@1s 3s/step
1@1s 3s/step
101s 3s/step

1eis 3s/step

loss:

loss:

loss:

loss:

loss:

08.3593

©.0e838

8.08365

8.e198

B.e120

True , recurrent_dropout =

= accuracy:

- accuracy:

- accuracy:

- accuracy:

= accuracy:

@.84@7 -

e.97e3 -

9.9874 -

0.9935 -

8.9962 -

8.5 , dropout = 8.5))

val_loss:
val_loss:
val_loss:
val_loss:

val_loss:

8.1112

8.e472

8.0246

8.0128

0.0093

val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

add(Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))

08.9596

8.9838

2.9988

8.9960

e.9971

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential_13"

Layer (type) Output Shape Param #
embedding_13 (Embedding) (None, 368, 1e@) 1000009
Istm_26 (LSTM) (None, 360, 128) 117248
1stm_27 (LSTM) (None, 64) 49408
dense_26 (Dense) (Nane, 32) 2088

dense_27 (Dense) (None, 1) 33

Total params: 1,168,769

Trainable params: 168,769

Non-trainable params: 1,809,008

Epoch 1/5

33/33 [== nenes - 1@6s 3s/step - loss: 8.4673
Epoch 2/5

33/33 [=======c======c===== - 1@1s 3s/step - loss: ©.1114
Epoch 3/5

33/33 [ - 180@s 3s/step - loss: 8.8459
Epoch 4/5

33/33 [ - 1e@s 3s/step - loss: 0.8221
Epoch 5/5

33/33 | - 101s 3s/step - loss: 8.0311

Experiment 2 Dense Layer

# Hyperparameter Dense Layer 1

embed_size = 180 # Output_dim
max_features = 10008 # Input_dim

#0efining Neural Network

model

= Sequential()

#Non-trainable embeddidng layer
.add(Embedding(max_features, output_dim=embed_size, weights=[embedding matrix], input_length=maxlen, trainable=False))

model
#LSTM

model.

model

model.
model.
model.
model.

https://colab.research.google.com/drive/1 Au3rRcbeM23Q7XTWC_KSh20dXDv4uq2t#scrollTo=|_JPKIATgMUS&printMode=true

.add(LSTM(units=64 , recurrent_dropout = @.2 , dropout = 8.2))

add(Dense({units = 16 , activation = 'relu'))
add(Dropout(8.2))

add(Dense(1, activation='sigmoid'))
compile(optimizer=tf.keras.optimizers.Adam(lr = @.81), loss='binary_crossentropy', metrics=['accuracy'])

- accuracy

= accuracy:

= accuracy:

- accuracy:

= accuracy:

1 9,7924 -

08,9583 -

8.9850 -

8.9931 -

08.9902 -

add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))

val_loss:
val loss:
val_loss:
val_loss:

val_loss:

8.1531

8.8636

8.8210

0.e118

0.0331

val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

9.9433
8.98@2
8.9935
8.9957

0.9871
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model. summary()

optimasi-hyperparameter-model-Istm.ipynb - Colaboratory

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: “"sequential 14"

Layer (type) Output Shape Param #
embedding_14 (Embedding) (None, 300, 100) lepee0e
Istm_28 (LSTM) (None, 368, 128) 117248
1stm_29 (LSTM) (Nane, 64) 49408
dense_28 (Dense) (None, 16) 1840
dropout (Dropout) (None, 16) e
dense_29 (Dense) (None, 1) 17

Total params: 1,167,713
Trainable params: 167,713

Non-trainable params: 1,008,000

Epach
33/33
Epoch
33/33
Epoch
33/33
Epoch
33/33
Epoch
33/33

# Hyperparameter Dense Layer 2

batch_size
epochs = 5
embed_size

1/5
[

2/5

[

= 1024

= 180 # Output_dim
max_features = 10080 # Input_dim

#Defining Neural Network
model = Sequential()

#iNon-trainable embeddidng layer

- 184s 3s/step - loss: ©.3012 - accuracy: ©.8634 - val_loss: ©.8969 - val_accuracy: 9.9686
- 1e@s 3s/step - loss: B.8671 - accuracy: 8.9792 - val_loss: @.8429 - val_accuracy: 0.9864
- 89s 3s/step - loss: ©.@378 - accuracy: ©.9888 - val_loss: 8.8174 - val_accuracy: 0.9952
- 98s 3s/step - loss: 0.8153 - accuracy: ©.9958 - val_loss: ©.8129 - val_accuracy: 6.9963

- 98s 3s/step - loss: @.0137 - accuracy: ©.9969 - val_loss: 8.8078 - val_accuracy: 08.9976

model . add ( Embedding(max_features, output_dim=embed_size, weights=[embedding matrix], input_length=maxlen, trainable=False))

#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = @.2))
model . add(LSTM{units=64 , recurrent_dropout = @.2 , dropout = 8.2))

model,add(Dense(units = 32 , activation = 'relu’))

model . add(Dropout(8.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer=tf.keras.optimizers.Adam(lr = @.01), loss='binary_crossentropy', metrics=[‘accuracy'])

model. summary()

history = model.fit(x_train,

Model: "sequential 15"

_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Layer (type) Output Shape Param #
embedding_15 (Embedding) (None, 38@, 10@) 1000008
lstm_3@8 (LSTM) {None, 3@8@, 128) 117248
1stm_31 (LSTM) (None, 64) 49488
dense_3@ (Dense) (None, 32) 2080
dropout_1 (Dropout) (None, 32) ]
dense_31 (Dense) (None, 1) 33

Total params: 1,168,769
Trainable params: 168,769

Non-trainable params: 1,000,800

Epoch
33/33
Epoch
33/33
Epoch
33/33
Epoch

1/5

4/5

33/33 [==================== ==mzzz===s]

- 184s 3s/step - loss: B.2711 - accuracy: ©.B832 - val_loss: ©.8749 - val_accuracy: 8.9737
- 98s 3s/step - loss: ©.8591 - accuracy: ©,9797 - val_loss: @.8757 - val_accuracy: @.9684
- 995 3s/step - loss: ©.8418 - accuracy: 8.9873 - val_loss: 8.8539 - val_accuracy: 8.9837

- 985 3s/step - loss: B.8366 - accuracy: 8.9883 - val_loss: ©.8183 - val_accuracy: ©.9945
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Epoch 5/5
33/33 [ 1 - 97s 3s/step - loss: 0.8237 - accuracy: ©8.9922 - val_loss: ©.9164 - val_accuracy: 0.9954

# Hyperparameter Dense Layer 3
batch_size = 1824

epochs = §

embed_size = 100 # Output_dim
max_features = 10000 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model.add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = @.2 , dropout = 8.2))
model.add(LSTM(units=64 , recurrent_dropout = ©.2 , dropout = 8.2))

model.add(Dense(units = 64 , activation = 'relu’))

model . add (Dropout(@.2))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(lr = ©.81), loss="binary_crossentropy', metrics=["'accuracy'])

model. summary()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential 16"

Layer (type) Output Shape Param #
embed:sing_m (Embedding) (None, 306, 160) 1aaeae;-“
1stm_32 (LSTM) (None, 3ee, 128) 117248
1stm_33 (LSTM) (None, 64) 49408
dense_32 (Dense) (None, 64) 4160
dropout_2 (Dropout) (None, 64) e

dense_33 (Dense) (None, 1) 65

Total params: 1,170,881
Trainable params: 178,881
Non-trainable params: 1,008,800

Epoch 1/5

33/33 [===s=== s========= ] - 182s 3s/step - loss: B8.3166 - accuracy: 8.B580 - val_loss: 0.1865 - val_accuracy: 8.9628
Epoch 2/5

33/33 [ ] - 97s 3s/step - loss: @.8759 - accuracy: ©.9744 - val_loss: ©0.8492 - val_accuracy: ©.9827

Epoch 3/5

33/33 [= s===== ] - 97s 3s/step - loss: 9.0475 - accuracy: ©.9841 - val_loss: 9.848@ - val_accuracy: ©.9834

Epoch 4/5

33/33 [====s=s===s=zaa=a = ==] - 98s 3s/step - loss: 9.8412 - accuracy: ©.9860 - val_loss: ©.8187 - val_accuracy: @,9937

Epoch 5/5

33/33 [ ] - 985 3s/step - loss: @.8141 - accuracy: ©.9953 - val_loss: 8.8128 - val_accuracy: ©.9955

# Hyperparameter Dense Layer 4
batch_size = 1824

epochs = 5

embed_size = 180 # Output_dim
max_features = 10000 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model.add(Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add (LSTM(units=128 , return_sequences = True , recurrent_dropout = @.2 , dropout = @,2))

model . add(LSTM{units=64 , recurrent_dropout = @.2 , dropout = @.2))

model.add(Dense(units = 128 , activation = ‘relu’))

model . add(Dropout(8.2))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(1lr = 8.81), loss='binary_crossentropy', metrics=['accuracy'])

model . summary( )
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential 17"

Layer (type) Qutput Shape Param #

embedding_17 (Embedding) (None, 38@, 100) 1000000
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lstm_34 (LSTM) (None, 3@@, 128) 117248
lstm_35 (LSTM) (None, 64) 42408
dense_34 (Dense) (None, 128) B320
dropout_3 (Dropout) (None, 128) e
dense_35 (Dense) (None, 1) 129
Total params: 1,175,185
Trainable params: 175,185
Non-trainable params: 1,088,080
Epoch 1/5
33/33 [ ] - 1@2s 3s/step - loss: @.364@ - accuracy: ©.8215 - val_loss: @.8931 - val_accuracy: 8.9664
Epoch 2/5
33/33 [ ] - 98s 3s/step - loss: @.8781 - accuracy: ©.9719 - val_loss: @.8375 - val_accuracy: ©.9874
Epoch 3/5
33/33 [===s=s==== ===] - 98s 3s/step - loss: 8.8247 - accuracy: ©.9915 - val_loss: @.8115 - val_accuracy: 8.9962
Epoch 4/5
33/33 [ ] - 97s 3s/step - loss: 8.81@7 - accuracy: ©.9967 - val_loss: 0.887@ - val_accuracy: 8.9978
Epoch 5/5
33/33 [ ] - 96s 3s/step - loss: ©.8064 - accuracy: ©.9979 - val_loss: @.8875 - val_accuracy: @.9988

# Hyperparameter Dense Layer 5
batch_size = 1024

epochs = §

embed_size = 100 # Output_dim
max_features = 10880 # Input_dim

#Defining Neural Network
model = Sequential()
#Non-trainable embeddidng layer

model. add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))

H#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 0.2 , dropout = 8.2))

model.add (LSTM(units=64 , recurrent_dropout = ©.2 , dropout = 8.2))

model.add(Dense(units = 32 , activation = 'relu’))

model.add(Dense(units = 16 , activation = 'relu'))

model . add (Dropout(8.2))

model . add(Dense(1, activation="sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(1lr = @.21), loss='binary_crossentropy', metrics=[‘accuracy'])
model. summary()

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential_18"

Layer (type) Output Shape Param #
embedding_18 (Embedding) {None, 388, 1lea) 1eeeeee
lstm_36 (LSTM) (None, 380, 128) 117248
1stm_37 (LSTM) (None, &4) 49408
dense_36 (Dense) (None, 32) 2e8e
dense_37 (Dense) (None, 16) 528
dropout_4 (Dropout) (None, 16) 2]
dense_38 (Dense) {None, 1) 17

Total params: 1,169,281
Trainable params: 169,281
Non-trainable params: 1,608,680

Epoch 1/5
33/33 [ 1
Epoch 2/5
33/33 [===ssss==sssmms==mss ]
Epoch 3/5
33/33 [ ]
Epoch 4/5
33/33 [======s==sss==s===== ]
Epoch 5/5
33/33 [ ]

# Hyperparameter Dense Layer &
batch_size = 1024

epochs = 5

embed_size = 180 # Output_dim
max_features = 18880 # Input_dim

hitps://colab.research.google.com/drive/1 Au3rRcbeM23Q7XTWC_KSh20dXDv4uq2t#scrollTo=_JPKiATgMUS&printMode=true

102s 3s/step - loss: 8.3293 - accuracy: 8.8539 - val_loss: 8.8795 - val_accuracy: 8.9727

97s 3s/step - loss: ©.8616 - accuracy: @.9799 - val_loss: ©.8326 - val_accuracy: ©.9898
95s 3s/step - loss: 9.€428 - accuracy: ©.9869 - val_loss: 0.8324 - val_accuracy: ©.9887
96s 3s/step - loss: @.8314 - accuracy: ©.9898 - val_loss: 8.8133 - val_accuracy: 0.9954
97s 3s/step - loss: 0.0187 - accuracy: 0.9936 - val_loss: 0.8190 - val_accuracy: 8.9%41
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#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model . add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = ©.2 , dropout = 8.2))
model.add(LSTM(units=64 , recurrent_dropout = .2 , dropout = 8.2))

model.add(Dense{units = 64 , activation = 'relu’))

model.add(Dense(units = 32 , activation = 'relu'))

model.add (Dropout(8.2))

model.add(Dense(1, activation='sigmoid'))

model.compile({optimizer=tf.keras.optimizers,Adam(1lr = @.81), loss="binary_crossentropy', metrics=["accuracy'])

model. summary ()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: “sequential_19"

Layer (type) Output Shape Param #
embedding_19 (Embedding) (None, 3088, 100) 1802009
1stm_38 (LSTM) (None, 38@, 128) 117248
1stm_39 (LSTM) (None, 64) 49408
dense_39 (Dense) (None, 64) 4160
dense_4@ (Dense) {None, 32) 2080
dropout_S (Dropout) {None, 32) ]
dense_41 (Dense) (None, 1) 33

Total params: 1,172,929
Trainable params: 172,929
Non-trainable params: 1,880,880

Epoch 1/5
33/33 [ ] - 1@2s 3s/step - loss: @.3473 - accuracy: ©.8558 - val_loss: @.1819 - val_accuracy: 8.9668
Epoch 2/5
33/33 [=s==s=sss===ss=s===== ] - 96s 3s/step - loss: ©.8744 - accuracy: ©.9743 - val_loss: ©.0352 - val_accuracy: @.9873
Epoch 3/5
33/33 [ ] - 97s 3s/step - loss: @8.1866 - accuracy: 0.9697 - val_loss: 0.0685 - val_accuracy: 8.9792
Epoch 4/5
33/33 [ ==== ] - 975 3s/step - loss: ©.84B1 - accuracy: B.9841 - val_loss: 8.8298 - val_accuracy: 8.9914
Epoch 5/5
33/33 [ ] - 98s 3s/step - loss: ©9.8262 - accuracy: 9.9918 - val_loss: 8.9162 - val_accuracy: 0.9947

# Hyperparameter Dense Layer 7
batch_size = 1824

epochs = 5

embed_size = 180 # Output_dim
max_features = 10000 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model . add( Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))
model.add(LSTM{units=64 , recurrent_dropout = 8.2 , dropout = 8.2))

model.add(Dense(units = 128 , activation = 'relu’))

model.add(Dense(units = 64 , activation = 'relu’))

model . add (Dropout(8.2))

model.add(Dense(1, activation="sigmoid'))

model.compile({optimizer=tf.keras.optimizers.Adam(1lr = @.01), loss='binary_crossentropy', metrics=['accuracy'])

model. summary ()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: “"sequential_2e"

Layer (type) Output Shape Param #
embedding_20 (Embedding) (None, 380, 1@0) 1000000
lstm 4@ (LSTM) (None, 38@, 128) 117248
1stm_41 (LSTM) (None, 64) 49488
dense_42 (Dense) (None, 128) 8320

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4uqg2t#scroliTo=|_JPKiATgMUS&printMode=true 17/23



8/9/23, 7:00 PM optimasi-hyperparameter-model-Istm.ipynb - Colaboratory

dense_43 (Dense) (None, 64) 8256
dropout_6 (Dropout) (None, 64) ]
dense_44 (Dense) (None, 1) 65

Total params: 1,183,297
Trainable params: 183,297
Non-trainable params: 1,008,000

Epoch 1/5
33/33 [ ] - 1e1s 3s/step - loss: 8.3031 - accuracy: @.8561 - val_loss: ©8.8969 - val_accuracy: ©8.9678
Epoch 2/5
33/33 [===== ssssssssssssssas ] - 97s 3s/step - loss: @.8667 - accuracy: @.9767 - val_loss: ©.8297 - val_accuracy: 8.9918
Epoch 3/5
33/33 [ ] - 97s 3s/step - loss: ©.8385 - accuracy: 0.9878 - val_loss: @8.8186 - val_accuracy: 0.9941
Epoch 4/5
33/33 [ ] - 965 3s/step - loss: @.8177 - accuracy: ©.9950 - val_loss: @.8111 - val_accuracy: @8.9966
Epoch 5/S
33/33 [ ] - 97s 3s/step - loss: @.0871 - accuracy: ©.9981 - val_loss: @.8@9@ - val_accuracy: 8.9976

# Hyperparameter Dense Layer B
batch_size = 10824

epochs = 5

embed_size = 180 # Output_dim
max_features = 1@@ee # Input_dim

#Defining Neural Network

model = Sequential()

#iNon-trainable embeddidng layer

model.add (Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
HLSTM™

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))
model.add(LSTM(units=64 , recurrent_dropout = ©.2 , dropout = 8.2))

model.add(Dense{units = 128 , activation = 'relu'))

model.add (Dense{units = 64 , activation = ‘relu'))

model. add(Dropout(8.5))

model.add(Dense(1, activation='sigmoid'))

model. compile(optimizer=tf.keras.optimizers.Adam(1lr = @.81), loss="binary_crossentropy', metrics=["accuracy'])

model . summary()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential_ 21"

Layer (type) Output Shape Param #
embedding_21 (Embedding) (None, 3@@, 1ee) 1200000
lstm_42 (LSTM) (None, 3e@, 128) 117248
lstm_43 (LSTM) (None, 64) 49488
dense_45 (Dense) (None, 128) 8320
dense_46 (Dense) (None, 64) 8256
dropout_7 (Dropout) (None, 64) 8
dense_47 (Dense) (None, 1) 65

Total params: 1,183,297
Trainable params: 183,297
Non-trainable params: 1,008,080

Epoch 1/5

33/33 [ 1 - 1@@s 3s/step - loss: ©.3954 - accuracy: ©.8@79 - val_loss: ©.1418 - val_accuracy: 8.9527
Epoch 2/5

33/33 [===== ] - 97s 3s/step - loss: @.8998 - accuracy: ©.9665 - val_loss: 8.8452 - val_accuracy: ©.9854

Epoch 3/5

33/33 | ] - 97s 3s/step - loss: ©9.0478 - accuracy: 8.9864 - val_loss: 0.8287 - val_accuracy: @.9935

Epoch 4/5

33/33 [===========scscsc=msssssssssss ] - 965 3s/step - loss: ©.02@8 - accuracy: 8.9941 - val_loss: 8.8148 - val_accuracy: 8.9965

Epoch 5/5

33/33 [ ] - 97s 3s/step - loss: 0.0189 - accuracy: ©.9970 - val_loss: 0.8086 - val_accuracy: 0.9972

Experiment 3 Optimizer Output Layer

# Hyperparameter Optimizer Output Layer 1
batch_size = 1824

epachs = 5

embed_size = 180 # Output_dim
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max_features = 10080 # Input_dim
#Defining Neural Network

model = Sequential()
#Non-trainable embeddidng layer

optimasi-hyperparameter-model-Istm.ipynb - Colaboratory

model.add (Embedding(max_features, output_dim=embed_size, weights=[embedding matrix], input_length=maxlen, trainable=False))

#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = ©.2 , dropout = @.2))

model.add(LSTM(units=64 , recurrent_dropout = 8.2 , dropout = 8.2))

model.add(Dense{units = 128 , activation =
model.add(Dense(units = 64 , activation =
model . add (Dropout(8.2))

model . add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(lr = ©.@81), loss=‘binary_crossentropy', metrics=[‘accuracy'])

model . summary()

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks

Model: “sequential_22"

‘relu’))

‘relu’))

Layer (type) Output Shape Param #
embeadin;:;; {Eubeadi;;;-----z;nna, 300, 10@) o 199;;;;===
lstm_44 (LSTM) (None, 3e@, 128) 117248
1stm_45 (LSTM) (None, 64) 49408
dense_48 (Dense) (None, 128) 8320
dense_49 (Dense) (None, 64) B256
dropout_8 (Dropout) (None, 64) 2]
dense_58 (Dense) (None, 1) 65

Total params: 1,183,297

Trainable params: 183,297
Non-trainable params: 1,808,000

Epoch 1/S
33/33 [== =aas
Epoch 2/5
33/33 [
Epoch 3/5
33/33 [

Epoch 4/5

33/33 [
Epoch §/5
33/33 [s==seccsssesssocssssonsasaanas

# Hyperparameter Optimizer Output Layer 2
batch_size = 1824

epochs = §

embed_size = 188 # Output_dim
max_features = 18888 # Input_dim

#Defining Neural Network
model = Sequential()
#Non-trainable embeddidng layer

] - 98s 3s/step
] - 99s 3s/step
] - 98s 3s/step

] - 98s 3s/step

loss: @.1442

loss: ©.1869

loss: ©8.0867

loss: @.8567

accuracy

accuracy:

accuracy

accuracy:

: 08.9448

9.9603

: ©.9680

8.9798

val_loss
val_loss

val_loss

val_loss:

: 9.8992

1 @.08872

1 0.0600

8.8478

val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

model.add(Embedding(max_features, output_dim=embed_size, weights=[embedding _matrix], input_length=maxlen, trainable=False))

#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))

model.add(LSTM(units=64 , recurrent_dropout = 8.2 , dropout = 0.2))

model.add(Dense(units = 128 , activation =
model.add(Dense(units = 64 , activation =

model.add (Dropout(8.2))

model.add(Dense(1, activation="sigmoid'))

‘relu’})
‘relu’))

model . compile(optimizer=tf.keras.optimizers.Adam(1lr = 8.81), loss='binary_crossentropy', metrics=["accuracy'])

model . summary ()

= [learni

- 1@5s 3s/step - loss: 8.3533 - accuracy: @.8520 - val_loss: ©.1589 - val_accuracy: 8.939@

8.9629

8.9667

8.9806

8.9854

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: “sequential_23"

Layer (type) OQutput Shape Param #
enbedding 23 (Enbedding)  (None, 300, 100) 1000000
1stm_46 (LSTM) (None, 3ee, 128) 117248
1stm_47 (LSTM) (None, 64) 43408

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2t#scrollTo=|_JPKIATgMUS&printMode=true
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# Hyp
batch

epoch
embed
max_f

#Defi

dense_51 (Dense) (None, 128) 8320
dense_52 (Dense) (None, 64) 8256
dropout_9 (Dropout) (None, 64) 2]
dense_53 (Dense) {None, 1) 65

Total params: 1,183,297
Trainable params: 183,297
Non-trainable params: 1,000,000

Epoch 1/5

33/33 | ] - 1@2s 3s/step - loss: 8.2747 - accuracy: 8.87@1 - val_loss: @.0748 - val_accuracy: 8.9741
Epoch 2/5

33/33 [ ] - 98s 3s/step - loss: ©.8638 - accuracy: ©.9786 - val_loss: @.8415 - val_accuracy: 8.9872

Epoch 3/5

33/33 | ] - 96s 3s/step - loss: @.8262 - accuracy: 9.9913 - val_loss: @.8115 - val_accuracy: @.9968

Epoch 4/5

33/33 [ ==] - 985 3s/step - loss: 8.8123 - accuracy: 0.9965 - val_loss: ©.8129 - val_accuracy: 8.9952

Epoch 5/5

33/33 [ ] - 97s 3s/step - loss: 9.8112 - accuracy: ©0.9965 - val_loss: ©.08099 - val_accuracy: 8.9977

erparameter Optimizer Output Layer 3
_size = 1824

5§ =5

|_size = 180 # OQutput_dim

eatures = 10080 # Input_dim

ning Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model.add (Embedding(max_features, output_dim=embed_size, weights=[embedding matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = ©.2 , dropout = 8.2))
model.add(LSTM(units=64 , recurrent_dropout = ©.2 , dropout = 8.2))

model.add(Dense(units = 128 , activation = 'relu'))

model.add(Dense{units = 64 , activation = ‘relu’))

model . add (Dropout(@.2))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(lr = ©8.1), loss='binary_crossentropy', metrics=['accuracy'])
model . summary ()

history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

OPTI

Model: "sequential_24"

Layer (type) Output Shape Param #
embedding_u—(Embeadi:l;;“"z:;ane, 300, 108) waaa;;-“
1stm_48 (LSTM) (None, 3@@, 128) 117248
lstm_49 (LSTM) (None, 64) 43488
dense_54 (Dense) (None, 128) 8320
dense_55 (Dense) (None, 6&4) 8256
dropout_18 (Dropout) (None, 64) 2]
dense_56 (Dense) (None, 1) 65

Total params: 1,183,297
Trainable params: 183,297
Non-trainable params: 1,008,000

Epoch 1/5

33/33 [==========s===cs==ccc==== ] - 1@1s 3s/step - loss: 2.8456 - accuracy: 0.4999 - val_loss: 8.6933 - val_accuracy: 9.4781
Epoch 2/5

33/33 [ ] - 965 3s/step - loss: @.6926 - accuracy: 8.5214 - val_loss: 0.6922 - val_accuracy: 8.5219
Epoch 3/S

33/33 [=emmmmrem s ] - 97s 3s/step - loss: ©.6921 - accuracy: ©.5234 - val_loss: 8.6922 - val_accuracy: .5219
Epoch 4/5

33/33 [ ] - 98s 3s/step - loss: 8.6921 - accuracy: ©.5234 - val_loss: ©.6923 - val_accuracy: ©.5219
Epoch ©8@84: ReducelROnPlateau reducing learning rate to 8.85000000074505806.

Epoch 5/5

33/33 [ ] - 97s 3s/step - loss: ©.6921 - accuracy: ©.5234 - val_loss: 0.6922 - val_accuracy: 0.5219
MIZED LSTM MODEL

batch_size = 1824
epochs = 18

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2ti#scrollTo=_JPKiATgMU5&printMode=true

20/23



8/9/23, 7:00 PM optimasi-hyperparameter-model-Istm.ipynb - Colaboratory

# Hyperparameter Optimizer Output Layer 3
embed_size = 180 # Output_dim
max_features = 10008 # Input_dim

#Defining Neural Network

model = Sequential()

#Non-trainable embeddidng layer

model.add (Embedding(max_features, output_dim=embed_size, weights=[embedding matrix], input_length=maxlen, trainable=False))
#LSTM

model.add(LSTM(units=128 , return_sequences = True , recurrent_dropout = 8.2 , dropout = 8.2))
model.add(LSTM(units=64 , recurrent_dropout = 8.2 , dropout = 8.2))

model . add(Dense(units = 128 , activation = ‘relu'))

model . add (Dense(units = 64 , activation = 'relu’))

model. add(Dropout(@.2))

model.add (Dense(1, activation="sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(lr = @.81 ), loss='binary_crossentropy', metrics=['accuracy’])

model. summary ()
history = model.fit(x_train, y_train, batch_size = batch_size , validation_data = (X_test,y_test) , epochs = epochs , callbacks = [learni

Model: "sequential 25"

Layer (type) Output Shape Param #
embedding_25 (Embedding) (None, 380, 1€@) 1000600
1stm_S@ (LSTM) (None, 300, 128) 117248
lstm_51 (LSTM) (None, 64) 43488
dense_57 (Dense) (None, 128) 8320
dense_58 (Dense) (None, 64) 8256
dropout_11 (Dropout) (None, 64) <]
dense_59 (Dense) (None, 1) 65

Total params: 1,183,297
Trainable params: 183,297
Non-trainable params: 1,008,860

Epoch 1/18

33/33 [ ===s===] - 1865 3s/step - loss: 8.4439 - accuracy: ©.8081 - val_loss: @.1195 - val_accuracy: 0.9579
Epoch 2/18

33/33 [ ] - 1e1s 3s/step - loss: B8.8932 - accuracy: 0.9686 - val_loss: ©,8835 - val_accuracy: 0.9686
Epoch 3/1@

33/33 [===s=s=sss=ssss=esaeaa- = ] - 188s 3s/step - loss: ©.8684 - accuracy: 9.9794 - val_loss: 9.8332 - val_accuracy: 8.9892
Epoch 4/18

33/33 [ =================== ] - 1@1s 3s/step - loss: 0.8283 - accuracy: ©.9931 - val_loss: ©.8124 - val_accuracy: 9.9959
Epoch 5/18

33/33 [ ] - 1@1s 3s/step - loss: 8.0106 - accuracy: 0.9967 - val_loss: ©.8145 - val_accuracy: 8.9954
Epoch 6/18

33/33 [===========ss=s===== ==] - 1@@s 3s/step - loss: @.8@60 - accuracy: ©.9982 - val_loss: @.0086 - val_accuracy: 2.9977
Epoch 7/18

33/33 [ ] - 1@@s 3s/step - loss: 8.8@37 - accuracy: 8.9988 - val_loss: @.8866 - val_accuracy: 8.9984
Epoch 8/10@

33/33 [ ] - 1e@s 3s/step - loss: 8.8825 - accuracy: 0.9991 - val_loss: 8.8879 - val_accuracy: 8.9987
Epoch 9/18 ~

33/33 | ] - 1@@s 3s/step - loss: 8.0@31 - accuracy: ©.9992 - val_loss: ©.8858 - val_accuracy: ©.9988
Epoch 18/18

33/33 [ = = ] - 1ee@s 3s/step - loss: 0.8821 - accuracy: 0.9995 - val_loss: @.8977 - val_accuracy: 8.9979

Epoch 98018: ReducelLROnPlateau reducing learning rate to 8.004999999888241291.

~ ANALYSIS AFTER MODEL TRAINING

print("Accuracy of the model on Training Data is - " , model.evaluate(x_train,y_train)[1]*1ee , "%")
print(“Accuracy of the model on Testing Data is - “ , model.evaluate(X_test,y_test)[1]*18@ , "%")

1053/1053 [====c=s===s===-sssess==ms=es—as ] - 155s 148ms/step - loss: 9.5871e-84 - accuracy: 8.9997
Accuracy of the model on Training Data is - 99.9703049659729 ¥
351/351 [ ] - 525 148ms/step - loss: 8.08077 - accuracy: ©.9979

Accuracy of the model on Testing Data is - 99.7861921787262 %X

epochs = [i for i in range(10)]

fig , ax = plt.subplots(1,2)

train_acc = history.history[ 'accuracy’]
train_loss = history.history['loss’]
val_ace = history.history['val_accuracy’']
val_loss = history.history['val_loss']

https://colab.research.google.com/drive/1Au3rRcbeM23Q7XTWC_KSh20dXDv4ug2t#scrollTo=I_JPKIATgMU5&printMode=true 21/23
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fig.set_size_inches(20,1@)

ax[e].plot(epochs , train_acc , ‘go-' , label = 'Training Accuracy')
ax[e].plot(epochs , val_acc , 'ro-' , label = 'Testing Accuracy')
ax[@].set_title('Training & Testing Accuracy')

ax[@].legend()

ax[@].set_xlabel("Epochs™)

ax[@].set_ylabel("Accuracy”)

ax[1].plot(epochs , train_loss , 'go-' , label = 'Training Loss')
ax[1].plot(epochs , val_loss , 'ro-' , label = 'Testing Loss')
ax[1].set_title('Training & Testing Loss')

ax[1].legend()

ax[1].set_xlabel("Epochs")

ax[1].set_ylabel("Loss"™)

plt.show()

Training & Testing Accuracy Training & Testing Loss
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~

pred = (model.predict(X_test) > @.5).astype("int32")

pred[:5]
array([[@],
[e],
[e],
[el,

[1]], dtype=int32)

print(classification_report(y_test, pred, target_names = ['Fake', 'Not Fake']))

precision recall fl-score support

Fake 1.80 1.0 1.8@ 5858

Not Fake 1.80 1.00 1.80 5367
accuracy 1.80 11225
macro avg 1.88 1.0 1.08 11225
weighted avg 1.00 1.80 1.80 11225

cm = confusion_matrix(y_test,pred)
cm

array([[5849, 9],
[ 15, 5352]])

cm = pd.DataFrame(cm , index = ['Fake','Original’] , columns = ['Fake', 'Original'])
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plt.figure(figsize = (10,18))
sns.heatmap(cm,cmap= "Blues", linecolor =
plt.xlabel("Predicted”)
plt.ylabel("Actual™)

'black’ , linewidth = 1 , annot = True, fmt="' , xticklabels = ['Fake','Original’'] , yticklabel

Text(63.5, 8.5, "Actual')
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- 2000
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Program Pengujian Model Deteksi Berita Palsu
Model Testing dengan entri manual

#it# News

mmn

def output_lable(n):
ifn==0:
return "Fake News"
elifn==1:
return "Not A Fake News"

def manual testing(news):
testing news = {"text":[news]}
new_def test = pd.DataFrame(testing_news)
new def test["text"] = new def test["text"].apply(wordopt)
new X test =new def test["text"]
new Xv test = vectorization.transform(new x test)
pred = model.predict(new_xv_test)

return print("This news is {}".format(output lable(pred[0]) ))

Hasil Deteksi Model untuk Kategori Berita Palsu

o l’lews = str(input())

manual_testing(news)

> In the wake of a bombshell Washington
This news is Fake News

Hasil Deteksi Model untuk Kategori Bukan Berita Palsu

° news = str{input())

manual_testing(news

[» JAKARTA (Reuters) - Indonesia will buy 11 Sukhoi fighter jets
This news is Not A Fake News
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