

LAMPIRAN A

LAMPIRAN B

LAMPIRAN C

Arduino Nano

Arduino Nano Front Arduino Nano Rear

Overview

The Arduino Nano is a small, complete, and breadboard-friendly board based on the
ATmeGA328 (Arduino Nano 3.0) or ATmeGA168 (Arduino Nano 2.x). It has more or less
the same functionality of the Arduino Duemilanove, but in a different package. It lacks
only a DC power jack, and works with a Mini-B USB cable instead of a standard one. The
Nano was designed and is being produced by Gravitech.

Schematic and Design

Arduino Nano 3.0 (ATmeGA328): schematic, Eagle files.

Arduino Nano 2.3 (ATmeGA168): manual (pdf), Eagle files. Note: since the free

version of Eagle does not handle more than 2 layers, and this version of the Nano

is 4 layers, it is published here unrouted, so users can open and use it in the free

version of Eagle.

Specifications:

Microcontroller Atmel ATmega168 or ATmeGA328

Operating Voltage (logic level)

Input Voltage (recommended)

5 V

7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 8

DC Current per I/O Pin 40 mA

Flash Memory 16 KB (ATmeGA168) or 32 KB (ATmeGA328) of which 2 KB

The FTDI FT232RL chip on the Nano is only powered if the board is being

powered over USB. As a result, when running on external (non-USB) power, the

3.3V output (which is supplied by the FTDI chip) is not available and the RX and

TX LEDs will flicker if digital pins 0 or 1 are high.

Memory

The ATmeGA168 has 16 KB of flash memory for storing code (of which 2 KB is

used for the bootloader); the ATmeGA328 has 32 KB, (also with 2 KB used for the

bootloader). The ATmeGA168 has 1 KB of SRAM and 512 bytes of EEPROM

(which can be read and written with the EEPROM library); the ATmeGA328 has 2

KB of SRAM and 1 KB of EEPROM.

Input and Output

Each of the 14 digital pins on the Nano can be used as an input or output, using

pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up

resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have

specialized functions:

Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial

data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL

Serial chip.

External Interrupts: 2 and 3. These pins can be configured to trigger an

interrupt on a low value, a rising or falling edge, or a change in value. See the

attachInterrupt() function for details.

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite()

function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication, which, although provided by the underlying hardware, is not

currently included in the Arduino language.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is

HIGH value, the LED is on, when the pin is LOW, it's off.

The Nano has 8 analog inputs, each of which provide 10 bits of resolution (i.e. 1024

different values). By default they measure from ground to 5 volts, though is it

possible to change the upper end of their range using the analogReference() function.

Additionally, some pins have specialized functionality:

I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire

library (documentation on the Wiring website).

There are a couple of other pins on the board:

AREF. Reference voltage for the analog inputs. Used with analogReference().

Reset. Bring this line LOW to reset the microcontroller. Typically used to add a

reset button to shields which block the one on the board.

See also the mapping between Arduino pins and ATmeGA168 ports.

Communication

The Arduino Nano has a number of facilities for communicating with a computer,

another Arduino, or other microcontrollers. The ATmeGA168 and ATmeGA328

provide UART TTL (5V) serial communication, which is available on digital pins

0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial

communication over USB and the FTDI drivers (included with the Arduino

software) provide a virtual com port to software on the computer. The Arduino

software includes a serial monitor which allows simple textual data to be sent to

and from the Arduino board. The RX and TX LEDs on the board will flash when

data is being transmitted via the FTDI chip and USB connection to the computer

(but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Nano's

digital pins.

The ATmeGA168 and ATmeGA328 also support I2C (TWI) and SPI

communication. The Arduino software includes a Wire library to simplify use of

the I2C bus; see the documentation for details. To use the SPI communication,

please see the ATmeGA168 or ATmeGA328 datasheet.

Programming

The Arduino Nano can be programmed with the Arduino software (download).

Select "Arduino Diecimila, Duemilanove, or Nano w/ ATmeGA168" or "Arduino

Duemilanove or Nano w/ ATmeGA328" from the Tools

> Board menu (according to the microcontroller on your board). For details, see

the reference and tutorials.

The ATmeGA168 or ATmeGA328 on the Arduino Nano comes preburned with a

bootloader that allows you to upload new code to it without the use of an external

hardware programmer. It communicates using the original STK500 protocol

(reference, C header files).

You can also bypass the bootloader and program the microcontroller through the

ICSP (In-Circuit Serial Programming) header; see these instructions for details.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the

Arduino Nano is designed in a way that allows it to be reset by software running

on a connected computer. One of the hardware flow control lines (DTR) of the

FT232RL is connected to the reset line of the ATmeGA168 or ATmeGA328 via a

100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops

long enough to reset the chip. The Arduino software uses this capability to allow

you to upload code by simply pressing the upload button in the Arduino

environment. This means that the bootloader can have a shorter timeout, as the

lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a

computer running Mac OS X or Linux, it resets each time a connection is made to

it from software (via USB). For the following half-second or so, the bootloader is

running on the Nano. While it is programmed to ignore malformed data (i.e.

anything besides an upload of new code), it will intercept the first few bytes of data

sent to the board after a connection is opened. If a sketch running on the board

receives one-time configuration or other data when it first starts, make sure that the

software with which it communicates waits a second after opening the connection

and before sending this data.

DATASHEET DHT-22

1. Feature & Application:

* Full range temperature compensated * Relative humidity and temperature measurement

* Calibrated digital signal *Outstanding long-term stability *Extra components not needed

* Long transmission distance * Low power consumption *4 pins packaged and fully

interchangeable

2. Description:

DHT22 output calibrated digital signal. It utilizes exclusive digital-signal-collecting-technique and

humidity sensing technology, assuring its reliability and stability.Its sensing elements is connected

with 8-bit single-chip computer.

Every sensor of this model is temperature compensated and calibrated in accurate calibration

chamber and the calibration-coefficient is saved in type of programme in OTP memory, when the

sensor is detecting, it will cite coefficient from memory.

Small size & low consumption & long transmission distance(20m) enable DHT22 to be suited in

all kinds of harsh application occasions.

Single-row packaged with four pins, making the connection very convenient.

3. Technical Specification:

Model DHT22

Power supply 3.3-6V DC

Output signal digital signal via single-bus

Sensing element Polymer capacitor

Operating range humidity 0-100%RH; temperature -40~80Celsius

Accuracy humidity +-2%RH(Max +-5%RH); temperature <+-0.5Celsius

Resolution or sensitivity humidity 0.1%RH; temperature 0.1Celsius

Repeatability humidity +-1%RH; temperature +-0.2Celsius

Humidity hysteresis +-0.3%RH

Long-term Stability +-0.5%RH/year

Sensing period Average: 2s

Interchangeability fully interchangeable

Dimensions small size 14*18*5.5mm; big size 22*28*5mm

Soil Moisture Sensor Module

This soil moisture sensor module is used to detect the moisture of the soil. It measures

the volumetric content of water inside the soil and gives us the moisture level as

output. The module has both digital and analog outputs and a potentiometer to adjust

the threshold level.

 Soil Moisture Sensor Module Pinout Configuration

Pin Name Description

VCC

The Vcc pin powers the module, typically with +5V

GND Power Supply Ground

DO Digital Out Pin for Digital Output.

AO Analog Out Pin for Analog Output

Soil Moisture Sensor Module Features & Specifications

• Operating Voltage: 3.3V to 5V DC

• Operating Current: 15mA

• Output Digital - 0V to 5V, Adjustable trigger level from preset

• Output Analog - 0V to 5V based on infrared radiation from fire flame falling on the

sensor

• LEDs indicating output and power

• PCB Size: 3.2cm x 1.4cm

• LM393 based design

• Easy to use with Microcontrollers or even with normal Digital/Analog IC

• Small, cheap and easily available

LAMPIRAN C

#include <DHT.h>

#include <DHT_U.h>

// NodeRed

#include <ESP8266WiFi.h>

#include <DHT.h>

#include <WiFiClient.h>

#include <ESP8266WebServer.h>

#include <ESP8266mDNS.h>

const char* ssid = "vivo";

const char* password = "12345678";

ESP8266WebServer server(80);

// Sensor Soil

#define sensorSoil analogRead(0)

int sensor;

// LCD 16x2 I2C

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);

// Sensor DHT22

#define DHTPIN D6

String temp;

String hum;

String kel;

float t, h;

#define DHTTYPE DHT22 // DHT 11

DHT dht(DHTPIN, DHTTYPE);

// Modul Relay

#define motorPump 14

// Timer Penyiraman

const int soilMoistureThreshold = 75;

const unsigned long wateringDuration = 5000; // Durasi penyiraman dalam

milidetik (misalnya 5 detik)

unsigned long previousWateringTime = 0;

bool isWatering = false;

//--

void handleRoot() {

 server.send(200, "text/plain", "hello from esp8266!");

}

//--

void handleNotFound() {

 String message = "File Not Found\n\n";

 message += "URI: ";

 message += server.uri();

 message += "\nMethod: ";

 message += (server.method() == HTTP_GET) ? "GET" : "POST";

 message += "\nArguments: ";

 message += server.args();

 message += "\n";

 for (uint8_t i = 0; i < server.args(); i++) {

 message += " " + server.argName(i) + ": " + server.arg(i) + "\n";

 }

 server.send(404, "text/plain", message);

}

void setup() {

 Serial.begin(9600);

 lcd.begin();

 pinMode(motorPump, OUTPUT);

 digitalWrite(motorPump, 1);

 WiFi.begin(ssid, password);

 Serial.println("");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.print("Connected to ");

 Serial.println(ssid);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 dht.begin();

 server.on("/", handleRoot);

 server.on("/dht-temp", []() {

 t = dht.readTemperature();

 temp = String(t);

 server.send(200, "text/plain", temp);

 });

 server.on("/soil-kel", []() {

 sensor = map(sensorSoil, 0, 1023, 0, 100);

 kel = String(sensor);

 server.send(200, "text/plain", kel);

 });

 server.on("/dht-hum", []() {

 h = dht.readHumidity();

 hum = String(h);

 server.send(200, "text/plain", hum);

 });

 server.onNotFound(handleNotFound);

 server.begin();

 Serial.println("HTTP server started");

}

void loop() {

 server.handleClient();

 LCDDisplay();

}

//--

void LCDDisplay() {

 float s = dht.readTemperature();

 float f = dht.readHumidity();

 sensor = map(sensorSoil, 0, 1023, 0, 100);

 lcd.setCursor(0, 0);

 lcd.print("Penyiraman Cabai IoT");

 lcd.setCursor(0, 1);

 lcd.print("Suhu : ");

 lcd.print(s);

 lcd.print(" ");

 lcd.write(223);

 lcd.print("C");

 lcd.setCursor(0, 2);

 lcd.print("Humidity : ");

 lcd.print(f);

 lcd.print(" %");

 lcd.setCursor(0, 3);

 lcd.print("Sensor Soil : ");

 lcd.print(sensor);

 lcd.print(" %");

 if (sensor >= soilMoistureThreshold && !isWatering) {

 startWatering();

 } else {

 stopWatering();

 }

 delay(250);

 lcd.clear();

}
 POMPA

void startWatering() {

 digitalWrite(motorPump, 0); // Aktifkan relay, nyalakan motor pump

 isWatering = true;

 // previousWateringTime = millis();

}

void stopWatering() {

 digitalWrite(motorPump, 1); // Matikan relay, matikan motor pump

 isWatering = false;

}

