# LAMPIRAN A

| No. Dok. : #-PBM-16 | Tgl. Berlaku : 13 December 2010                                                                                                                                                                                                  | No. Rev. : 00 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                     | KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI<br>POLITEKNIK NEGERI SRIWIJAYA<br>Jalan Srijaya Negara, Palembang 30139<br>Talp. 0711-353414 Fax. 0711-358918<br>Website : www.politrinijaya.ac.id E-mail : into@polari.ac.id |               |
|                     | KESEPAKATAN BIMBINGAN LAPORAN AKHIR (LA)                                                                                                                                                                                         |               |

Kami yang bertanda tangan di bawah ini,

| Pihak Pertama |                         |
|---------------|-------------------------|
| Nama          | : Ajie Harun Pretama    |
| NIM           | : 062030320980          |
| Jurusan       | : Teknik Elektro        |
| Program Studi | : D3 Teknik Elektronika |
|               |                         |

#### Pihak Kedua

| Nama          | ; Dewi Permata Sari, S. T, M. Kom. |  |
|---------------|------------------------------------|--|
| NIP           | : 197612132000032001               |  |
| Jurusan       | : Teknik Elektro                   |  |
| Program Studi | : D3 Teknik Elektronika            |  |

Pade hari ini <u>15 Juhriconi</u>, tanggal <u>15 Juhriconi neuro</u>, telah sepakat untuk melakukan konsultasi bimbingan Laporan Akhir.

Demikiantah kesepakatan ini dibuat dengan penuh kesadaran guna kelancaran penyelesaian Laporan Akhir.

Pihak Perterna, Alie Harun Pratama NIM 062030320980

Palembang. Plhak Kedua, (h

Dewi Permata Sari, S. T. M. Kom. NIP 197612132000032001

Mengetahui, Ketua Jurusan

Λ Ir. Iskandar Cutfi, M. T. NIP 196501291991031002

| No. Dok. : F-PBM-16 | Tgl. Berleku : 13 Desember 2010                                                                                                                                                                                                 | No. Rev. : 00 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                     | KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI<br>POLITEKNIK NEGERI SRIWIJAYA<br>Jalan Srijaya Negara, Palembang 30139<br>Telp. 0711-353414 Fax. 0711-355918<br>Webalte : www.polarivijaya.ac.id E-mail : info@polari.ac.id |               |
| 1                   | KESEPAKATAN BIMBINGAN LAPORAN AKHIR (LA)                                                                                                                                                                                        |               |

Kami yang bertanda tangan di bawah ini,

| Pihak Pertama |                       |
|---------------|-----------------------|
| Nama          | : Ajie Harun Pratama  |
| NIM           | : 062030320980        |
| Jurusan       | : Teknik Elektro      |
| Program Studi | D3 Teknik Elektronika |

#### Pihak Kedua

| Nama          | : Dr. Nyayu Latifah Huani, S. T, M. T |   |
|---------------|---------------------------------------|---|
| NIP           | : 197605032001122002                  | - |
| Jurusan       | : Teknik Elektro                      |   |
| Program Studi | : D3 Teknik Elektronika               |   |

Pada hari ini <u>Churt</u> tanggal <u>F Rucce</u> telah sepakat untuk melakukan konsultasi bimbingan Laporan Akhir.

Demikianlah kesepakatan ini dibuat dengan penuh kesadaran guna kelancaran penyelesaian Laporan Akhir.

Pihak Rentama. Alle Harun Pratama NIM 062030320980

Palembang, ..... Pihak Kedua,

th n

Dr. Nyayu Latifah Husni, S. T. M. T NIP 197605032001122002

Mengetahul, Ketua Jurusan

Ir: Iskander Lutfi, M. T. NIP 196501291991031002

| No. Do         | A. 1 F-PSM-17                     | Tgl. Berlaku : 15 Desember 2010                                                                                                                                                                                                                          | No. Rev.                   |
|----------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (              |                                   | Penteri Erian Penuluiran ban hebubataan<br>POLITEKNIK NEGERI SRIWIJAYA<br>Jatan Srijaya Negara, Palembang 36130<br>Telp. 0711-5550414 Fax. 0711-555018<br>Webalte : www.poliartwijaya.ac.id E-mail I: info@polet.ac.id<br>LEMBAR BIMBINGAN LAPORAN AKHIR |                            |
|                |                                   |                                                                                                                                                                                                                                                          | Lembar                     |
| Nama           | 0                                 | : Ajie Harun Pratama                                                                                                                                                                                                                                     |                            |
| NIM            |                                   | : 062030320980                                                                                                                                                                                                                                           |                            |
| Jurus<br>Judul | an/Program Studi<br>Laporan Akhir | Teknik Elektro/D3 Teknik Elektronika<br>Roncong bengun so cual Assistive bobat<br>Untuk Romanitas Anak fendenta Anniver n<br>D-stylicing B                                                                                                               | Valinboer<br>enjoinaiteen  |
| Pemb           | imbing [/]] *)                    | : Dewi Permata Sari, S. T. M. Kom.                                                                                                                                                                                                                       |                            |
| No.            | Tanggal                           | Uralan Bimbingan                                                                                                                                                                                                                                         | Tanda Tangan<br>Pembimbing |
| 1.             | 0 feb-                            | ACC pruposni hypnon Ann.                                                                                                                                                                                                                                 | DR                         |
| 2              | 3 stylene<br>23                   | berhunen letourkelakung                                                                                                                                                                                                                                  | R                          |
| 3.             | 12 ayul<br>23                     | Revout Ryrian, menfacit                                                                                                                                                                                                                                  | R                          |
| 4.             | 15 Mighul<br>23                   | HCC BAB I Lengut BULD                                                                                                                                                                                                                                    | Ð                          |
| 5,             | 3 anno<br>23                      | Fambalan Nyawan bitkeren<br>But A                                                                                                                                                                                                                        | R                          |
| đ.             | 23 nu                             | Tantahhim femal alow<br>por hopent putersour                                                                                                                                                                                                             | R                          |
| 7.             | 13 Jun                            | tambahnen poin pader                                                                                                                                                                                                                                     | M                          |

| No. Dok.              | : F-PBM-17    |              | Tgl. Berlaku : 13 Desember 2010                                                                                                                                                                                                                    | No. Rev. : 0               |  |
|-----------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| ۲                     |               | W            | KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN<br>POLITEKNIK NEGERI SRIWIJAYA<br>Jalan Srijaya Negara, Palembang 30139<br>Teip. 0711-353414 Fax. 0711-355918<br>/ebsite : www.polisriwijaya.ac.id E-meil : Info@polari.ac.id<br>LEMBAR BIMBAN LAPORAN AKHIR |                            |  |
|                       |               |              | CEMBER DINORALEAFORM ARTIK                                                                                                                                                                                                                         | Lembar : 1                 |  |
| Nama                  |               | ÷            | Ajis Harun Pratama                                                                                                                                                                                                                                 |                            |  |
| NIM                   |               | Í.           | 062030320980                                                                                                                                                                                                                                       |                            |  |
| Jurusan/Program Studi |               | 18           | Teknik Elektro / D3 Teknik Elektronika                                                                                                                                                                                                             |                            |  |
| Judul Laporan Akhir   |               | ŝ            | RENCENDE EPHOLININ SOCIEL APELSTUC POBLIT<br>REDALLINGTHS AND ALL PEROPERTAR AND AND AND A                                                                                                                                                         | UNIVARIAN EATPEOREN        |  |
| Pembin                | mbing 1711 *1 | \$.)<br>\$.) | Dr. Nyayu Latifah Husni, S. T. M. T                                                                                                                                                                                                                |                            |  |
| No.                   | Tanggal       |              | Uraian Bimbingan                                                                                                                                                                                                                                   | Tanda Tangan<br>Pembimbing |  |
|                       | A. I.L.       |              | have be to the                                                                                                                                                                                                                                     |                            |  |

| t. | 9 febr       | Are muland it of               |
|----|--------------|--------------------------------|
| 2: | any ar       | planung an helma nigulie of    |
| 3. | 10 April 29  | palm Rayon the Sy              |
| 4; | is pryod     | sieniger BARE I, den langet og |
| 5. | 2 anew<br>23 | Fumbunkan Tijaman Listoria G   |
| 6. | r nev<br>rs  | inithen Risawan Esten y        |
| 7. | 23 mer       | Junchen fina pada a            |

| io. Do | s, : F-PBM-17 | Tgl. Bullaku : 13 Desember 2010                                | No. Rev. 10<br>Lembar : 2  |
|--------|---------------|----------------------------------------------------------------|----------------------------|
| No,    | Tanggal       | Uralan Bimbingan                                               | Tanda Tangan<br>Pembimbing |
| 8.     | 23 Juni       | Jalocken light /outpail/hurence<br>814 A.V.G.2 day Bleck Right | Ð                          |
| 9.     | 167w2'        | BAR # den pupulten deta                                        | Ð                          |
| 10.    | 20 pm<br>23   | projuktion SAN VG 2.                                           | Ð                          |
| 11.    | 2 hquit       | for hume USCES IV dan V                                        |                            |
| 12.    | g foruch      | frequencies delling LA                                         | Ð                          |

Palembang, .....

Ketua Jurusan/KPS,

(Dewi Permata Sari , S. T. M. Kom. ) NIP 19761213200032001

Catatanu \*) melingkari angka yang sebual Kaba Junuan/Kaba Program Bludi harup memeriksa jumlah pelakeamaan timbingan sesuai yang dipanayavalkan dalam Pedorian Laporon Alori sebuam menundukangan tembar tembingan kit Lembar pembertangan LA ini harup ditempirkan dalam Laporon Alorik.

| No. Dia | . ( F-PBM-17  | TgL Bertaku I 13 Desember 2010                                   | No. Res. 10<br>Lembar : 2  |
|---------|---------------|------------------------------------------------------------------|----------------------------|
| No.     | Tanggel       | Unaian Bimbingan                                                 | Tanda Tangan<br>Pembimbing |
| 8.      | s Juni        | selestin flowchort (buent<br>klumpikowi) oen lagen saturan       | s.                         |
| 9       | rop-i         | nce Ball 9. Los numbers<br>desta convar.                         | ¥                          |
| 10.     | t Juli<br>nz  | Thur burt cluta MARDIN<br>(1310, 50ps), Trogeneri, Togenerik Ham | y                          |
| 11,     | ng Juli       | Acc but q, on legue<br>Bub J.                                    | 7                          |
| 12      | 2 Heget<br>24 | ACC har 5, lagert poincole                                       | GJ.                        |

Palembang.

Ketua Jurusan/KPS,

( Dewi Permeta Sari , S. T. M. Kom. ) NIP 197612132000032001

Catatan: \*) metingkan angka yang sesuai, Retar Jurusan Katua Program Studi harus memerikas jumlert pelakaansen bimbingan tersuai yang dipetsyetati an dalam Pedoman Laporan AMII sebelum menondalangan lambar tembingan in Lembar pembimbingan LA H harus diamonkan dalam Laporan Atmir

| e. Dok. : F-PBM-23 | Tyr. Barlaku : 13 Desember 2010                                                                                                                                                                                                         | No. Rev |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                    | KEMENTERIAN PENDIDIKAN, KEBUDAYAAN,<br>RISET, DAN TEKNOLOGI<br>POLITEKNIK NEGERI SRIWIJAYA<br>Jalan Srijaya Negara, Palembang 20139<br>Talo, 0711-353414 Fex, 0711-356918<br>Website ; www.polietwijaya.ac.ki E-mail ; info@polec.ac.at | 2       |
|                    | PELAKSANAAN REVISI LAPORAN AKHIR                                                                                                                                                                                                        |         |

#### Mahasiswa berikut.

| Name                  |   | Ajle Harun Pratama                                 |
|-----------------------|---|----------------------------------------------------|
| NIM                   |   | 062030320980                                       |
| Jurusan/Program Studi |   | Teknik Elektro / D3 Teknik Elektronika             |
| Judul Laporan Akhir   | 1 | RANCANG BANGUN SOCIAL ASSISTIVE ROBOT VOLUNTEER G2 |
|                       |   | UNTUK KOMUNITAS ANAK PENDERITA KANKER MENGGUNAKAN  |
|                       |   | RASPBERRY FI                                       |

Telah melaksanakan revisi terhadap Laporan Akhir yang diujikan pada han senin tanggal 7 bulan Agustus tehun 2023 Pelaksanaan revisi terhadap Laporan Akhir tersebut telah disetujui oleh Dosen Penguji yang momborikan revisi:

| No. | Komentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nama Dosen Penguji */                 | Tanggal | Tanda Tangan  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------------|
|     | Ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ir, Yordan Hasan, M.<br>Kom           |         | At            |
| 1   | n in the second s | Dr. Eng Tresna Dewl S.<br>T, M. Eng.  |         | $\mathcal{O}$ |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dewi Permata Sari, S.<br>T. M. Kom,   |         | Λ             |
| te. | o to violed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Destra Andika Pratama,<br>S. T. M. T. | 5/2/19  | X             |
| Fen | ied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Renny Maulidda, S. T.<br>M. T.        | ·경125   | Park          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |         |               |

Ketua Penguji

en nen uerspij verg mensterken romo zaat daer laamen ekke. son plangel ystig disgesten aslengel Kelon Twingd verd uler LA. nen polataanaan romei hil hene übergelken delem Leppon Aven

xxii

# LAMPIRAN B

#### DOKUMENTASI















# LAMPIRAN C

# 1.54inch OLED SSD1309 SPI&IIC Module MSP154W&MSP154B User Manual

# Introduction to OLED

OLED is an Organic Light-Emitting Diode (OLED). OLED display technology has the advantages of self-illumination, wide viewing angle, almost infinite contrast, low power consumption, high reaction speed, flexible panel, wide temperature range, simple structure and process, etc. A generation of flat panel display emerging application technology.

OLED display is different from traditional LCD display, it can self-illuminate, so no backlight is needed, which makes OLED display

The display is thinner than the LCD display and has a better display.

## Product Description

The OLED module has a display size of 1.54 inches and has a 128x64 resolution. Three-wire system, 4-wire SPI and IIC communication modes can be selected, and the driver IC is SSD1309. Contains three modules in black, blue or yellow and blue.

## Product Features

- 1.54 inch OLED screen with black and white, black or blue color display
- 128x64 resolution for clear display and high contrast
- Large viewing angle: greater than 160° (one screen with the largest viewing angle in the display)
- Wide voltage supply (3V~5V), compatible with 3.3V and 5V logic levels, no level shifting chip required
- The default is 4-wire SPI bus, which can choose IIC bus
- Ultra-low power consumption: normal display is only 0.06W (far below the TFT display)
- Military-grade process standards, long-term stable work

- Provides a rich sample program for STM32, C51, Arduino, Raspberry Pi and MSP430 platforms
- Provide underlying driver technical support

# Product Parameters

| Name                           | Description               |  |  |
|--------------------------------|---------------------------|--|--|
| Display Color                  | White, blue               |  |  |
| SKU                            | MSP154W<br>MSP154B        |  |  |
| Screen Size                    | 1.54(inch)                |  |  |
| Туре                           | OLED                      |  |  |
| Driver IC                      | SSD1309                   |  |  |
| Resolution                     | 128*64(Pixel)             |  |  |
| Module Interface               | 4-line SPI、IIC interface  |  |  |
| Active Area                    | 35.052x17.516(mm)         |  |  |
| Touch Screen Type              | have no touch screen      |  |  |
| Touch IC                       | have no touch IC          |  |  |
| Module PCB Size                | 42.40x38.00(mm)           |  |  |
| Angle of view                  | >160°                     |  |  |
| Operating Temperature          | <b>-20</b> ℃ <b>~60</b> ℃ |  |  |
| Storage Temperature            | <b>-30</b> ℃ <b>~70</b> ℃ |  |  |
| Operating Voltage              | 3.3V/5V                   |  |  |
| Power Consumption              | TBD                       |  |  |
| Product Weight(With packaging) | 12(g)                     |  |  |

# Interface Description



#### Picture1. Module pin Label picture



Picture 2. Rear view of the module

# NOTE:

- 1. This module supports IIC and 4-wire SPI interface bus mode switching (as shown in the red box in Picture 2). The details are as follows:
  - A. Using 4.7K resistance to solder only R5 resistors, then choose 4-wire SPI bus interface (default);
  - B. Using 4.7K resistance to solder only R4 and R9 resistors, then select the IIC bus interface;
- After the interface bus mode is switched, you need to select the corresponding software and the corresponding wiring pins (as shown in Picture 1) for the module to operate normally. The corresponding wiring pins are described as follows:

- A. select the 4-wire SPI bus interface, all pins need to be used;
- B. To select the IIC bus interface, only five pins GND, VCC, SCL, SDA and res need to be used. Connect the CS pin to the power supply and ground. The DC pin can be used to select the IIC slave device address. Select 0x7a for high level and 0x78 for low level;
- 3. Solder R8 resistor (as shown in the green box in Picture2), then CS pin does not need to be connected

#### important:

- The following pin numbers 1~7 refer to the module pin number of our company with PCB backplane. If you purchase a bare screen, please refer to the pin definition of the bare screen specification, refer to the wiring according to the signal type instead of directly according to the following. The module pin number is used for wiring. For example: CS is 7 feet on our module. It may be x pin on different size bare screen. The following wiring instructions tell you that the CS signal is connected to the A5 pin of the MCU.
- About VCC supply voltage: The OLED display module can be connected to 3.3V or 5V.

| N | umber | Module Pin | Pin Description                                   |  |
|---|-------|------------|---------------------------------------------------|--|
|   | 1     | GND        | OLED power ground                                 |  |
|   | 2     | vcc        | OLED power positive (3.3V~5V)                     |  |
|   | 3     | SCL        | OLED SPI and IIC bus clock signals                |  |
|   | 4     | SDA        | OLED SPI and IIC bus data signals                 |  |
|   |       |            | OLED reset signal, low level reset (this pin need |  |
|   | 5     | RES        | to connected to the high level (can be connected  |  |
|   |       |            | to the VCC) when selecting IIC bus)               |  |
|   |       |            | Select SPI bus as command / data input            |  |
|   |       |            | selection signal, high level: data, low level:    |  |
|   | 6     | DC         | command;                                          |  |
|   |       |            | When selecting the IIC bus, this pin can be used  |  |
|   |       |            | to select the address of the IIC slave device,    |  |

|   |          | which is connected to the high level selection   |
|---|----------|--------------------------------------------------|
|   |          | 0x7a and the low level selection 0x78;           |
|   |          | OLED chip selection signal, low level enabled;   |
| 7 |          | Solder R8 resistor (as shown in the green box in |
|   | <u> </u> | Picture 2), then this pin does not need to be    |
|   | C5       | connected.                                       |
|   |          | Do not weld R8 resistor, select IIC interface,   |
|   |          | then this pin is grounded                        |

### Hardware Configuration

The hardware circuit of the module is composed of four parts: OLED display control circuit, OLED boost circuit, pin array interface, and power supply voltage stabilizing circuit.

OLED display control circuit is mainly used to control OLED display, including chip selection, reset, data and command transmission control, and interface selection.

The OLED boosting circuit is used to boost an input voltage to an OLED light emitting voltage.

The pin array interface is used for external connection of the main control development board.

The power supply voltage stabilizing circuit is used for 3.3V voltage stabilizing power supply. The OLED module adopts 4-wire SPI communication mode by default. In addition, it can also select IIC communication mode. The hardware is configured with 7 pins. Different communication methods are used, and the selected pins are different (see the interface description for details).

### working principle

#### 1. Introduction to SSD1309 Controller

The SSD1309 is an OLED/PLED controller that supports a maximum resolution of 128\*64 and a 1024-byte GRAM. Support 8-bit 6800 and 8-bit 8080 parallel port data bus, also supports 3-wire and 4-wire SPI serial bus and I2C bus. Since parallel control requires a large number of IO ports, the most commonly used are the SPI serial bus and the I2C bus. It supports vertical scrolling and can be used in small portable devices such as mobile phones, MP3 players and more.

The SSD1309 controller uses 1 bit to control a pixel display, so each pixel can only display black and white or black and blue. The displayed RAM is divided into 8 pages, with 8 lines per page and 128 pixels per line. When setting pixel data, you need to specify the page address first, and then specify the column low address and column height address respectively, so set 8 pixels in the vertical direction at the same time. In order to be able to flexibly control the pixel points at any position, the software first sets a global one-dimensional array of the same size as the display RAM, first maps the pixel point data to the global array, and the process uses the OR or the operation to ensure that the global array is written before. The data is not corrupted, and the data of the global array is then written to the GRAM so that it can be displayed through the OLED.

#### 2. Introduction to SPI communication protocol

The 4-wire SPI bus write mode timing is shown in the following figure:



The 3-wire SPI bus write mode timing is shown in the following figure:



As can be seen from the above timing diagram, the difference between the 3-wire SPI and the 4-wire SPI is as follows:

The 3-wire SPI does not have a D/C# signal, and its D/C# signal is input by SDIN, which

first transmits 1 bit of D/C# data, followed by an 8-bit command or data. The 4-wire D/C# signal is directly input by D/C#.

CS# is a slave chip select, and the chip is enabled only when CSX is low.

D/C# is the data/command control pin of the chip. When DCX is low, the command is written. When it is high, the data is written.

SCLK is the SPI bus clock, and each rising edge transmits 1 bit of data;

SDIN is the data transmitted by SPI, and it transmits 8-bit data at a time. The high

position is in front and transmitted first. For SPI communication, the data has a

transmission timing, that is, a combination of clock phase (CPHA) and clock polarity

(CPOL):

**LCDWIKI** 

The CPOL level determines the idle state level of the serial synchronous clock, CPOL =

0, which is low. CPOL does not have a lot of impact on the transport protocol;

The level of CPHA determines whether the serial synchronous clock is acquired on the first clock transition edge or the second clock transition edge.

When CPHL = 0, data acquisition is performed on the first edge of the transition;

The combination of the two becomes the four SPI communication methods. SPI0 is usually used in China, that is, CPHL = 0, CPOL = 0.

#### 3. Introduction to IIC Communication Protocol

The process of writing data on the IIC bus is shown in the following figure:



After the IIC bus starts working, the slave device address is sent first. After receiving the slave device response, it then sends a control byte to inform the slave device whether the next data to be sent is a command written to the IC register or written. The RAM data, after receiving the slave device response, then sends a value of multiple bytes until the transmission is completed and the IIC bus stops working.

among them:

C0=0: This is the last control byte, and all the data bytes sent in the following are all data bytes.

C0=1: The next two bytes to be sent are the data byte and another control byte.

D/C(-----)=0: is the register command operation byte

D/C(-----)=1: operation byte for RAM data

The IIC start and stop timing diagrams are as follows:



When the data line and the clock line of the IIC are both kept at a high level, the IIC is in an idle state. At this time, the data line changes from a high level to a low level, and the clock line continues to be at a high level, and the IIC bus starts data transmission. When the clock line is held high, the data line changes from low to high, and the IIC bus stops data transmission.

The timing diagram for the IIC to send a bit of data is as follows:



Each clock pulse (the process of pulling high and pulling low) sends 1 bit of data. When the clock line is high, the data line must remain stable, and the data line is allowed to change when the clock line is low.

The ACK transmission timing diagram is as follows:



When the master waits for the ACK of the slave, it needs to keep the clock line high. When the slave sends an ACK, keep the data line low.

# Instructions for use

#### 1. Arduino instructions

#### Wiring instructions:

See the interface description for pin assignments.

| Arduino UNO microcontroller test program wiring instructions |            |                                               |            |  |  |
|--------------------------------------------------------------|------------|-----------------------------------------------|------------|--|--|
|                                                              |            | Corresponding to UNO development board wiring |            |  |  |
| Number                                                       | Module Pin | pi                                            | ns         |  |  |
|                                                              |            | SPI                                           | IIC        |  |  |
| 1                                                            | GND        | GND                                           |            |  |  |
| 2                                                            | VCC        | 5V/3.3V                                       |            |  |  |
| 3                                                            | SCL        | 13                                            | A5         |  |  |
| 4                                                            | SDA        | 11                                            | A4         |  |  |
| 5                                                            | RES        | 3.3V                                          |            |  |  |
| 6                                                            | DC         | 9                                             | VCC or GND |  |  |
| 7                                                            | CS         | 10                                            | GND        |  |  |

| Arduino MEGA2560 microcontroller test program wiring instructions |        |                                                         |            |  |  |  |  |
|-------------------------------------------------------------------|--------|---------------------------------------------------------|------------|--|--|--|--|
| Number                                                            | Module | Corresponding to MEGA2560 development board wiring pins |            |  |  |  |  |
| Number                                                            | Pin    | SPI IIC                                                 |            |  |  |  |  |
| 1                                                                 | GND    | GND                                                     |            |  |  |  |  |
| 2                                                                 | VCC    | 5V/3.3V                                                 |            |  |  |  |  |
| 3                                                                 | SCL    | 53                                                      | 21         |  |  |  |  |
| 4                                                                 | SDA    | 51                                                      | 20         |  |  |  |  |
| 5                                                                 | RES    | 3.3V                                                    |            |  |  |  |  |
| 6                                                                 | DC     | 9                                                       | VCC or GND |  |  |  |  |
| 7                                                                 | CS     | 10                                                      | GND        |  |  |  |  |

#### **Operating Steps:**

- A. Connect the OLED module and the Arduino MCU according to the above wiring instructions, and power on;
- B. Select the example you want to test, as shown below:

(Please refer to the test program description document for test program

description)

| oroject + 1.54inch + 1.54OLED_SSD1309 + 1.54inch_OLED_SSD1309_SPI&IIC_Module_MSP154X_V1.0 + 1-Demo + Demo_Ardu |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                |  |  |  |  |
| <u>这件夹</u>                                                                                                     |  |  |  |  |
| ф                                                                                                              |  |  |  |  |
| Demo_1.54inch_OLED_64x128_SSD1309_UNO&Mega2560_Hardware_IIC                                                    |  |  |  |  |
| Demo_1.54inch_OLED_64x128_SSD1309_UNO&Mega2560_Hardware_SPI                                                    |  |  |  |  |
| Install libraries - Test program Dependent library                                                             |  |  |  |  |
| picture                                                                                                        |  |  |  |  |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_Arduino_Demo_Instructions_CN.pdf                                          |  |  |  |  |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_Arduino_Demo_Instructions_EN.pdf English documentation                    |  |  |  |  |

C. Open the selected sample project, compile and download.

The specific operation methods for the Arduino test program relying on library

copy, compile and download are as follows:

http://www.lcdwiki.com/res/PublicFile/Arduino\_IDE\_Use\_Illustration\_EN.pdf

 D. If the OLED module displays characters and graphics normally, the program runs Successfully;

#### 2. RaspberryPi instructions

#### Wiring instructions:

See the interface description for pin assignments.

#### NOTE:

LCDWIKI

Physical pin refers to the GPIO pin code of the RaspBerry Pi development board. BCM encoding refers to the GPIO pin coding when using the BCM2835 GPIO library.

WiringPi coding refers to the GPIO pin coding when using the wiringPi GPIO library.

Which GPIO library is used in the code, the pin definition needs to use the corresponding GPIO library code, see Picture 1 GPIO map table for details.

| wiringPi<br>编码 | BCM<br>编码 | 功能名     | 物理引脚<br>BOARD编码 |    | 功能名     | BCM<br>编码 | wiringPi<br>编码 |
|----------------|-----------|---------|-----------------|----|---------|-----------|----------------|
|                |           | 3.3V    | 1               | 2  | 5V      |           |                |
| 8              | 2         | SDA.1   | 3               | 4  | 5V      |           |                |
| 9              | 3         | SCL.1   | 5               | 6  | GND     |           |                |
| 7              | 4         | GPIO.7  | 7               | 8  | TXD     | 14        | 15             |
|                |           | GND     | 9               | 10 | RXD     | 15        | 16             |
| 0              | 17        | GPIO.0  | 11              | 12 | GPIO.1  | 18        | 1              |
| 2              | 27        | GPIO.2  | 13              | 14 | GND     |           |                |
| 3              | 22        | GPIO.3  | 15              | 16 | GPIO.4  | 23        | 4              |
|                |           | 3.3V    | 17              | 18 | GPIO.5  | 24        | 5              |
| 12             | 10        | MOSI    | 19              | 20 | GND     |           |                |
| 13             | 9         | MISO    | 21              | 22 | GPIO.6  | 25        | 6              |
| 14             | 11        | SCLK    | 23              | 24 | CE0     | 8         | 10             |
|                |           | GND     | 25              | 26 | CE1     | 7         | 11             |
| 30             | 0         | SDA.0   | 27              | 28 | SCL.0   | 1         | 31             |
| 21             | 5         | GPIO.21 | 29              | 30 | GND     |           |                |
| 22             | 6         | GPIO.22 | 31              | 32 | GPIO.26 | 12        | 26             |
| 23             | 13        | GPIO.23 | 33              | 34 | GND     |           |                |
| 24             | 19        | GPIO.24 | 35              | 36 | GPIO.27 | 16        | 27             |
| 25             | 26        | GPIO.25 | 37              | 38 | GPIO.28 | 20        | 28             |
|                |           | GND     | 39              | 40 | GPIO.29 | 21        | 29             |

#### Picture4. GPIO map

| Raspberry Pi test program wiring instructions |            |                                                           |                                                           |  |
|-----------------------------------------------|------------|-----------------------------------------------------------|-----------------------------------------------------------|--|
| Number                                        | Medule Din | Corresponding to deve                                     | elopment board wiring<br>in                               |  |
| Number                                        | Module Pin | SPI                                                       | ПС                                                        |  |
| 1                                             | GND        | GND<br>(Physical pin: 6,9,14,20,25,30,34,39)              |                                                           |  |
| 2                                             | VCC        | 5V/3.3V<br>(Physical pin: 1,2,4)                          |                                                           |  |
| 3                                             | SCL        | Physical pin: 23<br>BCM coding: 11<br>wiringPi coding: 14 | Physical pin: 5<br>BCM coding: 3<br>wiringPi coding: 9    |  |
| 4                                             | SDA        | Physical pin: 19<br>BCM coding: 10<br>wiringPi coding: 12 | Physical pin: 3<br>BCM coding: 2<br>wiringPi coding: 8    |  |
| 5                                             | RES        | Physical pin: 5<br>BCM coding: 3<br>wiringPi coding: 9    | Physical pin: 23<br>BCM coding: 11<br>wiringPi coding: 14 |  |
| 6                                             | DC         | Physical pin: 3<br>BCM coding: 2<br>wiringPi coding: 8    | VCC or GND                                                |  |
| 7                                             | CS         | Physical pin: 24<br>BCM coding: 8<br>wiringPi coding: 10  | GND                                                       |  |

#### **Operating Steps:**

A. open the SPI function of RaspberryPi

Log in to the RaspberryPi using a serial terminal tool (such as putty) and enter the following command:

#### sudo raspi-config

Select Interfacing Options->SPI->YES

Start RaspberryPi's SPI kernel driver

B. install the function library

For detailed installation methods of the bcm2835, wiringPi, and python function

libraries of RaspberryPi, see the following documents:

http://www.lcdwiki.com/res/PublicFile/Raspberrypi Use Illustration EN.pdf

C. select the example that needs to be tested, as shown below:

(Please refer to the test program description document for test program

description)

| project → 1.54inch → 1.54OLED_SSD1309 → 1.54inch_OLED_SSD1309_SPI&IIC_Module_MSP154X_V1.0 → 1-Demo → Demo_Raspberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 新建文件夹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Demo_IIC     Demo_SPI     Test program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Picture     Test program effect picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Image: Statistic Content of Content |

- D. bcm2835 instructions(Take the 4-wire hardware SPI test program as an example)
  - a) Connect the OLED module to the RaspberryPi development board according to the above wiring
  - b) Copy the test program directory

Demo\_1.54inch\_OLED\_64x128\_SSD1309\_bcm2835\_Hardware\_4-wire\_SPI

to RaspberryPi (can be copied via SD card or via FTP tool (such as FileZilla))

c) Run the following command to run the bcm2835 test program:

cd Demo\_1.54inch\_OLED\_64x128\_SSD1309\_bcm2835\_Hardware\_4-wire\_SPI

make

#### sudo ./ 1.54\_SPI\_OLED

As shown below:

| pi@raspberrypi:~/0821 \$ cd 0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/                            |
|--------------------------------------------------------------------------------------------------------|
| pi@raspberrypi:~/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI \$ make                           |
| <pre>gcc -g -00 -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/test.</pre> |
| /pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                                 |
| gcc -g -OO -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/spi.c            |
| i/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                                   |
| gcc -g -O0 -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/gui.c            |
| i/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                                   |
| gcc -g -OO -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/main.            |
| /pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                                 |
| gcc -g -OO -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/delay            |
| me/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                               |
| gcc -g -OO -c /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/src/oled.            |
| /pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/source/include                                 |
| gcc -g -O0 /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/output/test.o /home/           |
| emo_bcm2835_Hardware_4-wire_SPI/output/gui.o /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardwa           |
| elay.o /home/pi/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI/output/oled.o -o 0.96_SF           |
| pi@raspberrypi:~/0821/0.96inch_OLED_Demo_bcm2835_Hardware_4-wire_SPI \$ sudo ./0.96_SPI_OLED           |

- E. wiringPi instructions(Take the 4-wire hardware SPI test program as an example)
  - a) Connect the OLED module to the RaspberryPi development board according to the above wiring
  - b) Copy the test program directory

Demo\_1.54inch\_OLED\_64x128\_SSD1309\_wiringPi\_Hardware\_4-wire\_SPI

to RaspberryPi (can be copied via SD card or via FTP tool (such as FileZilla))

c) Run the following command to run the wiringPi test program:

cd Demo\_1.54inch\_OLED\_64x128\_SSD1309\_wiringPi\_Hardware\_4-wire\_SPI

#### make

#### sudo ./ 1.54\_SPI\_OLED

As shown below:

| pi@raspberrypi:~/0821 \$ cd 0.96inch_OLED_Demo_wiringPi_Hardware_4-wire_SPI/                  |
|-----------------------------------------------------------------------------------------------|
| pi@raspberrypi:~/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI \$ make                 |
| gcc -g -00 -c /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/test.  |
| ome/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                    |
| gcc -g -00 -c /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/spi.c  |
| e/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                      |
| gcc -g -00 -c /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/gui.c  |
| e/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                      |
| gcc -g -OO -c /home/pi/O821/O.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/main.  |
| ome/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                    |
| gcc -g -OO -c /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/delay  |
| /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                  |
| gcc -g -00 -c /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/src/oled.  |
| ome/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/source/include                    |
| gcc -g -00 /home/pi/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI/output/test.o /home/ |
| _Demo_wiringPi_Hardware_4-wire_SPI/output/gui.o /home/pi/0821/0.96inch_OLED_Demo_wiringPi_Har |
| put/delay.o /home/pi/0821/0.96inch_OLED_Demo_wiringPi_Hardware_4-wire_SPI/output/oled.o -o 0. |
| pi@raspberrypi:~/0821/0.96inch OLED Demo wiringPi Hardware 4-wire SPI \$ sudo ./0.96 SPI OLED |

- F. python instructions(Take the 4-wire hardware SPI test program as an example)
  - a) The image processing library PIL needs to be installed before running the python test program. The specific installation method is as follows:

http://www.lcdwiki.com/res/PublicFile/Python Image Library Install Illustration EN.pdf

- b) Connect the OLED module to the RaspberryPi development board as described above.
- c) Copy the test program directory

Demo\_1.54inch\_OLED\_64x128\_SSD1309\_python\_Hardware\_4-wire\_SPI

to RaspberryPi (either via SD card or via FTP tool (such as FileZilla))

d) Run the following command to run 3 python test programs separately:

cd Demo\_1.54inch\_OLED\_64x128\_SSD1309\_python\_Hardware\_4-wire\_SPI/source

sudo python show\_graph.py

sudo python show\_char.py

sudo python show\_bmp.py

As shown below:

pi@raspberrypi:~/0821/\$ cd 0.96inch\_OLED\_Demo\_python\_Hardware\_4-wire\_SPI/source \$ sudo python show\_graph.py pi@raspberrypi:~/0821/0.96inch\_OLED\_Demo\_python\_Hardware\_4-wire\_SPI/source \$ sudo python show\_graph.py pi@raspberrypi:~/0821/0.96inch\_OLED\_Demo\_python\_Hardware\_4-wire\_SPI/source \$ sudo python show\_char.py pi@raspberrypi:~/0821/0.96inch\_OLED\_Demo\_python\_Hardware\_4-wire\_SPI/source \$ sudo python show\_char.py

#### 3. STM32 instructions

#### Wiring instructions:

See the interface description for pin assignments.

| STM32F103C8T6 microcontroller test program wiring |                                |                |                 |  |
|---------------------------------------------------|--------------------------------|----------------|-----------------|--|
| instructions                                      |                                |                |                 |  |
|                                                   | Corresponding to STM32F103C8T6 |                | STM32F103C8T6   |  |
| Number                                            | Module Pin                     | development b  | oard wiring pin |  |
|                                                   |                                | SPI            | IIC             |  |
| 1                                                 | GND                            | GND            |                 |  |
| 2                                                 | VCC                            | 3.3V/5V        |                 |  |
| 3                                                 | SCL                            | PA5            |                 |  |
| 4                                                 | SDA                            | PA7            |                 |  |
| 5                                                 | RES                            | PB8            |                 |  |
| 6                                                 | DC                             | PB7 VCC or GND |                 |  |
| 7                                                 | CS                             | PB9            | GND             |  |

| STM32F103RCT6 microcontroller test program wiring                                                   |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|
| instructions                                                                                        |  |  |  |
| Number         Module Pin         Corresponding to MiniSTM32           development board wiring pin |  |  |  |

|   |     | SPI  | IIC        |  |  |
|---|-----|------|------------|--|--|
| 1 | GND | GND  |            |  |  |
| 2 | VCC | 3.3\ | 3.3V/5V    |  |  |
| 3 | SCL | PB13 |            |  |  |
| 4 | SDA | PB15 |            |  |  |
| 5 | RES | PB12 |            |  |  |
| 6 | DC  | PB10 | VCC or GND |  |  |
| 7 | CS  | PB11 | GND        |  |  |

| STM32F103ZET6 microcontroller test program wiring |              |                                                              |  |  |
|---------------------------------------------------|--------------|--------------------------------------------------------------|--|--|
|                                                   | instructions |                                                              |  |  |
| Number                                            | Module Pin   | Corresponding to Elite STM32<br>development board wiring pin |  |  |
|                                                   | SPI II       |                                                              |  |  |
| 1                                                 | GND          | GND                                                          |  |  |
| 2                                                 | VCC          | 3.3V/5V                                                      |  |  |
| 3                                                 | SCL          | PB13                                                         |  |  |
| 4                                                 | SDA          | PB15                                                         |  |  |
| 5                                                 | RES          | PB12                                                         |  |  |
| 6                                                 | DC           | PB10 VCC or GND                                              |  |  |
| 7                                                 | CS           | PB11 GND                                                     |  |  |

| STM32F407ZGT6 microcontroller test program wiring |     |                                   |                                     |
|---------------------------------------------------|-----|-----------------------------------|-------------------------------------|
| instructions                                      |     |                                   |                                     |
| Number         Module Pin         Corresponding   |     | Corresponding to<br>development b | Explorer STM32F4<br>oard wiring pin |
|                                                   |     | SPI                               | IIC                                 |
| 1                                                 | GND | GND                               |                                     |

| 2 | VCC | 3.3V/5V |            |
|---|-----|---------|------------|
| 3 | SCL | РВЗ     |            |
| 4 | SDA | PB5     |            |
| 5 | RES | PB12    |            |
| 6 | DC  | PB14    | VCC or GND |
| 7 | CS  | PB15    | GND        |

| STM32F429IGT6 microcontroller test program wiring |              |                                                                    |     |  |
|---------------------------------------------------|--------------|--------------------------------------------------------------------|-----|--|
|                                                   | instructions |                                                                    |     |  |
| Number                                            | Module Pin   | Corresponding to Apollo STM32F4/F7<br>development board wiring pin |     |  |
|                                                   |              | SPI                                                                | IIC |  |
| 1                                                 | GND          | GND                                                                |     |  |
| 2                                                 | VCC          | 3.3V/5V                                                            |     |  |
| 3                                                 | SCL          | PF7                                                                |     |  |
| 4                                                 | SDA          | PF9                                                                |     |  |
| 5                                                 | RES          | PD12                                                               |     |  |
| 6                                                 | DC           | PD5 VCC or GND                                                     |     |  |
| 7                                                 | CS           | PD11 GND                                                           |     |  |

| STM32F767IGT6 and STM32H743IIT6 microcontroller test |                             |                                    |  |
|------------------------------------------------------|-----------------------------|------------------------------------|--|
|                                                      | program wiring instructions |                                    |  |
|                                                      |                             | Corresponding to Apollo STM32F4/F7 |  |
| Number                                               | Module Pin                  | development board wiring pin       |  |
|                                                      |                             | SPI                                |  |
| 1                                                    | GND                         | GND                                |  |
| 2                                                    | VCC                         | 3.3V/5V                            |  |
| 3                                                    | SCL                         | PB13                               |  |
| 4                                                    | SDA                         | PB15                               |  |

| 5 | RES | PD12 |  |
|---|-----|------|--|
| 6 | DC  | PD5  |  |
| 7 | CS  | PD11 |  |

#### **Operating Steps:**

- Connect the IPS module and the STM32 MCU according to the above wiring instructions, and power on;
- B. Select the test example according to the model of the microcontroller, as shown in the following figure:

(Please refer to the test program description document in the test package for

the test program description)

| ▶ project ▶ 1.54inch ▶ 1.54OLED_SSD1309 ▶ 1.54inch_OLED_S   | SD1309_SPI&IIC_Module | _MSP154X_V1.0 ▶ | 1-Demo ► Demo_S | TM32 |
|-------------------------------------------------------------|-----------------------|-----------------|-----------------|------|
| -1)                                                         |                       |                 |                 |      |
| 新建文件夹                                                       |                       |                 |                 |      |
| 名称                                                          | *                     |                 |                 |      |
| Demo_IIC                                                    |                       |                 |                 |      |
| Picture                                                     |                       |                 |                 |      |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_STM32_Demo_Instruction | uctions_CN.pdf        | Test program    | n Chinese and   |      |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_STM32_Demo_Instruction | uctions_EN.pdf        | English docu    | Imentation      |      |

C. Open the selected test program project, compile and download;

detailed description of the STM32 test program compilation and download can be

found in the following document:

http://www.lcdwiki.com/res/PublicFile/STM32 Keil Use Illustration EN.pdf

D. If the OLED module displays characters and graphics normally, the program runs successfully;

#### 4. C51 instructions

#### Wiring instructions:

See the interface description for pin assignments.

| STC89C52RC and STC12C5A60S2 microcontroller test |                             |                                                              |  |  |
|--------------------------------------------------|-----------------------------|--------------------------------------------------------------|--|--|
|                                                  | program wiring instructions |                                                              |  |  |
| Number                                           | Module Pin                  | Corresponding to STC89/STC12<br>development board wiring pin |  |  |
|                                                  |                             | SPI IIC                                                      |  |  |
| 1                                                | GND                         | GND                                                          |  |  |
| 2                                                | VCC                         | 3.3V/5V                                                      |  |  |
| 3                                                | SCL                         | P17                                                          |  |  |
| 4                                                | SDA                         | P15                                                          |  |  |
| 5                                                | RES                         | P33                                                          |  |  |
| 6                                                | DC                          | P12 VCC or GND                                               |  |  |
| 7                                                | CS                          | P13 GND                                                      |  |  |

#### **Operating Steps:**

- A. Connect the IPS module and the C51 MCU according to the above wiring instructions, and power on;
- B. Select the C51 test program to be tested, as shown below:

(Please refer to the test program description document in the test package for the test program description)

| ▶ project ▶ 1.54inch ▶ 1.54OLED_SSD1309 ▶ 1.54inch_OLED_SSD1309_SPI&IIC_M | odule_MSP154X_V1.0 ▶ 1-Demo ▶ [ |
|---------------------------------------------------------------------------|---------------------------------|
| H)                                                                        |                                 |
| 新建文件夹                                                                     |                                 |
| 名称                                                                        |                                 |
| Demo_IIC<br>Demo_SPI                                                      |                                 |
| picture                                                                   |                                 |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_C51_Demo_Instructions_CN.pdf         | Test program Chinese and        |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_C51_Demo_Instructions_EN.pdf         | English documentation           |
|                                                                           |                                 |

C. Open the selected test program project, compile and download;

detailed description of the C51 test program compilation and download can be

found in the following document:

http://www.lcdwiki.com/res/PublicFile/C51\_Keil%26stc-isp\_Use\_Illustration\_EN.pdf

 D. If the OLED module displays characters and graphics normally, the program runs successfully;

#### 5. MSP430 instructions

#### Wiring instructions:

See the interface description for pin assignments.

| MSP430F149 microcontroller test program wiring |            |                                                         |            |
|------------------------------------------------|------------|---------------------------------------------------------|------------|
| instructions                                   |            |                                                         |            |
| Number                                         | Module Pin | Corresponding to MSP430 development<br>board wiring pin |            |
|                                                |            | SPI                                                     | ШС         |
| 1                                              | GND        | GND                                                     |            |
| 2                                              | VCC        | 3.3V/5V                                                 |            |
| 3                                              | SCL        | P33                                                     |            |
| 4                                              | SDA        | P31                                                     |            |
| 5                                              | RES        | P22                                                     |            |
| 6                                              | DC         | P21                                                     | VCC or GND |
| 7                                              | CS         | P20                                                     | GND        |

#### **Operating Steps:**

- A. Connect the IPS module and the MSP430 MCU according to the above wiring instructions, and power on;
- B. Select the MSP430 test program to be tested, as shown below:
  (Please refer to the test program description document in the test package for the test program description)

| project > 1.54inch > 1.54OLED_SSD1309 > 1.54inch_OLED_SSD1309_SPI&IIC_I | Module_MSP154X_V1.0 + 1-Demo + Demo_MSP43 |
|-------------------------------------------------------------------------|-------------------------------------------|
|                                                                         |                                           |
| H)                                                                      |                                           |
| <del>\$57₽→</del> ///                                                   |                                           |
| 利建义件关                                                                   |                                           |
| 名称                                                                      |                                           |
| Hun.                                                                    |                                           |
| Demo IIC                                                                |                                           |
| Test program                                                            |                                           |
| Demo_SPI                                                                |                                           |
| Le picture Test program effect picture                                  |                                           |
| 1.54inch_OLED_64x128_SSD1309_SPI&IIC_MSP430_Demo_Instructions_CN.pdf    | Test program Chinese and                  |
|                                                                         | English documentation                     |
| I.54Inch_OLED_64X128_55D1309_5Pt&llC_M5P430_Demo_Instructions_En.pdf    | English documentation                     |

C. Open the selected test program project, compile and download;

detailed description of the MSP430 test program compilation and download can

be found in the following document:

http://www.lcdwiki.com/res/PublicFile/IAR IDE%26MspFet Use Illustration EN.pdf

D. If the IPS module displays characters and graphics normally, the program runs successfully;

# Software Description

#### 1. Code Architecture

A. Arduino code architecture description

The code architecture is shown below



Arduino's test program code consists of two parts: the LCDWIKI library and

application code.

The LCDWIKI library consists of two parts: the LCDWIKI\_SPI library and the

LCD\_GUI library.

The application contains several test examples, each with different test content LCDWIKI\_SPI is the underlying library, which is associated with hardware. It is mainly responsible for operating registers, including hardware module initialization, data and command transmission, pixel coordinates and color settings, and display mode configuration.

LCDWIKI\_GUI is a middle-tier library, which is mainly responsible for drawing graphics and displaying characters using the API provided by the underlying library. The application is to use the API provided by the LCDWIKI library to write some test examples to achieve some aspects of the test function.

#### B. RaspberryPi code architecture description

The python test program code architecture is shown below:



The python test program consists of but part: PIL image processing library, OLED initialization code, test sample code

PIL image processing library is responsible for image drawing, character and text display operations, etc.

OLDE initialization code is responsible for operating registers, including hardware module initialization, data and command transfer, pixel coordinates and color settings, display mode configuration, etc.

The test example is to use the API provided by the above two parts of the code to implement some test functions.

The bcm2835 and wiringPi test program code architecture is as follows:



The Demo API code for the main program runtime is included in the test code;

OLED initialization and related operations are included in the OLED code;

Drawing points, lines, graphics, and Chinese and English character display related

operations are included in the GUI code;

The GPIO library provides GPIO operations;

The main function implements the application to run;

Platform code varies by platform;

**LCDWIKI** 

SPI initialization and configuration related operations are included in the SPI code;

#### C. C51, STM32 and MSP430 code architecture description



The code architecture is shown below:

The Demo API code for the main program runtime is included in the test code;

OLED initialization and related bin parallel port write data operations are included in the OLED code;

Drawing points, lines, graphics, and Chinese and English character display related operations are included in the GUI code;

The main function implements the application to run;

Platform code varies by platform;
SPI initialization and configuration related operations are included in the SPI code;

#### 2. software SPI and hardware SPI description

The IPS module provides software SPI and hardware SPI sample code (except STC89C52RC, because it does not have hardware SPI function), the two sample code does not make any difference in the display content, but the following aspects are different:

#### A. display speed

The hardware SPI is significantly faster than the software SPI, which is determined by the hardware.

#### B. GPIO definition

The software SPI all control pins must be defined, any idle pin can be used, the hardware SPI data and clock signal pins are fixed (depending on the platform), other control pins should be defined by themselves, or any idle reference can be used. foot.

#### C. initialization

When the software SPI is initialized, only the GPIO for pin definition needs to be initialized (not required by the C51 platform). When the hardware SPI is initialized, the relevant control registers and data registers need to be initialized.

#### 3. GPIO definition description

#### A. Arduino test program GPIO definition description

The Arduino test program GPIO definitions are placed in the application examples, and each application example can define GPIO. As shown in the figure below (take UNO MCU 4-wire software SPI test program as an example):

| //paramt | ters de | efine |      |     |       |      |    |         |
|----------|---------|-------|------|-----|-------|------|----|---------|
| #define  | MODEL   | SSD13 | 06   |     |       |      |    |         |
| #define  | CS      | A5    |      |     |       |      |    |         |
| #define  | DC      | A3    |      |     |       |      |    |         |
| #define  | D1      | 11    |      |     |       |      |    |         |
| #define  | DO      | 13    |      |     |       |      |    |         |
| #define  | RES     | A4    |      |     |       |      |    |         |
| #define  | LED     | -1    | //if | you | don't | need | to | control |

If using the software SPI, all pin definitions can be modified to any other free GPIO.

If hardware SPI is used, D0 and D1 cannot be modified and do not need to be

defined. Other GPIOs can be modified.

If a 3-wire SPI is used, the DC does not need to be defined.

#### B. RaspberryPi test program GPIO definition description

The RaspberryPi test program uses hardware SPI, so only three GPIO ports need to be defined. The bcm2835 and WiringPi test programs place the GPIO definition in the oled.h file, as shown in the following figure (take the 4-wire SPI test program

as an example):

```
//-----OLED module pin definition------
#define OLED_CS 8 //chip selection control signal bcm:8
#define OLED_DC 2 //data or command selection control signal bcm:2
#define OLED_RST 3 //reset control signal bcm:3
```

The Python test program places the GPIO definition in each test example, as

shown in the following figure (take the 4-wire SPI test program as an example):

```
# ResplerryPi pin configuration:
DC = 2
RES = 3
CS = 8
```

These three GPIOs can be modified according to the corresponding GPIO library

code.

If a 3-wire SPI is used, the OLED\_DC or DC does not need to be defined.

#### C. STM32 test program GPIO definition description

The STM32 test program GPIO definition is divided into two parts: control GPIO

definition and SPI GPIO definition

The control GPIO definition is placed in oled.h, and the SPI GPIO definition is

placed in spi.h, as shown in the following figure (take the STM32F103RCT6

software 4-wire SPI test program as an example):

|                                                             | OLED端口定义    |             |      |
|-------------------------------------------------------------|-------------|-------------|------|
| <pre>#define OLED_CS #define OLED_DC #define OLED_RST</pre> | GPIO_Pin_11 | //片选信号      | PB11 |
|                                                             | GPIO_Pin_10 | //数据/命令控制信号 | PB10 |
|                                                             | GPIO_Pin_12 | //复位信号      | PB12 |



If using the software SPI, all pin definitions can be modified to any other free GPIO.

If hardware SPI is used, OLED\_MOSI and OLED\_CLK cannot be modified and do

not need to be defined. Other GPIOs Can be modified.

If you use a 3-wire SPI, OLED\_DC does not need to be defined.

After modifying the GPIO definition, you need to initialize the GPIO to the

OLED\_Init\_GPIO function in the oled.c file.

#### D. C51 test program GPIO definition description

The C51 test program GPIO definition is divided into two parts: control GPIO

definition and SPI GPIO definition

The control GPIO definition is placed in oled.h, and the SPI GPIO definition is placed in spi.h, as shown in the following figure (take the STC12C5A60S2 software 4-wire SPI test program as an example):



If using the software SPI, all pin definitions can be modified to any other free GPIO. If hardware SPI is used, OLED\_MOSI and OLED\_CLK cannot be modified and do not need to be defined. Other GPIOs can be modified. (Only STC12C5A60S2 microcontroller has hardware SPI function)

If you use a 3-wire SPI, OLED\_DC does not need to be defined.

#### E. MSP430 test program GPIO definition description

MSP430's LCD non-SPI GPIO definition is placed in lcd.h, as shown below (take MSP430F149 software 4-wire SPI test program as an example): //-----#define OLED\_CS BIT0 //片选信号 P20 #define OLED\_DC BIT1 //数据/命令控制信号 P21 #define OLED\_RST BIT2 //复位信号 P22

All pin definitions can be modified and can be defined as any other free GPIO.

If you use a 3-wire SPI, OLED\_DC does not need to be defined.

The GPIO definition of the MSP430 LCD SPI is placed in spi.h, as shown in the following figure (take the MSP430F149 software 4-wire SPI test program as an example):

//本测试程序使用的是数件SPI接口驱动 //SPI时钟信号以及SPI读、写信号引脚都可以更改 #define SPI\_SCLK BIT3 //P33 #define SPI\_MOSI BIT1 //P31

If using the software SPI, all pin definitions can be modified and can be defined as

any other free GPIO.

If you use hardware SPI, these pins do not need to be defined.

#### 4. SPI communication code implementation

#### A. Arduino test program SPI communication code implementation

The SPI communication code is implemented in the LCDWIKI\_SPI library.

The 4-wire software and hardware SPI code implementation is shown below:

The 3-wire software and hardware SPI code implementation is shown below:

```
void LCDWIKI_SPI::Spi_3_Wire_Write(uint8_t data,uint8_t cmd)
{
    uint16_t txdata = 0;
    txdata = ((cmd<<15)|(data<<7));</pre>
    if(hw_spi)
        SPI.transfer16(txdata);
    }
    else
        uint16_t val = 0x8000;
        while(val>(1<<6))</pre>
            if(txdata&val)
                 MOSI HIGH;
            else
                MOSI LOW;
            CLK_LOW;
            CLK_HIGH;
            val >>= 1;
    3
} « end Spi_3_wire_Write »
```

It is through the flag bit to decide whether to use software SPI or hardware SPI.

#### B. RaspberryPi test program SPI communication code implementation

The SPI communication code for the bcm2835 and wiringPi test programs is implemented in spi.c.

The SPI communication code for the python test program is implemented in oled.py.

The bcm2835 test program 4-wire hardware SPI code is implemented as shown

below:

The bcm2835 test program 3-wire hardware SPI code is implemented as shown below:

```
* @name :void SPI_WriteByte(uint8_t byte, uint8_t cmd)
* @date :2018-08-27
* @function :Write a byte of data using RaspberryPi hardware SPI
 * @parameters :Byte:Data to be written
        cmd:0-command
              1-data
* @retvalue :Data received by the bus
void SPI_WriteByte(uint8_t byte, uint8_t cmd)
{
   uint16_t data=0;
   char txbuf[2]={0};
   data=((cmd<<15)|(byte<<7));</pre>
   txbuf[0]=(char)(data>>8);
   txbuf[1]=(char)(data&0xFF);
      bcm2835_spi_transfern(txbuf,2);
}
```

The wiringPi test program 4-wire hardware SPI code is implemented as shown

below:

The wiringPi test program 3-wire hardware SPI code is implemented as shown

below:

```
******
* @name :void SPI_WriteByte(uint8_t byte, uint8_t cmd)
* @date :2018-08-27
* @function :Write a byte of data using RaspberryPi hardware SPI
 * @parameters :Byte:Data to be written
          cmd:0-command
                  1-data
 * @retvalue :Data received by the bus
                                    void SPI_WriteByte(uint8_t byte, uint8_t cmd)
{
   uint16_t data;
   unsigned char txbuf[2]={0};
   data=((cmd<<15)|(byte<<7));
txbuf[0]=(unsigned char)(data>>8);
   txbuf[1]=(unsigned char)(data&0xFF);
   wiringPiSPIDataRW(CHANNEL,txbuf,2);
}
```

The python test program 4-wire hardware SPI code is implemented as shown

below:

```
>def ·writebyte (self,val,flag):
>> """send ·one ·byte ·data ·to ·oled ·module"""
>> if ·flag ·== ·OLED_COMMAND:
>> >> GPIO.output (self.oleddc,GPIO.LOW)
>> else:
>> >> GPIO.output (self.oleddc,GPIO.HIGH)
>> GPIO.output (self.oledcs,GPIO.LOW)
>> self.oledspi.writebytes ([val])
>> self.oledspi.xfer([val],8000000)
>> GPIO.output (self.oledcs,GPIO.HIGH)
```

The python test program 3-wire hardware SPI code is implemented as shown

below:

LCDWIKI

#### C. STM32 test program SPI communication code implementation

The SPI communication code is implemented in spi.c. (take STM32F103RCT6 test

program as an example)

The 4-wire software and hardware SPI communication code implementation is as follows:

Software SPI:

#### LCDWIKI 1.54inch OLED SSD1309 SPI&IIC Module User Manual CR2022-MI4911

|                         | ***************************************   |
|-------------------------|-------------------------------------------|
|                         | PI_WriteByte(u8 Data)                     |
| * @date :2018-08        | B-27                                      |
|                         | a byte of data using STM32's Software SPI |
| * @parameters :Data:Da  | ata to be written                         |
|                         |                                           |
|                         | ***************************************   |
| void SPI WriteByte(u8 I | Data)                                     |
| {                       |                                           |
| unsigned char i=0;      |                                           |
| for(i=8;i>0;i)          |                                           |
| {                       |                                           |
| if(Data&0x80)           |                                           |
| {                       |                                           |
| OLED MOSI SET();        | //写数据1                                    |
| }                       |                                           |
| else                    |                                           |
| {                       |                                           |
| OLED MOSI CLR();        | //写数据0                                    |
| }                       |                                           |
| OLED CLK CLR();         | //将时钟拉低拉高                                 |
| OLED CLK SET ();        | //发送1bit数据                                |
| Data<<=1;               |                                           |
| }                       |                                           |
| }                       |                                           |

Hardware SPI:

| /**************************************                                            |
|------------------------------------------------------------------------------------|
| * @name :u8 SPI WriteByte(SPI TypeDef* SPIx,u8 Byte)                               |
| * @date :2018-08-27                                                                |
| * @function :Write a byte of data using STM32's hardware SPI                       |
| * @parameters :SPIx: SPI type,x for 1,2,3<br>Byte:Data to be written               |
| * @retvalue :Data received by the bus                                              |
|                                                                                    |
| <u>u8</u> SPI_WriteByte(SPI_TypeDef* SPIx, <u>u8</u> Byte)                         |
| {                                                                                  |
| while((SPIx->SR&SPI_I2S_FLAG_TXE)==RESET);  //等待发送区空<br>SPIx->DR=Byte;  //发送一个byte |
| while((SPIx->SR&SPI I2S FLAG RXNE)==RESET);//等待接收完一个byte                           |
| return SPIx->DR;                                                                   |
| 1                                                                                  |

The 3-wire software and hardware SPI communication code implementation is as follows:

Software SPI:

#### LCDWIKI 1.54inch OLED SSD1309 SPI&IIC Module User Manual CR2022-MI4911

| /************************************* | **********************<br>PI_WriteByte(u8 dat<br>3-27<br>a byte of data usin<br>ata to be written | ************************************** | ************************************** |
|----------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|
|                                        |                                                                                                   |                                        |                                        |
|                                        |                                                                                                   |                                        | 5.30                                   |
| *****                                  |                                                                                                   |                                        | ********************/                  |
| void SPI_WriteByte( <u>u8</u> )        | data, <u>u8</u> Cmd)                                                                              |                                        |                                        |
| {<br>unsigned char i=0:                |                                                                                                   |                                        |                                        |
| <u>u16</u> Data;                       |                                                                                                   |                                        |                                        |
| Data = ((Cmd<<15) (d                   | ata<<7));                                                                                         |                                        |                                        |
| for(i=9;i>0;i)                         |                                                                                                   |                                        |                                        |
| ۱<br>if(Data&0x8000)                   |                                                                                                   |                                        |                                        |
| {                                      |                                                                                                   |                                        |                                        |
| OLED_MOSI_SET();                       | //与数据1                                                                                            |                                        |                                        |
| )<br>else                              |                                                                                                   |                                        |                                        |
| {                                      |                                                                                                   |                                        |                                        |
| OLED_MOSI_CLR();                       | //写数据0                                                                                            |                                        |                                        |
|                                        | / 小肉叶品卡(瓜卡)吉                                                                                      |                                        |                                        |
| OLED_CLK_CLR();                        | //桉凹钾拉低拉面<br>//发送1bit数据                                                                           |                                        |                                        |
| Data<<=1;                              | , , , , , , , , , , , , , , , , , , ,                                                             |                                        |                                        |
| }                                      |                                                                                                   |                                        |                                        |

Hardware SPI:



#### D. C51 test program SPI communication code implementation

The SPI communication code is implemented in spi.c. (taking the STC12C5A60S2

test program as an example)

The 4-wire software and hardware SPI communication code implementation is as follows:

Software SPI:



Hardware SPI:



The 3-wire software and hardware SPI communication code implementation is as

follows:

Software SPI:

| /********                   | *************                         |
|-----------------------------|---------------------------------------|
| * @name                     | :void SPI_WriteByte(u8 byte, u8 cmd)  |
| * @date                     | :2018-08-09                           |
| * @function                 | :Write a byte of data using C51's so: |
| * @parameters               | :byte:Data to be written              |
|                             | cmd:0-command                         |
|                             | 1-data                                |
| * @retvalue                 | :None                                 |
| *****                       | *****                                 |
| void SPI_Write              | Byte(u8 byte, u8 cmd)                 |
| {                           |                                       |
| u8 i;                       |                                       |
| u16 Data=0;                 |                                       |
| Data=((cmd<<                | 15) (byte<<7));                       |
| <pre>for(i=0;i&lt;9;:</pre> | L++)                                  |
| {                           |                                       |
| if(Data&0x8                 | 3000)                                 |
| {                           |                                       |
| OLED_MOS:                   | [_Set();                              |
| }                           |                                       |
| else                        |                                       |
| {                           |                                       |
| OLED_MOS:                   | [_Clr();                              |
| }                           |                                       |
| OLED_CLK_C                  | lr();                                 |
| OLED_CLK_Se                 | et();                                 |
| <pre>Data&lt;&lt;=1;</pre>  |                                       |
| }                           |                                       |
| }                           |                                       |

Hardware SPI:



E. MSP430 test program SPI communication code implementation

The software SPI communication code is implemented in spi.c.

The 4-wire software and hardware SPI communication code implementation is as

follows:

Software SPI:

```
* @name :void SPI_WriteByte(u8 Data)
* @date :2018-08-09
* @function :Write a byte of data using STM32's hardware SPI
 * @parameters :SPIx: SPI type,x for 1,2,3
             Byte:Data to be written
* @retvalue :Data received by the bus
*****
void SPI WriteByte(u8 Data)
Ł
      unsigned char i=0;
      for(i=8;i>0;i--)
        if(Datas0x80)
        SPI_MOSI_SET; // 躺出數据
     else SPI MOSI CLR;
     SPI SCLK CLR;
     SPI_SCLK_SET;
     Data<<=1;
      1
3
```

Hardware SPI:

The software SPI communication code is implemented in spi.c.

The 3-wire software and hardware SPI communication code implementation is as

follows:

Software SPI:

```
:void SPI_WriteByte(u8 Data)
* @name
* @date :2018-08-09
* @function :Write a byte of data using STM32's hardware SPI
* @parameters :SPIx: SPI type,x for 1,2,3
           Byte:Data to be written
* @retvalue :Data received by the bus
void SPI_WriteByte(u8 val, u8 cmd)
      unsigned char i=0;
      u16 Data=0;
      Data = ((cmd<<15) | (val<<7));
      for(i=9;i>0;i--)
      {
       if(Datas0x8000)
       SPI_MOSI_SET; // 躺出数据
       else SPI_MOSI_CLR;
       SPI_SCLK_CLR;
       SPI_SCLK_SET;
       Data<<=1;
      1
```

Hardware SPI:

| /**********                  | ******                                                                                           |
|------------------------------|--------------------------------------------------------------------------------------------------|
| * @name<br>* @date           | <pre>:void OLED_WR_Byte(unsigned dat, unsigned cmd) :2018-08-27</pre>                            |
| * @function<br>* @parameters | :Write a byte of content to the OLED screen<br>:dat:Content to be written<br>cmd:0-write command |
|                              | 1-                                                                                               |
| * @retvalue                  | :None                                                                                            |
| *****                        | ******                                                                                           |
| void OLED_WR_By<br>{         | te(unsigned dat,unsigned cmd)                                                                    |
| u16 dat                      | a=0;                                                                                             |
| data=((                      | cmd<<15)   (dat<<7) );                                                                           |
| OLED CS                      | Clr;                                                                                             |
| SPI Wri                      | teBvte((data>>8) & 0xFF):                                                                        |
| SPI Wri                      | teByte (datas0xFF) :                                                                             |
| OLED CS                      | Set:                                                                                             |
| }                            | /                                                                                                |

#### Common software

This set of test examples needs to display Chinese and English, symbols and pictures, so PCtoLCD2002 modulo software is used. Here, the setting of the modulo software is explained only for the test program.

The **PCtoLCD2002** modulo software settings are as follows:

Dot matrix format select Dark code

the modulo mode select the progressive mode(C51 and MSP430 test programs need to

#### choose determinant)

Take the model to choose the direction (high position first)(C51 and MSP430 test

procedures need to choose reverse (low position first))

Output number system selects hexadecimal number

Custom format selection C51 format

The specific setting method is as follows:

http://www.lcdwiki.com/Chinese\_and\_English\_display\_modulo\_settings

Bedienungsanleitung Best.-Nr. 86010030



### **Getaktetes Digital BEC 8A**

Das Digital BEC bietet die Möglichkeit, die Empfangsanlage im Modell aus dem Antriebsakku zu versorgen. Die Eingangsspannung darf dabei zwischen 6,0V und 12,6V liegen (2-3 Zellen LiPo).

Im Gegensatz zu herkömmlichen Reglern mit BEC-Schaltkreis, kann das Digital BEC wesentlich höhere Ströme liefern und eine sichere Stromversorgung garantieren. Besonders bei Servos mit hoher Stromaufnahme und Antriebsakkus mit hohen Spannungen, kommt es schnell zur Überlastung der herkömmlichen BEC-Schaltkreise. Dies führt zu einer starken Hitzeentwicklung und kann zu Aussetzern in der RC-Anlage führen.

#### **Technische Daten**

Ausgangsspannung: 5V/8A oder 6V/8A wählbar (kurzzeitig 15A) Eingangsspannung: 6-12,6V (2-3 Zellen LiPo) Abmessungen: 42,0x39,0x9,0 mm Gewicht: 38g

#### Features

Das Digital BEC besitzt einen Überlast- und Temperaturschutz. Der Wirkungsgrad des Spannungsreglers liegt bei ca. 92%. Durch die geringen Abmessungen passt der digitale Spannungsregler in nahezu jedes Modell. Der Regler erkennt die Zellenzahl automatisch und zeigt den Ladezustand über 4 LEDs an. Der Ausgangsstrom beträgt konstant 8A, kurzzeitig sind 15A möglich. Der Status des Reglers wird über eine LED angezeigt. Die LED leuchtet, wenn der Regler im normalen Bereich arbeitet. Die Stromversorgung des Empfängers erfolgt über zwei Kabel, die an den Empfänger angeschlossen werden.

Die elektronischen Bauteile auf der Platine sind weitestgehend abgeschirmt. Die Kabel sind mit einem Ferrit-Kern ausgestattet, um Störungen der RC-Anlage auszuschließen.

#### Der Anschluss des Digital BEC

WICHTIGER HINWEIS! Das Digital BEC erzeugt ein elektromagnetisches Feld. Montieren Sie das BEC mindestens 5 cm oder mehr vom Empfänger entfernt im Modell!

**Hinweis:** Diesem Regler liegt ein separates Kabel bei, dass die BEC-Spannung um 0,7V reduziert. Dies ist erforderlich bei einigen Hi-Speed-Servos in Verbindung mit empfindlichen Kreiselsystemen. Das Kabel wird im Bedarfsfalle zwischen Kreisel und Empfänger oder zwischen Servo und Empfänger gesteckt.



Achten Sie beim Anschluss auf die korrekte Polung! Bei Verpolung wird die Elektronik irreparabel zerstört! Der Spannungsregler ist ausschließlich für 2-3 zellige LiPo-Akkus zugelassen! NiMH- und NiCd-Akkus sollen NICHT an diesem Regler angeschlossen werden!

#### Einstellen der Ausgangsspannung

Die Ausgangsspannung für die RC-Anlage wird über den Schalter eingestellt.

#### LED Status-Anzeige

Die LED zeigt an, ob der Regler im normalen Bereich arbeitet. Leuchtet die LED nicht, müssen die Akku-Anschlüsse überprüft werden.

#### LED Kapazitäts-Anzeige

|      | LED | Status |      | The voltage of the lithium battery pack |                 |  |
|------|-----|--------|------|-----------------------------------------|-----------------|--|
| Full | Mid | Low    | Stop | 2S battery pack                         | 3S battery pack |  |
| 0    | 0   | 0      | 0    | 7.8-8.4V                                | 11.7-12.6V      |  |
| •    | 0   | 0      | 0    | 7.2-7.8V                                | 10.8-11.7V      |  |
| •    | •   | 0      | 0    | 6.6-7.2V                                | 9.9-10.8V       |  |
| •    | •   | •      | 0    | 5.4-6.6V                                | <9.9V           |  |

#### • = LED leuchtet • = LED leuchtet nicht

Leuchtet nur eine LED bei Verwendung eines 3-zelligen LiPo-Akkus, bedeutet dies dass die Akkuspannung unter 9,9V liegt. In diesem Fall muss der Akku geladen werden, um eine Tiefentladung zu vermeiden.

#### Schalter

Mit dem Schalter kann die RC-Anlage bequem ein- und ausgeschaltet warden.

#### Elektronischer Regler OHNE BEC-Funktion

Der digitale Spannungsregler wird mit dem Antriebsakku verbunden. Der Servostecker wird in einen freien Kanal des Empfängers gesteckt.



#### **Elektronischer Regler MIT BEC-Funktion**

In diesem Fall muss zunächst die BEC-Funktion des Reglers deaktiviert werden! Dies kann entweder über die Software im Regler erfolgen oder es wird der ROTE DRAHT aus dem Empfängeranschlusskabel des Reglers unterbrochen.



Hype • Nikolaus-Otto-Str. 4 • D-24568 Kaltenkirchen Helpdesk: 04191-932678 • helpdesk@hype-rc.de • www.hype-rc.de Instruction Manual Best.-Nr. 86010030



## 8A Switching-Mode UBEC

#### 1. Why do you need UBEC?

The 8A-UBEC is a switching-mode DC-DC regulator supplied with a 2-3 cells lithium battery pack and outputs a consistent safe voltage for your receiver, gyro and servos. It is very suitable for nitro powered RC helicopter (above 30 class) and big fixed-wing aircraft. Compared with the linear mode UBEC, the overall efficiency of the switching-mode BEC is

much higher, so it can extend the working time of the receiver battery pack, and because a switching- mode UBEC can significantly reduce the heat emission, it can avoid the loss of control caused by the over-heat problem which is frequently happened with the linear mode UBEC.

#### 2. Specification:

- 2.1. **Output:** 5V/8A or 6V/8A (Changeable with an output-voltage select switch )
- 2.2. Input: 6V-12.6V (2-3 cells lithium battery pack)
- 2.3. Size: 42mm\*39mm\*9mm (length\*width\*height)
- 2.4. Weight: 38g
- 2.5. Quiescent current: 60mA

#### 3. Features:

- 3.1. Designed with an advanced switching-mode DC-DC regulator IC.
- 3.2. The output current is very large, the continuous output current is up to 8A, and the burst output current is 15A.
- 3.3. With the output short-circuit protection function.
- 3.4. A metal shield covers almost all the electronic components, and a specially made filter (ferrite ring) is attached with the output wires to significantly reduce the electro magnetic interference.
- 3.5. Automatically detects the number of the lithium battery pack (2 cells or 3 cells), and shows the battery capacity with 4 indicators (LEDs).
- 3.6. Shows the working status with an indicator (LED), lights when the output is in normal range.
- 3.7. 2 output leads to reduce the resistance when connecting the UEBC to the receiver.
- 3.8. Accessory: A step-down voltage regulator with 0.7V down (from 6.0V to 5.3V).
- 4. Wiring Method



#### 5. Special Explanation

- 5.1. Although we have tried our best to reduce the electromagnetic interference caused by switching-model UBEC, it still may cause some interference to the receiver. So please install the filter far away from the UBEC's main board, and DON'T stack the filter on the main board. Please put the whole UBEC as far as possible away from the receiver.
- 5.2. This UBEC is only designed for using lithium batter pack; we don't recommend the use of NiMh / NiCd battery pack.
- 5.3. The input polarity must be correct; otherwise the UBEC will be damaged. Please check the polarity carefully before connecting the battery pack.

#### 6. How to Use the UBEC?

6.1. Change the output voltage The voltage is chosen by an output-voltage select switch.

#### 6.2. Working status indicator (LED)

63

| LED Status       |        |         |      | The voltage of the infinum battery pack |                      |  |
|------------------|--------|---------|------|-----------------------------------------|----------------------|--|
| Full             | Mid    | Low     | Stop | 2S battery pack                         | 3S battery pack      |  |
|                  |        |         |      | $7.8 \pm 84V$                           | 11.7-12.6V           |  |
| Salle            | I YOCa | hari    |      | 7.2-7.8V                                | 10.8-11.7V           |  |
| •                | •      | 0       | 0    | 6.6-7.2V                                | 9.9-10.8V            |  |
| •                | •      | •       | 0    | 5.4-6.6V                                | <9.9V                |  |
| 4 LEDs flash     |        |         |      | 1)The voltage <5.4V                     | 1)The voltage >13.5V |  |
| at the same time |        |         |      | 2)The voltage >13.5V                    |                      |  |
| Or               | e LED  | flashes | for  | The voltage of the                      | battery pack is just |  |
|                  | a sho  | rt time |      | at the critical ed                      | ge of each range.    |  |
|                  |        |         |      |                                         |                      |  |

vhen the UBEC has connections.

o means the LED lights, • means the LED does not light

When you are using a 3 cells lithium battery pack, if there is only one LED ("STOP") lights, that means the voltage is less than 9.9v, please change the battery pack as soon as possible, otherwise it will be damaged because of over-discharging. For such a fully-discharged 3S battery pack, if the voltage is less than 9V, please don't use it again before it is recharged, otherwise the UBEC may mistakenly consider this battery as 2 cells, so the power capacity indication function will be confused.

6.4. Turn on or turn off the output Set the main switch to the "ON" position to turn on the output; Set the main switch to the "OFF" position to turn off the output.

6.5. About the 0.7V step-down voltage regulator

Allowing use of Futaba servo models 9241, 9251, 9253, 9254, 9255, 9256 and other digital servos not capable of handling 6V. This small device can change the voltage from 6V to 5.3V. When the UBEC output is set to 6V, the step-down voltage regula tor is useful.

Method: Just connect the regulator inline between the Gyro and the rudder servo (Or between the receiver and the servo), that's OK.

If you are using a servo that can accept 6V input, the regulator is not required.

Hype • Nikolaus-Otto-Str. 4 • D-24568 Kaltenkirchen Helpdesk: 04191-932678 • helpdesk@hype-rc.de • www.hype-rc.de



www.robotshop.com

La robotique à votre service! - Robotics at your service!



## Arduino Mega 2560 Datasheet







## **Overview**

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

## **Schematic & Reference Design**

EAGLE files: arduino-mega2560-reference-design.zip



www.robotshop.com

La robotique à votre service! - Robotics at your service!

Schematic: arduino-mega2560-schematic.pdf

## Summary

| Microcontroller             | ATmega2560                              |
|-----------------------------|-----------------------------------------|
| Operating Voltage           | 5V                                      |
| Input Voltage (recommended) | 7-12V                                   |
| Input Voltage (limits)      | 6-20V                                   |
| Digital I/O Pins            | 54 (of which 14 provide PWM output)     |
| Analog Input Pins           | 16                                      |
| DC Current per I/O Pin      | 40 mA                                   |
| DC Current for 3.3V Pin     | 50 mA                                   |
| Flash Memory                | 256 KB of which 8 KB used by bootloader |
| SRAM                        | 8 KB                                    |
| EEPROM                      | 4 KB                                    |
| Clock Speed                 | 16 MHz                                  |

## Power

The Arduino Mega can be powered via the USB connection or with an external power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-toserial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.



www.robotshop.com

La robotique à votre service! - Robotics at your service!

The power pins are as follows:

- **VIN.** The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
- **5V.** The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
- **3V3.** A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
- **GND.** Ground pins.

## Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the <u>EEPROM library</u>).

## **Input and Output**

Each of the 54 digital pins on the Mega can be used as an input or output, using <u>pinMode()</u>, <u>digitalWrite()</u>, and <u>digitalRead()</u> functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

- Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.
- External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the <u>attachInterrupt()</u> function for details.
- **PWM: 0 to 13.** Provide 8-bit PWM output with the <u>analogWrite()</u> function.
- SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication using the <u>SPI library</u>. The SPI pins are also broken out on the ICSP header, which is physically compatible with the Uno, Duemilanove and Diecimila.
- LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH



www.robotshop.com La robotique à votre service! - Robotics at your service!

value, the LED is on, when the pin is LOW, it's off.

• I2C: 20 (SDA) and 21 (SCL). Support I<sub>2</sub>C (TWI) communication using the <u>Wire</u> library (documentation on the Wiring website). Note that these pins are not in the same location as the I<sub>2</sub>C pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

- **AREF.** Reference voltage for the analog inputs. Used with <u>analogReference()</u>.
- **Reset.** Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

## Communication

The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega2560 provides four hardware UARTs for TTL (5V) serial communication. An ATmega8U2 on the board channels one of these over USB and provides a virtual comport to software on the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board as a COM port automatically. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being transmitted via the ATmega8U2 chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega2560's digital pins.

The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus; see the documentation on the Wiring website for details. For SPI communication, use the SPI library.

## Programming

The Arduino Mega can be programmed with the Arduino software (download). For details, see the reference and tutorials.

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It



www.robotshop.com La robotique à votre service! - Robotics at your service!

communicates using the original STK500 protocol (reference, C header files). You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header; see these instructions for details.

## Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Mega2560 is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload. This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Mega2560. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

## **USB** Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.

## **Physical Characteristics and Shield** Compatibility



www.robotshop.com

La robotique à votre service! - Robotics at your service!

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the Uno, Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and 1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on both the Mega2560 and Duemilanove / Diecimila. *Please note that I2C is not located on the same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).* 



Tech Support: services@elecfreaks.com

## **Ultrasonic Ranging Module HC - SR04**

### **Product features:**

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver and control circuit. The basic principle of work:

(1) Using IO trigger for at least 10us high level signal,

(2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.

(3) IF the signal back, through high level, time of high output IO duration is the time from sending ultrasonic to returning.

Test distance = (high level time×velocity of sound (340M/S) / 2,

#### Wire connecting direct as following:

- 5V Supply
- Trigger Pulse Input
- Echo Pulse Output
- 0V Ground

### **Electric Parameter**

| Working Voltage      | DC 5 V                                  |
|----------------------|-----------------------------------------|
| Working Current      | 15mA                                    |
| Working Frequency    | 40Hz                                    |
| Max Range            | 4m                                      |
| Min Range            | 2cm                                     |
| MeasuringAngle       | 15 degree                               |
| Trigger Input Signal | 10uS TTL pulse                          |
| Echo Output Signal   | Input TTL lever signal and the range in |
|                      | proportion                              |
| Dimension            | 45*20*15mm                              |



The Timing diagram is shown below. You only need to supply a short 10uS pulse to the trigger input to start the ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is pulse width and the range in proportion .You can calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: uS / 58 = centimeters or uS / 148 =inch; or: the range = high level time \* velocity (340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent trigger signal to the echo signal.



## Attention:

• The module is not suggested to connect directly to electric, if connected electric, the GND terminal should be connected the module first, otherwise, it will affect the normal work of the module.

• When tested objects, the range of area is not less than 0.5 square meters and the plane requests as smooth as possible, otherwise ,it will affect the results of measuring.

#### www.Elecfreaks.com





## **Handson Technology**

<u>User Guide</u>

## **L298N Dual H-Bridge Motor Driver**

This dual bidirectional motor driver, is based on the very popular L298 Dual H-Bridge Motor Driver Integrated Circuit. The circuit will allow you to easily and independently control two motors of up to 2A each in both directions. It is ideal for robotic applications and well suited for connection to a microcontroller requiring just a couple of control lines per motor. It can also be interfaced with simple manual switches, TTL logic gates, relays, etc. This board equipped with power LED indicators, on-board +5V regulator and protection diodes.





#### SKU: DRV-1006

#### Brief Data:

- Input Voltage: 3.2V ~ 40Vdc.
- Driver: L298N Dual H Bridge DC Motor Driver.
- Power Supply: 5 ~ 35 Vdc.
- Peak current: 2 Amp.
- Operating current range: 0 ~ 36mA.
- Control signal input voltage range :
  - Low:  $-0.3V \leq Vin \leq 1.5V$ .
  - High:  $2.3V \leq Vin \leq Vss$ .
- Enable signal input voltage range :
  - $\circ$  Low: -0.3  $\leqslant$  Vin  $\leqslant$  1.5V (control signal is invalid).
  - High:  $2.3V \le Vin \le Vss$  (control signal active).
- Maximum power consumption: 20W (when the temperature T = 75 °C).
- On-board +5V regulated Output supply (supply to controller board i.e. Arduino).
- Size: 3.4cm x 4.3cm x 2.7cm

**Schematic Diagram:** 



www.handsontec.com



#### Web Resources:

• <u>https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/</u>

#### **Connection Examples:**

Controlling 2-DC Motor with +5V Arduino onboard Power Supply:

Below is the circuit connection use the on-board +5V power supply from Arduino board, and should be done without the 5V Enable Jumper on (Active 5V). This connection can drive two 5V DC motors simultaneously.



Ł // Set the output pins

4

11

11

\*/

www.handsontec.com

```
pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
pinMode(IN3, OUTPUT);
pinMode(IN4, OUTPUT);
}
void loop()
{
 // Rotate the Motor A clockwise
digitalWrite(IN1, HIGH);
digitalWrite(IN2, LOW);
delay(2000);
 // Motor A
digitalWrite(IN1, HIGH);
 digitalWrite(IN2, HIGH);
 delay(500);
 // Rotate the Motor B clockwise
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, LOW);
 delay(2000);
 // Motor B
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, HIGH);
 delay(500);
 // Rotates the Motor A counter-clockwise
 digitalWrite(IN1, LOW);
 digitalWrite(IN2, HIGH);
 delay(2000);
 // Motor A
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, HIGH);
 delay(500);
 // Rotates the Motor B counter-clockwise
 digitalWrite(IN3, LOW);
 digitalWrite(IN4, HIGH);
 delay(2000);
// Motor B
digitalWrite(IN3, HIGH);
 digitalWrite(IN4, HIGH);
delay(500);
}
```

#### **Controlling Stepper Motor**

In this example we have a typical <u>NEMA-17</u> stepper motor with four wires:



The key to successful stepper motor control is identifying the wires - that is which one is which. You will need to determine the A+, A-, B+ and B- wires. With our example motor these are red, green, yellow and blue. Now let's get the wiring done.



Connect the A+, A-, B+ and B- wires from the stepper motor to the module connections 1, 2, 13 and 14 respectively. Place the jumpers included with the L298N module over the pairs at module points 7 and 12. Then connect the power supply as required to points 4 (positive) and 5 (negative/GND).

Once again if your stepper motor's power supply is less than 12V, fit the jumper to the module at point 3 which gives you a neat 5V power supply for your Arduino.

Next, connect L298N module pins IN1, IN2, IN3 and IN4 to Arduino digital pins D8, D9, D10 and D11 respectively. Finally, connect Arduino GND to point 5 on the module, and Arduino 5V to point 6 if sourcing 5V from the module.

Controlling the stepper motor from your sketches is very simple, thanks to the *Stepper* Arduino library included with the Arduino IDE as standard.

To demonstrate your motor, simply load the "*stepper\_oneRevolution*" sketch that is included with the *Stepper* library, for example:

|        | New                                                  | 92 N                                |                                                                       | 15      | 0.6                                                                     |
|--------|------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|---------|-------------------------------------------------------------------------|
| nov22a | Open<br>Sketchbook<br>Examples<br>Close              | SD<br>SdFat<br>SdFat<br>SerialGSM   |                                                                       |         |                                                                         |
|        | Save<br>Save As<br>Upload<br>Upload Using Programmer | 第5<br>企業S<br>発U<br>企業U<br>企業P<br>業P | Servo<br>SFE_BMP180<br>SnootlabLCDShield<br>snootor<br>SoftwareSerial | * * * * |                                                                         |
|        | Page Setup<br>Print                                  |                                     | SPI<br>Stepper                                                        |         | MotorKnob                                                               |
|        |                                                      |                                     | Streaming<br>Teleduino328<br>TextFinder                               |         | stepper_oneRevolution<br>stepper_oneStepAtATime<br>stepper_speedControl |

Finally, check the value for

```
const int stepsPerRevolution = 200;
```

in the sketch and change the 200 to the number of steps per revolution for your stepper motor, and also the speed which is preset to 60 RPM in the following line:

myStepper.setSpeed(60);

Now you can save and upload the sketch, which will send your stepper motor around one revolution, then back again. This is achieved with the function

```
myStepper.step(stepsPerRevolution); // for clockwise
myStepper.step(-stepsPerRevolution); // for anti-clockwise
```

Connection for the sketch "stepper oneRevolution":





Handsontec.com We have the parts for your ideas

HandsOn Technology provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer. Information, education, inspiration and entertainment. Analog and digital, practical and theoretical; software and hardware.



Hands *On* Technology support Open Source Hardware (OSHW) Development Platform.

# Learn : Design : Share

## www.handsontec.com
#### The Face behind our product quality...

In a world of constant change and continuous technological development, a new or replacement product is never far away – and they all need to be tested.

Many vendors simply import and sell wihtout checks and this cannot be the ultimate interests of anyone, particularly the customer. Every part sell on Handsotec is fully tested. So when buying from Handsontec products range, you can be confident you're getting outstanding quality and value.

We keep adding the new parts so that you can get rolling on your next project.



www.handsontec.com Breakout Boards & Modules







www.handsontec.com

Power Supply



#### **Connectors**



www.handsontec.com Mechanical Hardware



Arduino Board & Shield





www.handsontec.com

**Electro-Mechanical Parts** 



Electronics Components

Ρ

Tools & Accessory

# Logitech HD C270 Webcam for Education

earning comes to life with brilliant, lifelike interactions

#### THE VALUE OF DYNAMIC VIDEO

Whether presenting live or recording material for sharing later, a standalone webcam provides the flexibility to take still or video images from different angles and show work more clearly, making instruction more dynamic, detailed and interactive. The result?

More engaged, connected and involved students.



## MEET THE HD C270 FOR EDUCATION

#### WIDESCREEN HD VIDEO

720p video displays lifelike, natural images even in dim lighting, to enable students to see detailed information.

#### CRISP VIDEO

Camera takes high-quality pictures for in-class sharing and for use in homework or other studying.

#### CLEAR SOUND

Noise-reducing mic filters out background noise so students can focus and hear every word clearly.

#### **FLEXIBLE POSITIONING**

Clip fits a screen, shelf or tripod so teachers can move to fit their setup and display multiple angles to students.

#### A COMMITMENT TO EDUCATION

At Logitech, we are curious lifelong learners, constantly questioning and inventing. We are relentless in our pursuit of tools that make an impact.

This passion drives us every day to design innovative products that create transformational and accessible experiences for students, teachers and schools.

Supporting education is inherent to our mission as we know that today's students are tomorrow's inventors.



Every one of our vcation products has been designed with the needs of schools in mind. When you choose Logitech for your school, you can count on:

#### EASY CLEANABILITY

Designed & tested to withstand cleaning and disinfecting after each use, supporting safe, longterm, shared use<sup>1</sup>.

#### PLUG-AND-PLAY USB COMPATIBILITY

Get students and teachers working easily with hassle-free setup — simply plug the webcam into the USB port and go.

#### RUGGED DURABILITY

Our education products are drop-tested to withstand falls from standard school desk heights.

## 3-YEAR WARRANTY WITH CUSTOMER CARE SUPPORT

Our products are designed to work without fail but should a problem occur, we've got your back.

#### WHY IT MATTERS

A standalone webcam makes it easier to share work and builds strong visual connections.

## 89% of teachers

said their Logitech webcam enabled more seamless lesson delivery.<sup>2</sup>

#### 81% of teachers said their Logitech webcam increase student engagement during lessons.<sup>2</sup>

#### HD C270 WEBCAM SPECIFICATIONS

| FEATURES                                 | C270 WEBCAM FOR EDUCATION                                                                                                | C270 WEBCAM FOR CONSUMER                                                    |  |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| VIDEO DISPLAY                            | Widescreen, H                                                                                                            | ligh-Definition                                                             |  |  |  |  |  |
| VIDEO RESOLUTION, MAX                    | 720p/30fps                                                                                                               |                                                                             |  |  |  |  |  |
| CAMERA                                   | HD 720                                                                                                                   | )p video                                                                    |  |  |  |  |  |
| FOCUS TYPE                               | Fiz                                                                                                                      | ked                                                                         |  |  |  |  |  |
| LENS TECHNOLOGY                          | Star                                                                                                                     | ndard                                                                       |  |  |  |  |  |
| FIELD OF VIEW                            | 6                                                                                                                        | 0″                                                                          |  |  |  |  |  |
| CERTIFICATIONS                           | Works with                                                                                                               | Chromebook                                                                  |  |  |  |  |  |
| COMPATIBILITY,<br>OPERATING SYSTEM       | Chrom<br>Windov<br>Mac OS 10<br>Android v5                                                                               | ne OS™ <sup>3</sup><br>ws 7,8,10<br>J.10 or later<br>5.0 or above           |  |  |  |  |  |
| COMPATIBILITY,<br>VIDEO CALLING SOFTWARE | Works with all popular platforms<br>Microsoft Teams. Works in usb video de                                               | including Zoom, Google Meet and<br>evice class mode with supported clients. |  |  |  |  |  |
| CABLE LENGTH                             | 5ft/                                                                                                                     | 1.5m                                                                        |  |  |  |  |  |
| PACKAGE CONTENTS                         | C270 Webcam for Education<br>Cable<br>User Documentation                                                                 | C270 Webcam<br>Cable<br>User Documentation                                  |  |  |  |  |  |
| WARRANTY                                 | 3 years with Customer Care support                                                                                       | 2 years, limited                                                            |  |  |  |  |  |
| PACKAGING                                | Education packaging designed for fast<br>unboxing and quick scanning of products<br>without the need to remove each item | Standard                                                                    |  |  |  |  |  |
| PART NO.                                 | 960-000694                                                                                                               | 981-000612                                                                  |  |  |  |  |  |

#### **READY TO GET STARTED?**

Contact Logitech Education Sales Education@Logitech.com

## logitech

© 2021 Logitech. Logitech, Logi, and their logos are trademarks or registered trademarks of Logitech Europe S.A. or its affiliates in the U.S. and/or other countries. All other trademarks are the property of their respective owners. Logitech assumes no responsibility for any errors that may appear in this publication. Product, pricing, and feature information contained herein is subject to change without notice.

<sup>1</sup> Tested to withstand 2,700 wipe cycles with alcohol; equal to 5 classroom sessions per day, 180 classroom days per year over 3 years.

<sup>2</sup> Logitech 2020 survey of teachers across the US after receiving donated Logitech products, n=1381.

<sup>3</sup> This product has been certified by Logitech to meet Google's compatibility standards. Google is not responsible for the operation of this product or its compliance with safety requirements.

# Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### **General Description**

The MAX30100 is an integrated pulse oximetry and heartrate monitor sensor solution. It combines two LEDs, a photodetector, optimized optics, and low-noise analog signal processing to detect pulse oximetry and heart-rate signals.

The MAX30100 operates from 1.8V and 3.3V power supplies and can be powered down through software with negligible standby current, permitting the power supply to remain connected at all times.

#### **Applications**

- Wearable Devices
- Fitness Assistant Devices
- Medical Monitoring Devices

#### **Benefits and Features**

- Complete Pulse Oximeter and Heart-Rate Sensor Solution Simplifies Design
  - Integrated LEDs, Photo Sensor, and High-Performance Analog Front -End
  - Tiny 5.6mm x 2.8mm x 1.2mm 14-Pin Optically Enhanced System-in-Package
- Ultra-Low-Power Operation Increases Battery Life for Wearable Devices
  - Programmable Sample Rate and LED Current for Power Savings
  - Ultra-Low Shutdown Current (0.7µA, typ)
- Advanced Functionality Improves Measurement Performance
  - High SNR Provides Robust Motion Artifact Resilience
  - Integrated Ambient Light Cancellation
  - High Sample Rate Capability
  - Fast Data Output Capability

Ordering Information appears at end of data sheet.

## System Block Diagram





## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### **Absolute Maximum Ratings**

| V <sub>DD</sub> to GND                     | 0.3V to +2.2V |
|--------------------------------------------|---------------|
| GND to PGND                                | 0.3V to +0.3V |
| x_DRV, x_LED+ to PGND                      | 0.3V to +6.0V |
| All Other Pins to GND                      | 0.3V to +6.0V |
| Output Short-Circuit Current Duration      | Continuous    |
| Continuous Input Current into Any Terminal | ±20mA         |

#### Package Thermal Characteristics (Note 1)

#### OESIP

Junction-to-Ambient Thermal Resistance ( $\theta_{JA}$ ) .......150°C/W Junction-to-Case Thermal Resistance ( $\theta_{JC}$ ).......170°C/W

- Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

#### **Electrical Characteristics**

 $(V_{DD} = 1.8V, V_{IR} \perp ED + = V_{R} \perp ED + = 3.3V, T_{A} = +25^{\circ}C, min/max are from T_{A} = -40^{\circ}C to +85^{\circ}C, unless otherwise noted.) (Note 2)$ 

| PARAMETER                                                                  | SYMBOL            | CONDITIONS                                                                                   |               | MIN    | TYP    | MAX    | UNITS  |  |  |
|----------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|---------------|--------|--------|--------|--------|--|--|
| POWER SUPPLY                                                               |                   |                                                                                              |               |        |        |        |        |  |  |
| Power-Supply Voltage                                                       | V <sub>DD</sub>   | Guaranteed by RED and IR cou                                                                 | int tolerance | 1.7    | 1.8    | 2.0    | V      |  |  |
| LED Supply Voltage<br>(R_LED+ or IR_LED+ to PGND)                          | V <sub>LED+</sub> | Guaranteed by PSRR of LED D                                                                  | river         | 3.1    | 3.3    | 5.0    | V      |  |  |
| Supply Current SpO <sub>2</sub> and heart rate modes,<br>PW = 200µs, 50sps |                   |                                                                                              |               |        | 600    | 1200   |        |  |  |
| Supply Current                                                             | IDD               | Heart rate only mode,<br>PW = 200µs, 50sps                                                   |               |        | 600    | 1200   | μΑ     |  |  |
| Supply Current in Shutdown                                                 | I <sub>SHDN</sub> | T <sub>A</sub> = +25°C, MODE = 0x80                                                          |               | 0.7    | 10     | μA     |        |  |  |
| SENSOR CHARACTERISTICS                                                     |                   |                                                                                              |               |        |        |        |        |  |  |
| ADC Resolution                                                             |                   |                                                                                              |               |        | 14     |        | bits   |  |  |
| Red ADC Count<br>(Note 3)                                                  | RED <sub>C</sub>  | Propriety ATE setup<br>RED_PA = 0x05, LED_PW = 0x<br>SPO2_SR = 0x07, T <sub>A</sub> = +25°C  | 00,           | 23,000 | 26,000 | 29,000 | Counts |  |  |
| IR ADC Count<br>(Note 3)                                                   | IR <sub>C</sub>   | Propriety ATE setup<br>IR_PA = 0x09, LED_PW = 0x00<br>SPO2_SR = 0x07, T <sub>A</sub> = +25°C | 3             | 23,000 | 26,000 | 29,000 | Counts |  |  |
| Dark Current Count                                                         | DC <sub>C</sub>   | RED_PA = IR_PA = 0x00,<br>LED_PW = 0x03, SPO2_SR = 0                                         | )x01          |        | 0      | 3      | Counts |  |  |
| DC Ambient Light Rejection                                                 |                   | Number of ADC counts with finger on sensor under direct                                      | RED LED       |        | 0      |        | Counto |  |  |
| (Note 4)                                                                   | ALK               | LED_PW = $0x03$ ,<br>SPO2_SR = $0x01$                                                        | IR LED        |        | 0      |        | Counts |  |  |

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Electrical Characteristics (continued)**

 $(V_{DD} = 1.8V, V_{IR\_LED+} = V_{R\_LED+} = 3.3V, T_A = +25^{\circ}C, min/max are from T_A = -40^{\circ}C \text{ to } +85^{\circ}C, unless otherwise noted.) (Note 2)$ 

| PARAMETER                            | SYMBOL              | CONDITIONS                                                                                                                                    | MIN | TYP  | MAX | UNITS |
|--------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|-------|
| IR ADC Count—PSRR (V <sub>DD</sub> ) | PSRR <sub>VDD</sub> | Propriety ATE setup<br>1.7V < V <sub>DD</sub> < 2.0V,<br>LED_PW = 0x03, SPO2_SR = 0x01,<br>IR_PA = 0x09, IR_PA = 0x05, T <sub>A</sub> = +25°C |     | 0.25 | 2   | %     |
|                                      |                     | Frequency = DC to 100kHz, 100mV <sub>P-P</sub>                                                                                                |     | 10   |     | LSB   |
| RED/IR ADC Count—PSRR<br>(X_LED+)    | PSRR <sub>LED</sub> | Propriety ATE setup<br>3.1V < X_LED+ < 5V,<br>LED_PW = 0x03, SPO2_SR = 0x01,<br>IR_PA = 0x09, IR_PA = 0x05, T <sub>A</sub> = +25°C            |     | 0.05 | 2   | %     |
|                                      |                     | Frequency = DC to 100kHz, $100mV_{P-P}$                                                                                                       |     | 10   |     | LSB   |
| ADC Integration Time                 | INIT                | LED_PW = 0x00                                                                                                                                 |     | 200  |     | μs    |
|                                      |                     | LED_PW = 0x03                                                                                                                                 |     | 1600 |     | μs    |
| IR LED CHARACTERISTICS (Note         | - 4)                |                                                                                                                                               |     |      |     |       |
| LED Peak Wavelength                  | λ <sub>P</sub>      | $I_{LED}$ = 20mA, $T_{A}$ = +25°C                                                                                                             | 870 | 880  | 900 | nm    |
| Full Width at Half Max               | Δλ                  | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 30   |     | nm    |
| Forward Voltage                      | V <sub>F</sub>      | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 1.4  |     | V     |
| Radiant Power                        | PO                  | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 6.5  |     | mW    |
| RED LED CHARACTERISTICS (No          | ote 4)              |                                                                                                                                               |     |      |     |       |
| LED Peak Wavelength                  | λ <sub>P</sub>      | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               | 650 | 660  | 670 | nm    |
| Full Width at Half Max               | Δλ                  | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 20   |     | nm    |
| Forward Voltage                      | V <sub>F</sub>      | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 2.1  |     | V     |
| Radiant Power                        | PO                  | I <sub>LED</sub> = 20mA, T <sub>A</sub> = +25°C                                                                                               |     | 9.8  |     | mW    |
| TEMPERATURE SENSOR                   |                     |                                                                                                                                               |     |      |     |       |
| Temperature ADC Acquisition<br>Time  | TT                  | T <sub>A</sub> = +25°C                                                                                                                        |     | 29   |     | ms    |
| Temperature Sensor Accuracy          | T <sub>A</sub>      | T <sub>A</sub> = +25°C                                                                                                                        |     | ±1   |     | °C    |
| Temperature Sensor Minimum<br>Range  | T <sub>MIN</sub>    |                                                                                                                                               |     | -40  |     | °C    |
| Temperature Sensor Maximum<br>Range  | T <sub>MAX</sub>    |                                                                                                                                               |     | 85   |     | °C    |

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Electrical Characteristics (continued)**

 $(V_{DD} = 1.8V, V_{IR\_LED+} = V_{R\_LED+} = 3.3V, T_A = +25^{\circ}C, min/max are from T_A = -40^{\circ}C \text{ to } +85^{\circ}C, unless otherwise noted.) (Note 2)$ 

| PARAMETER                                          | SYMBOL                | CONDITIONS                                                        | MIN       | ТҮР            | MAX | UNITS |
|----------------------------------------------------|-----------------------|-------------------------------------------------------------------|-----------|----------------|-----|-------|
| DIGITAL CHARACTERISTICS (SD                        | A, SDA, ĪNT)          |                                                                   |           |                |     |       |
| Output Low Voltage SDA, INT                        | V <sub>OL</sub>       | I <sub>SINK</sub> = 6mA                                           |           |                | 0.4 | V     |
| I <sup>2</sup> C Input Voltage Low                 | V <sub>IL_I2C</sub>   | SDA, SCL                                                          |           |                | 0.4 | V     |
| I <sup>2</sup> C Input Voltage High                | VIH_I2C               | SDA, SCL                                                          | 1.4       |                |     | V     |
| Input Hysteresis                                   | V <sub>HYS</sub>      | SDA, SCL                                                          |           | 200            |     | mV    |
| Input Capacitance                                  | C <sub>IN</sub>       | SDA, SCL                                                          |           | 10             |     | pF    |
| Input Lookago Current                              | l                     | V <sub>IN</sub> = 0V, T <sub>A</sub> = +25°C<br>(SDA, SCL, INT)   |           | 0.01           | 1   | μA    |
|                                                    | 'IN                   | V <sub>IN</sub> = 5.5V, T <sub>A</sub> = +25°C<br>(SDA, SCL, INT) |           | 0.01           | 1   | μA    |
| I <sup>2</sup> C TIMING CHARACTERISTICS (          | SDA, SDA, INT         | )                                                                 |           |                |     |       |
| I <sup>2</sup> C Write Address                     |                       |                                                                   |           | AE             |     | Hex   |
| I <sup>2</sup> C Read Address                      |                       |                                                                   |           | AF             |     | Hex   |
| Serial Clock Frequency                             | f <sub>SCL</sub>      |                                                                   | 0         |                | 400 | kHz   |
| Bus Free Time Between STOP<br>and START Conditions | t <sub>BUF</sub>      |                                                                   | 1.3       |                |     | μs    |
| Hold Time (Repeated) START<br>Condition            | <sup>t</sup> HD,START |                                                                   | 0.6       |                |     | μs    |
| SCL Pulse-Width Low                                | t <sub>LOW</sub>      |                                                                   | 1.3       |                |     | μs    |
| SCL Pulse-Width High                               | thigh                 |                                                                   | 0.6       |                |     | μs    |
| Setup Time for a Repeated START Condition          | <sup>t</sup> SU,START |                                                                   | 0.6       |                |     | μs    |
| Data Hold Time                                     | t <sub>HD,DAT</sub>   |                                                                   | 0         |                | 900 | ns    |
| Data Setup Time                                    | t <sub>SU,DAT</sub>   |                                                                   | 100       |                |     | ns    |
| Setup Time for STOP Condition                      | tsu,stop              |                                                                   | 0.6       |                |     | μs    |
| Pulse Width of Suppressed Spike                    | t <sub>SP</sub>       |                                                                   | 0         |                | 50  | ns    |
| Bus Capacitance                                    | CB                    |                                                                   |           |                | 400 | pF    |
| SDA and SCL Receiving Rise<br>Time                 | t <sub>R</sub>        |                                                                   | 20 + 0.10 | С <sub>В</sub> | 300 | ns    |
| SDA and SCL Receiving Fall Time                    | t <sub>RF</sub>       |                                                                   | 20 + 0.10 | C <sub>B</sub> | 300 | ns    |
| SDA Transmitting Fall Time                         | t <sub>TF</sub>       |                                                                   | 20 + 0.10 | C <sub>B</sub> | 300 | ns    |

**Note 2:** All devices are 100% production tested at  $T_A = +25$ °C. Specifications over temperature limits are guaranteed by Maxim Integrated's bench or proprietary automated test equipment (ATE) characterization.

**Note 3:** Specifications are guaranteed by Maxim Integrated's bench characterization and by 100% production test using proprietary ATE setup and conditions.

Note 4: For design guidance only. Not production tested.

# Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health



Figure 1. I<sup>2</sup>C-Compatible Interface Timing Diagram

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Typical Operating Characteristics**

(V<sub>DD</sub> = 1.8V, V<sub>IR LED+</sub> = V<sub>R LED+</sub> = 3.3V,  $T_A$  = +25°C, unless otherwise noted.)



## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Typical Operating Characteristics (continued)**

(V<sub>DD</sub> = 1.8V, V<sub>IR\_LED+</sub> = V<sub>R\_LED+</sub> = 3.3V, T<sub>A</sub> = +25°C, unless otherwise noted.)



## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Pin Configuration**



## **Pin Description**

| PIN         | NAME            | FUNCTION                                                                                                              |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| 1, 7, 8, 14 | N.C.            | No Connection. Connect to PCB Pad for Mechanical Stability.                                                           |
| 2           | SCL             | I <sup>2</sup> C Clock Input                                                                                          |
| 3           | SDA             | I <sup>2</sup> C Clock Data, Bidirectional (Open-Drain)                                                               |
| 4           | PGND            | Power Ground of the LED Driver Blocks                                                                                 |
| 5           | IR_DRV          | IR LED Cathode and LED Driver Connection Point. Leave floating in circuit.                                            |
| 6           | R_DRV           | Red LED Cathode and LED Driver Connection Point. Leave floating in circuit.                                           |
| 9           | R_LED+          | Power Supply (Anode Connection) for Red LED. Bypass to PGND for best performance.<br>Connected to IR_LED+ internally. |
| 10          | IR_LED+         | Power Supply (Anode Connection) for IR LED. Bypass to PGND for best performance. Con-<br>nected to R_LED+ internally. |
| 11          | V <sub>DD</sub> | Analog Power Supply Input. Bypass to GND for best performance.                                                        |
| 12          | GND             | Analog Ground                                                                                                         |
| 13          | ĪNT             | Active-Low Interrupt (Open-Drain)                                                                                     |

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### R\_LED+ IR LED+ Vdd AMBIENT LIGHT ANALOG DIGITAL RED IR CANCELLATION RFD+IR **X** , SDA \* DIGITAL I<sup>2</sup>C ADC DATA COMMUNICATION FILTER ◥Ⴃ REGISTER 660nm 880nm TEMP ADC OSCILLATOR LED DRIVERS R\_DRV IR\_DRV GND PGND

## **Functional Diagram**

## **Detailed Description**

The MAX30100 is a complete pulse oximetry and heartrate sensor system solution designed for the demanding requirements of wearable devices. The MAX30100 provides very small total solution size without sacrificing optical or electrical performance. Minimal external hardware components are needed for integration into a wearable device.

The MAX30100 is fully configurable through software registers, and the digital output data is stored in a 16-deep FIFO within the device. The FIFO allows the MAX30100 to be connected to a microcontroller or microprocessor on a shared bus, where the data is not being read continuously from the device's registers.

#### SpO<sub>2</sub> Subsystem

The SpO<sub>2</sub> subsystem in the MAX30100 is composed of ambient light cancellation (ALC), 16-bit sigma delta ADC, and proprietary discrete time filter.

The SpO<sub>2</sub> ADC is a continuous time oversampling sigma delta converter with up to 16-bit resolution. The ADC output data rate can be programmed from 50Hz to 1kHz. The MAX30100 includes a proprietary discrete time filter to reject 50Hz/60Hz interference and low-frequency residual ambient noise.

#### **Temperature Sensor**

The MAX30100 has an on-chip temperature sensor for (optionally) calibrating the temperature dependence of the SpO<sub>2</sub> subsystem.

The SpO<sub>2</sub> algorithm is relatively insensitive to the wavelength of the IR LED, but the red LED's wavelength is critical to correct interpretation of the data. The temperature sensor data can be used to compensate the SpO2 error with ambient temperature changes.

#### LED Driver

The MAX30100 integrates red and IR LED drivers to drive LED pulses for SpO2 and HR measurements. The LED current can be programmed from 0mA to 50mA (typical only) with proper supply voltage. The LED pulse width can be programmed from 200µs to 1.6ms to optimize measurement accuracy and power consumption based on use cases.

SCL

INT

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

| REGISTER                | B7             | B6                 | B5             | B4              | В3          | B2      | B1         | В0          | REG<br>ADDR    | POR<br>STATE | R/W |
|-------------------------|----------------|--------------------|----------------|-----------------|-------------|---------|------------|-------------|----------------|--------------|-----|
| STATUS                  |                |                    |                |                 |             |         |            |             |                |              |     |
| Interrupt<br>Status     | A_FULL         | TEMP_<br>RDY       | HR_RDY         | SPO2_<br>RDY    |             |         |            | PWR_<br>RDY | 0x00           | 0X00         | R   |
| Interrupt En-<br>able   | ENB_A_<br>FULL | ENB_TE<br>P_RDY    | ENB_HR_<br>RDY | ENB_S<br>O2_RDY |             |         |            |             | 0x01           | 0X00         | R/W |
| FIFO                    |                |                    |                |                 |             |         |            |             |                |              |     |
| FIFO Write<br>Pointer   |                |                    |                |                 |             | FIFO_WR | _PTR[3:0]  |             | 0x02           | 0x00         | R/W |
| Over Flow<br>Counter    |                |                    |                |                 |             | OVF_COL | INTER[3:0] |             | 0x03           | 0x00         | R/W |
| FIFO Read<br>Pointer    |                |                    |                |                 |             | FIFO_RD | _PTR[3:0]  |             | 0x04           | 0x00         | R/W |
| FIFO Data<br>Register   |                |                    |                | FIFO_DAT        | A[7:0]      |         |            |             | 0x05           | 0x00         | R/W |
| CONFIGURATIO            | ON             |                    |                |                 |             |         |            |             |                |              |     |
| Mode Configu-<br>ration | SHDN           | RESET              |                |                 | TEMP_<br>EN |         | MODE[2:0]  |             | 0x06           | 0x00         | R/W |
| SPO2 Configu-<br>ration |                | SPO2_HI_<br>RES_EN | RE-<br>SERVED  | SF              | PO2_SR[2:(  | 0]      | LED_F      | PW[1:0]     | 0x07           | 0x00         | R/W |
| RESERVED                |                |                    |                |                 |             |         |            |             | 0x08           | 0x00         | R/W |
| LED Configura-<br>tion  |                | RED_               | PA[3:0]        |                 |             | IR_P    | A[3:0]     |             | 0x09           | 0x00         | R/W |
| RESERVED                |                |                    |                |                 |             |         |            |             | 0x0A<br>- 0x15 | 0x00         | R/W |
| TEMPERATURE             | <u>.</u>       |                    |                |                 |             |         |            |             |                |              |     |
| Temp_Integer            | TINT[7:0]      |                    |                |                 |             |         |            |             | 0x16           | 0x00         | R/W |
| Temp_Fraction           |                |                    |                |                 | TFRAC[3:0]  |         |            |             |                | 0x00         | R/W |
| RESERVED                |                |                    |                |                 |             |         |            | 0x8D        | 0x00           | R/W          |     |
| PART ID                 |                |                    |                |                 |             |         |            |             |                |              |     |
| Revision ID             |                |                    |                | REV_ID[         | 7:0]        |         |            |             | 0xFE           | 0xXX*        | R   |
| Part ID                 |                |                    |                | PART_IC         | D[7]        |         |            |             | 0xFF           | 0x11         | R/W |

## Table 1. Register Maps and Descriptions

\*XX denotes any 2-digit hexidecimal number (00 to FF). Contact Maxim Integrated for the Revision ID number assigned for your product.

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### Interrupt Status (0x00)

| REGISTER            | B7     | B6           | B5     | B4           | В3 | B2 | B1 | В0          | REG<br>ADDR | POR<br>STATE | R/W |
|---------------------|--------|--------------|--------|--------------|----|----|----|-------------|-------------|--------------|-----|
| Interrupt<br>Status | A_FULL | TEMP_<br>RDY | HR_RDY | SPO2_<br>RDY |    |    |    | PWR_<br>RDY | 0x00        | 0X00         | R   |

There are 5 interrupts and the functionality of each is exactly the same: pulling the active-low interrupt pin into its low state until the interrupt is cleared.

The interrupts are cleared whenever the interrupt status register is read, or when the register that triggered the interrupt is read. For example, if the SpO<sub>2</sub> sensor triggers an interrupt due to finishing a conversion, reading either the FIFO data register or the interrupt register clears the interrupt pin (which returns to its normal high state), and also clears all the bits in the interrupt status register to zero.

#### Bit 7: FIFO Almost Full Flag (A\_FULL)

In SpO<sub>2</sub> and heart-rate modes, this interrupt triggers when the FIFO write pointer is the same as the FIFO read pointer minus one, which means that the FIFO has only one unwritten space left. If the FIFO is not read within the next conversion time, the FIFO becomes full and future data is lost.

#### Bit 6: Temperature Ready Flag (TEMP\_RDY)

When an internal die temperature conversion is finished, this interrupt is triggered so the processor can read the temperature data registers.

#### Bit 5: Heart Rate Data Ready (HR\_RDY)

In heart rate or SPO<sub>2</sub> mode, this interrupt triggers after every data sample is collected. A heart rate data sample consists of one IR data point only. This bit is automatically cleared when the FIFO data register is read.

#### Bit 4: SpO<sub>2</sub> Data Ready (SPO2\_RDY)

In SpO<sub>2</sub> mode, this interrupt triggers after every data sample is collected. An SpO<sub>2</sub> data sample consists of one IR and one red data points. This bit is automatically cleared when the FIFO data register is read.

#### Bit 3: RESERVED

This bit should be ignored and always be zero in normal operation.

#### Bit 2: RESERVED

This bit should be ignored and always be zero in normal operation.

#### Bit 1: RESERVED

This bit should be ignored and always be zero in normal operation.

#### Bit 0: Power Ready Flag (PWR\_RDY)

On power-up or after a brownout condition, when the supply voltage V<sub>DD</sub> transitions from below the UVLO voltage to above the UVLO voltage, a power-ready interrupt is triggered to signal that the IC is powered up and ready to collect data.

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### Interrupt Enable (0x01)

| REGISTER            | B7             | B6              | В5             | B4              | В3 | B2 | B1 | В0 | REG<br>ADDR | POR<br>STATE | R/W |
|---------------------|----------------|-----------------|----------------|-----------------|----|----|----|----|-------------|--------------|-----|
| Interrupt<br>Enable | ENB_A_<br>FULL | ENB_TE<br>P_RDY | ENB_HR_<br>RDY | ENB_S<br>O2_RDY |    |    |    |    | 0x01        | 0X00         | R/W |

Each source of hardware interrupt, with the exception of power ready, can be disabled in a software register within the MAX30100 IC. The power-ready interrupt cannot be disabled because the digital state of the MAX30100 is reset upon a brownout condition (low power-supply voltage), and the default state is that all the interrupts are disabled. It is important for the system to know that a brownout condition has occurred, and the data within the device is reset as a result.

When an interrupt enable bit is set to zero, the corresponding interrupt appears as 1 in the interrupt status register, but the  $\overline{INT}$  pin is not pulled low.

The four unused bits (B3:B0) should always be set to zero (disabled) for normal operation.

#### FIFO (0x02–0x05)

| REGISTER              | B7             | B6 | В5 | B4 | В3 | B2      | B1   | В0   | REG<br>ADDR | POR<br>STATE | R/W |
|-----------------------|----------------|----|----|----|----|---------|------|------|-------------|--------------|-----|
| FIFO Write<br>Pointer |                |    |    |    |    | FIFO_WR | 0x02 | 0x00 | R/W         |              |     |
| Over Flow<br>Counter  |                |    |    |    |    | OVF_COL | 0x03 | 0x00 | R/W         |              |     |
| FIFO Read<br>Pointer  |                |    |    |    |    | FIFO_RD | 0x04 | 0x00 | R/W         |              |     |
| FIFO Data<br>Register | FIFO_DATA[7:0] |    |    |    |    |         |      |      | 0x05        | 0x00         | R/W |

#### FIFO Write Pointer

The FIFO write pointer points to the location where the MAX30100 writes the next sample. This pointer advances for each sample pushed on to the FIFO. It can also be changed through the I<sup>2</sup>C interface when MODE[2:0] is nonzero.

#### **FIFO Overflow Counter**

When the FIFO is full, samples are not pushed on to the FIFO, samples are lost. OVF\_COUNTER counts the number of samples lost. It saturates at 0xF. When a complete sample is popped from the FIFO (when the read pointer advances), OVF\_COUNTER is reset to zero.

#### **FIFO Read Pointer**

The FIFO read pointer points to the location from where the processor gets the next sample from the FIFO via the I<sup>2</sup>C interface. This advances each time a sample is popped from the FIFO. The processor can also write to this pointer after reading the samples, which would allow rereading samples from the FIFO if there is a data communication error.

#### **FIFO Data**

The circular FIFO depth is 16 and can hold up to 16 samples of SpO<sub>2</sub> channel data (Red and IR). The FIFO\_DATA register in the I<sup>2</sup>C register map points to the next sample to be read from the FIFO. FIFO\_RD\_PTR points to this sample. Reading FIFO\_DATA register does not automatically increment the register address; burst reading this register reads the same address over and over. Each sample is 4 bytes of data, so this register has to be read 4 times to get one sample.

The above registers can all be written and read, but in practice, only the FIFO\_RD\_PTR register should be written to in operation. The others are automatically incremented or filled with data by the MAX30100. When starting a new SpO<sub>2</sub>

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

or heart-rate conversion, it is recommended to first clear the FIFO\_WR\_PTR, OVF\_COUNTER, and FIFO\_RD\_PTR registers to all zeros (0x00) to ensure the FIFO is empty and in a known state. When reading the MAX30100 registers in one burst-read I<sup>2</sup>C transaction, the register address pointer typically increments so that the next byte of data sent is from the next register, etc. The exception to this is the FIFO data register, register 0x05. When reading this register, the address pointer does not increment, but the FIFO\_RD\_PTR does. So the next byte of data sent will represent the next byte of data available in the FIFO.

#### Reading from the FIFO

Normally, reading registers from the I<sup>2</sup>C interface autoincrements the register address pointer, so that all the registers can be read in a burst read without an I<sup>2</sup>C restart event. In the MAX30100, this holds true for all registers except for the FIFO\_DATA register (0x05).

Reading the FIFO\_DATA register does not automatically increment the register address; burst reading this register reads the same address over and over. Each sample is 4 bytes of data, so this register has to be read 4 times to get one sample.

The other exception is 0xFF, reading more bytes after the 0xFF register does not advance the address pointer back to 0x00, and the data read is not meaningful.

#### FIFO Data Structure

The data FIFO consists of a 16-sample memory bank that stores both IR and RED ADC data. Since each sample consists of one IR word and one RED word, there are 4 bytes of data for each sample, and therefore, 64 total bytes of data can be stored in the FIFO. <u>Figure 2</u> shows the structure of the FIFO graphically.

The FIFO data is left-justified as shown in <u>Table 1</u>; i.e. the MSB bit is always in the bit 15 position regardless of ADC resolution.

Each data sample consists of an IR and a red data word (2 registers), so to read one sample requires 4 I<sup>2</sup>C byte reads in a row. The FIFO read pointer is automatically incremented after each 4-byte sample is read.

In heart-rate only mode, the 3rd and 4th bytes of each sample return zeros, but the basic structure of the FIFO remains the same.

#### Write/Read Pointers

#### **Table 2. FIFO Data**

| ADC<br>RESOLUTION | IR<br>[15] | IR<br>[14] | IR<br>[13] | IR<br>[12] | IR<br>[11] | IR<br>[10] | IR<br>[9] | IR<br>[8] | IR<br>[7] | IR<br>[6] | IR<br>[5] | IR<br>[4] | IR<br>[3] | IR<br>[2] | IR<br>[1] | IR<br>[0] |
|-------------------|------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 16-bit            |            |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |
| 14-bit            |            |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |
| 12-bit            |            |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |
| 10-bit            |            |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |



Figure 2. Graphical Representation of the FIFO Data Register

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

The locations to store new data, and the read pointer for reading data, are used to control the flow of data in the FIFO. The write pointer increments every time a new sample is added to the FIFO. The read pointer is incremented automatically every time a sample is read from the FIFO. To reread a sample from the FIFO, decrement its value by one and read the data register again.

The SpO<sub>2</sub> write/read pointers should be cleared (back to 0x0) upon entering SpO<sub>2</sub> mode or heart-rate mode, so that there is no old data represented in the FIFO. The pointers are not automatically cleared when changing modes, but they are cleared if  $V_{DD}$  is power cycled so that the  $V_{DD}$  voltage drops below its UVLO voltage.

#### Pseudo-Code Example of Reading Data from FIFO

First transaction: Get the FIFO\_WR\_PTR:

START; Send device address + write mode Send address of FIFO\_WR\_PTR; REPEATED\_START; Send device address + read mode Read FIFO\_WR\_PTR; STOP;

The central processor evaluates the number of samples to be read from the FIFO:

```
NUM_AVAILABLE_SAMPLES = FIFO_WR_PTR - FIFO_RD_PTR
(Note: pointer wrap around should be taken into account)
NUM_SAMPLES_TO_READ = < less than or equal to NUM_AVAILABLE_SAMPLES >
```

#### Second transaction: Read NUM SAMPLES TO READ samples from the FIFO:

```
START;
Send device address + write mode
Send address of FIFO DATA;
REPEATED START;
Send device address + read mode
for (i = 0; i < NUM SAMPLES TO READ; i++) {</pre>
Read FIFO DATA;
Save IR[15:8];
Read FIFO DATA;
Save IR[7:0];
Read FIFO DATA;
Save R[15:8];
Read FIFO DATA;
Save R[7:0];
     }
STOP;
```

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

Third transaction: Write to FIFO\_RD\_PTR register. If the second transaction was successful, FIFO\_RD\_PTR points to the next sample in the FIFO, and this third transaction is not necessary. Otherwise, the processor updates the FIFO\_RD\_PTR appropriately, so that the samples are reread.

START;

```
Send device address + write mode
Send address of FIFO_RD_PTR;
Write FIFO_RD_PTR;
STOP;
```

#### Mode Configuration (0x06)

| REGISTER                | B7   | B6    | В5 | B4 | B3          | B2        | B1 | В0   | REG<br>ADDR | POR<br>STATE | R/W |
|-------------------------|------|-------|----|----|-------------|-----------|----|------|-------------|--------------|-----|
| Mode Configu-<br>ration | SHDN | RESET |    |    | TEMP_<br>EN | MODE[2:0] |    | 0x06 | 0x00        | R/W          |     |

#### Bit 7: Shutdown Control (SHDN)

The part can be put into a power-save mode by setting this bit to one. While in power-save mode, all registers retain their values, and write/read operations function as normal. All interrupts are cleared to zero in this mode.

#### **Bit 6: Reset Control (RESET)**

When the RESET bit is set to one, all configuration, threshold, and data registers are reset to their power-on-state. The only exception is writing both RESET and TEMP\_EN bits to one at the same time since temperature data registers 0x16 and 0x17 are not cleared. The RESET bit is cleared automatically back to zero after the reset sequence is completed.

#### Bit 3: Temperature Enable (TEMP\_EN)

This is a self-clearing bit which, when set, initiates a single temperature reading from the temperature sensor. This bit is cleared automatically back to zero at the conclusion of the temperature reading when the bit is set to one in heart rate or  $SpO_2$  mode.

#### Bits 2:0: Mode Control

These bits set the operating state of the MAX30100. Changing modes does not change any other setting, nor does it erase any previously stored data inside the data registers.

#### **Table 3. Mode Control**

| MODE[2:0] | MODE                     |  |  |
|-----------|--------------------------|--|--|
| 000       | Unused                   |  |  |
| 001       | Reserved<br>(Do not use) |  |  |
| 010       | HR only enabled          |  |  |
| 011       | SPO <sub>2</sub> enabled |  |  |
| 100–111   | Unused                   |  |  |

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### SpO2 Configuration (0x07)

| REGISTER                          | B7 | B6                 | В5       | B4 | B3         | B2 | B1    | В0      | REG<br>ADDR | POR<br>STATE | R/W |
|-----------------------------------|----|--------------------|----------|----|------------|----|-------|---------|-------------|--------------|-----|
| SPO <sub>2</sub><br>Configuration |    | SPO2_HI_<br>RES_EN | Reserved | SF | PO2_SR[2:0 | D] | LED_F | PW[1:0] | 0x07        | 0x00         | R/W |

#### Bit 6: SpO<sub>2</sub> High Resolution Enable (SPO2\_HI\_RES\_EN)

Set this bit high. The SpO<sub>2</sub> ADC resolution is 16-bit with 1.6ms LED pulse width.

#### Bit 5: Reserved. Set low (default).

#### Bit 4:2: SpO<sub>2</sub> Sample Rate Control

These bits define the effective sampling rate, with one sample consisting of one IR pulse/conversion and one RED pulse/ conversion.

The sample rate and pulse width are related, in that the sample rate sets an upper bound on the pulse width time. If the user selects a sample rate that is too high for the selected LED\_PW setting, the highest possible sample rate will instead be programmed into the register.

#### Bits 1:0: LED Pulse Width Control

These bits set the LED pulse width (the IR and RED have the same pulse width), and therefore, indirectly set the integration time of the ADC in each sample. The ADC resolution is directly related to the integration time.

#### Table 4. SpO2 Sample Rate Control

| SPO2_SR[2:0] | SAMPLES (PER SECOND) |
|--------------|----------------------|
| 000          | 50                   |
| 001          | 100                  |
| 010          | 167                  |
| 011          | 200                  |
| 100          | 400                  |
| 101          | 600                  |
| 110          | 800                  |
| 111          | 1000                 |

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## Table 5. LED Pulse Width Control

| LED_PW[1:0] | PULSE WIDTH (µs) | ADC RESOLUTION (BITS) |
|-------------|------------------|-----------------------|
| 00          | 200              | 13                    |
| 01          | 400              | 14                    |
| 10          | 800              | 15                    |
| 11          | 1600             | 16                    |

#### LED Configuration (0x09)

| REGISTER               | B7 | В6    | В5      | B4 | В3         | B2 | B1 | В0 | REG<br>ADDR | POR<br>STATE | R/W |
|------------------------|----|-------|---------|----|------------|----|----|----|-------------|--------------|-----|
| LED Configura-<br>tion |    | RED_I | PA[3:0] |    | IR_PA[3:0] |    |    |    | 0x09        | 0x00         | R/W |

#### Bits 7:4: Red LED Current Control

These bits set the current level of the Red LED as in Table 6.

#### Bits 3:0: IR LED Current Control

These bits set the current level of the IR LED as in Table 6.

#### **Table 6. LED Current Control**

| Red_PA[3:0] OR IR_PA[3:0] | TYPICAL LED CURRENT (mA)* |
|---------------------------|---------------------------|
| 0000                      | 0.0                       |
| 0001                      | 4.4                       |
| 0010                      | 7.6                       |
| 0011                      | 11.0                      |
| 0100                      | 14.2                      |
| 0101                      | 17.4                      |
| 0110                      | 20.8                      |
| 0111                      | 24.0                      |
| 1000                      | 27.1                      |
| 1001                      | 30.6                      |
| 1010                      | 33.8                      |
| 1011                      | 37.0                      |
| 1100                      | 40.2                      |
| 1101                      | 43.6                      |
| 1110                      | 46.8                      |
| 1111                      | 50.0                      |

\*Actual measured LED current for each part can vary widely due to the proprietary trim methodology.

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### Temperature Data (0x16–0x17)

| REGISTER      | B7        | B6 | В5 | B4 | В3         | B2 | B1 | В0   | REG<br>ADDR | POR<br>STATE | R/W |
|---------------|-----------|----|----|----|------------|----|----|------|-------------|--------------|-----|
| Temp_Integer  | TINT[7:0] |    |    |    |            |    |    | 0x16 | 0x00        | R/W          |     |
| Temp_Fraction |           |    |    |    | TFRAC[3:0] |    |    | 0x17 | 0x00        | R/W          |     |

#### **Temperature Integer**

The on-board temperature ADC output is split into two registers, one to store the integer temperature and one to store the fraction. Both should be read when reading the temperature data, and the following equation shows how to add the two registers together:

 $T_{MEASURED} = T_{INTEGER} + T_{FRACTION}$ 

This register stores the integer temperature data in two's complement format, where each bit corresponds to degree Celsius.

#### Table 7. Temperature Integer

| REGISTER VALUE (hex) | TEMPERATURE (°C) |
|----------------------|------------------|
| 0x00                 | 0                |
| 0x00                 | +1               |
|                      |                  |
| 0x7E                 | +126             |
| 0x7F                 | +127             |
| 0x80                 | -128             |
| 0x81                 | -127             |
|                      |                  |
| 0xFE                 | -2               |
| 0xFF                 | -1               |

#### **Temperature Fraction**

This register stores the fractional temperature data in increments of 0.0625°C (1/16th of a degree).

If this fractional temperature is paired with a negative integer, it still adds as a positive fractional value (e.g.,  $-128^{\circ}C + 0.5^{\circ}C = -127.5^{\circ}C$ ).

#### **Applications Information**

#### **Sampling Rate and Performance**

The MAX30100 ADC is a 16-bit sigma delta converter. The ADC sampling rate can be configured from 50sps to 1ksps. The maximum sample rate for the ADC depends on the selected pulse width, which in turn, determines the ADC resolution. For instance, if the pulse width is set to 200 $\mu$ s, then the ADC resolution is 13 bits and all sample rates from 50sps to 1ksps are selectable. However, if the pulse width is set to 1600 $\mu$ s, then only sample rates of 100sps and 50sps can be set. The allowed sample rates for both SpO<sub>2</sub> and HR mode are summarized in Table 8 and Table 9.

#### **Power Considerations**

The LEDs in MAX30100 are pulsed with a low duty cycle for power savings, and the pulsed currents can cause ripples in the LED power supply. To ensure these pulses do not translate into optical noise at the LED outputs, the power supply must be designed to handle peak LED current. Ensure that the resistance and inductance from the

#### Table 8. SpO<sub>2</sub> Mode (Allowed Settings)

| SAMPLES              | PULSE WIDTH (μs) |     |     |      |  |  |  |  |
|----------------------|------------------|-----|-----|------|--|--|--|--|
| (per second)         | 200              | 400 | 800 | 1600 |  |  |  |  |
| 50                   | 0                | 0   | 0   | 0    |  |  |  |  |
| 100                  | 0                | 0   | 0   | 0    |  |  |  |  |
| 167                  | 0                | 0   | 0   |      |  |  |  |  |
| 200                  | 0                | 0   | 0   |      |  |  |  |  |
| 400                  | 0                | 0   |     |      |  |  |  |  |
| 600                  | 0                |     |     |      |  |  |  |  |
| 800                  | 0                |     |     |      |  |  |  |  |
| 1000                 | 0                |     |     |      |  |  |  |  |
| Resolution<br>(bits) | 13               | 14  | 15  | 16   |  |  |  |  |

# power supply (battery, DC/DC converter, or LDO) to the device LED+ pins is much smaller than 1 $\Omega$ , and that there is at least 1µF of power-supply bypass capacitance to a low impedance ground plane. The decoupling capacitor should be located physically as close as possible to the MAX30100 device.

In the heart-rate only mode, the red LED is inactive, and only the IR LED is used to capture optical data and determine the heart rate. This mode allows power savings due to the red LED being off; in addition, the IR\_LED+ power supply can be reduced to save power because the forward voltage of the IR LED is significantly less than that of the red LED.

The average I\_DD and LED current as function of pulse width and sampling rate is summarized in Table 10 to Table 13.

| SAMPLES              | PULSE WIDTH (μs) |     |     |      |  |  |  |  |
|----------------------|------------------|-----|-----|------|--|--|--|--|
| (per second)         | 200              | 400 | 800 | 1600 |  |  |  |  |
| 50                   | 0                | 0   | 0   | 0    |  |  |  |  |
| 100                  | 0                | 0   | 0   | 0    |  |  |  |  |
| 167                  | 0                | 0   | 0   |      |  |  |  |  |
| 200                  | 0                | 0   | 0   |      |  |  |  |  |
| 400                  | 0                | 0   |     |      |  |  |  |  |
| 600                  | 0                | 0   |     |      |  |  |  |  |
| 800                  | 0                | 0   |     |      |  |  |  |  |
| 1000                 | 0                | 0   |     |      |  |  |  |  |
| Resolution<br>(bits) | 13               | 14  | 15  | 16   |  |  |  |  |

# Table 9. Heart-Rate Mode(Allowed Settings)

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

| SAMPLES      | PULSE WIDTH (µs) |     |     |      |  |  |  |  |
|--------------|------------------|-----|-----|------|--|--|--|--|
| (per second) | 200              | 400 | 800 | 1600 |  |  |  |  |
| 50           | 628              | 650 | 695 | 782  |  |  |  |  |
| 100          | 649              | 691 | 776 | 942  |  |  |  |  |
| 167          | 678              | 748 | 887 |      |  |  |  |  |
| 200          | 692              | 775 | 940 |      |  |  |  |  |
| 400          | 779              | 944 |     |      |  |  |  |  |
| 600          | 865              |     |     |      |  |  |  |  |
| 800          | 952              |     |     |      |  |  |  |  |
| 1000         | 1037             |     |     |      |  |  |  |  |

#### Table 10. SpO<sub>2</sub> Mode: Average IDD Current (µA) R\_PA = 0x3, IR\_PA = 0x3

## Table 11. SpO<sub>2</sub> Mode: Average LED Current (mA) R\_PA = 0x3, IR\_PA = 0x3

| SAMPLES      | PULSE WIDTH (μs) |       |       |       |  |  |  |  |
|--------------|------------------|-------|-------|-------|--|--|--|--|
| (per second) | 200              | 400   | 800   | 1600  |  |  |  |  |
| 50           | 0.667            | 1.332 | 2.627 | 5.172 |  |  |  |  |
| 100          | 1.26             | 2.516 | 4.96  | 9.766 |  |  |  |  |
| 167          | 2.076            | 4.145 | 8.173 |       |  |  |  |  |
| 200          | 2.491            | 4.93  | 9.687 |       |  |  |  |  |
| 400          | 4.898            | 9.765 |       |       |  |  |  |  |
| 600          | 7.319            |       |       |       |  |  |  |  |
| 800          | 9.756            |       |       |       |  |  |  |  |
| 1000         | 12.17            |       |       |       |  |  |  |  |

#### Hardware Interrupt

The active-low interrupt pin pulls low when an interrupt is triggered. The pin is open-drain and requires a pullup resistor or current source to an external voltage supply (up to +5V from GND). The interrupt pin is not designed to sink large currents, so the pullup resistor value should be large, such as  $4.7 k\Omega$ .

The internal FIFO stores up to 16 samples, so that the system processor does not need to read the data after

#### Table 12. Heart-Rate Mode: Average IDD Current (µA) IR\_PA = 0x3

| SAMPLES      | PULSE WIDTH (µs) |     |     |      |  |  |
|--------------|------------------|-----|-----|------|--|--|
| (per second) | 200              | 400 | 800 | 1600 |  |  |
| 50           | 608              | 616 | 633 | 667  |  |  |
| 100          | 617              | 634 | 669 | 740  |  |  |
| 167          | 628              | 658 | 716 | 831  |  |  |
| 200          | 635              | 670 | 739 | 876  |  |  |
| 400          | 671              | 740 | 878 |      |  |  |
| 600          | 707              | 810 |     |      |  |  |
| 800          | 743              | 881 |     |      |  |  |
| 1000         | 779              | 951 |     |      |  |  |

## Table 13. Heart-Rate Mode: Average LED Current (mA) IR\_PA = 0x3

| SAMPLES      | PULSE WIDTH (µs) |       |       |       |  |  |
|--------------|------------------|-------|-------|-------|--|--|
| (per second) | 200              | 400   | 800   | 1600  |  |  |
| 50           | 0.256            | 0.511 | 1.020 | 2.040 |  |  |
| 100          | 0.512            | 1.022 | 2.040 | 4.077 |  |  |
| 167          | 0.854            | 1.705 | 3.404 | 6.795 |  |  |
| 200          | 1.023            | 2.041 | 4.074 | 8.130 |  |  |
| 400          | 2.042            | 4.074 | 8.123 |       |  |  |
| 600          | 3.054            | 6.089 |       |       |  |  |
| 800          | 4.070            | 8.109 |       |       |  |  |
| 1000         | 5.079            | 10.11 |       |       |  |  |

every sample. Temperature data may be needed to properly interpret  $SpO_2$  data, but the temperature does not need to be sampled very often—once a second or every few seconds should be sufficient. In heart-rate mode temperature information is not necessary.

## Table 14. Red LED Current Settings vs. LED Temperature Rise

| RED LED CURRENT SETTING | RED LED DUTY CYCLE<br>(% OF LED PULSE WIDTH<br>TO SAMPLE TIME) | ESTIMATED TEMPERATURE RISE<br>(ADD TO TEMPERATURE SENSOR<br>MEASUREMENT) (°C) |
|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0001 (3.1mA)            | 8                                                              | 0.1                                                                           |
| 1111 (35mA)             | 8                                                              | 2                                                                             |
| 0001 (3.1mA)            | 16                                                             | 0.3                                                                           |
| 1111 (35mA)             | 16                                                             | 4                                                                             |
| 0001 (3.1mA)            | 32                                                             | 0.6                                                                           |
| 1111 (35mA)             | 32                                                             | 8                                                                             |

## **Timing for Measurements and Data Collection**

## Timing in SpO<sub>2</sub> Mode



Figure 3. Timing for Data Acquisition and Communication When in SpO2 Mode

## Table 15. Events Sequence for Figure 3 in SpO2 Mode

| EVENT | DESCRIPTION                                                           | COMMENTS                                                                                                                                                                     |
|-------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Enter into SpO <sub>2</sub> mode. Initiate a temperature measurement. | I <sup>2</sup> C Write Command Sets MODE[2:0] = 0x03. At the same time,<br>set the TEMP_EN bit to initiate a single temperature measurement.<br>Mask the SPO2_RDY Interrupt. |
| 2     | Temperature measurement complete, interrupt generated                 | TEMP_RDY interrupt triggers, alerting the central processor to read the data.                                                                                                |
| 3     | Temp data is read, interrupt cleared                                  |                                                                                                                                                                              |
| 4     | FIFO is almost full, interrupt generated                              | Interrupt is generated when the FIFO has only one empty space left.                                                                                                          |
| 5     | FIFO data is read, interrupt cleared                                  |                                                                                                                                                                              |
| 6     | Next sample is stored                                                 | New sample is stored at the new read pointer location. Effectively, it is now the first sample in the FIFO.                                                                  |

#### **Timing in Heart-Rate Mode**



Figure 4. Timing for Data Acquisition and Communication When in Heart Rate Mode

## Table 16. Events Sequence for Figure 4 in Heart-Rate Mode

| EVENT | DESCRIPTION                              | COMMENTS                                                                                                    |
|-------|------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1     | Enter into heart rate mode               | I <sup>2</sup> C Write Command Sets MODE[2:0] = 0x02. Mask the HR_RDY interrupt.                            |
| 2     | FIFO is almost full, interrupt generated | Interrupt is generated when the FIFO has only one empty space left.                                         |
| 3     | FIFO data is read, interrupt cleared     |                                                                                                             |
| 4     | Next sample is stored                    | New sample is stored at the new read pointer location. Effectively, it is now the first sample in the FIFO. |

#### **Power Sequencing and Requirements**

#### **Power-Up Sequencing**

Figure 5 shows the recommended power-up sequence for the MAX30100.

It is recommended to power the V<sub>DD</sub> supply first, before the LED power supplies (R\_LED+, IR\_LED+). The interrupt and I<sup>2</sup>C pins can be pulled up to an external voltage even when the power supplies are not powered up.

After the power is established, an interrupt occurs to alert the system that the MAX30100 is ready for operation. Reading the  $I^2C$  interrupt register clears the interrupt, as shown in Figure 5.

#### **Power-Down Sequencing**

The MAX30100 is designed to be tolerant of any powersupply sequencing on power-down.

#### **I2C Interface**

The MAX30100 features an I<sup>2</sup>C/SMBus-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX30100 and the master at clock rates up to 400kHz. Figure 1 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX30100 by transmitting the proper slave address followed by data. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX30100 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX30100 transmits the proper slave address followed by a series of nine SCL pulses. The MAX30100 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500 $\Omega$ , is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500 $\Omega$ , is required on SDA. SCL operates on the bus, or if the single master has an open-drain SCL output.

#### Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the <u>START and STOP Conditions</u> section.



Figure 5. Power-Up Sequence of the Power-Supply Rails

#### **START and STOP Conditions**

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 6). A START condition from the master signals the beginning of a transmission to the MAX30100. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

#### **Early STOP Conditions**

The MAX30100 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

#### **Slave Address**

A bus master initiates communication with a slave device by issuing a START condition followed by the 7-bit slave ID. When idle, the MAX30100 waits for a START condition followed by its slave ID. The serial interface compares each slave ID bit by bit, allowing the interface to power down and disconnect from SCL immediately if an incorrect slave ID is detected. After recognizing a START condition followed by the correct slave ID, the MAX30100 is ready to accept or send data. The LSB of the slave ID word is the Read/Write (R/W) bit. R/W indicates whether the master is writing to or reading data from the MAX30100. R/W = 0 selects a write condition, R/W = 1 selects a read condition). After receiving the proper slave ID, the MAX30100 issues an ACK by pulling SDA low for one clock cycle.

The MAX30100 slave ID consists of seven fixed bits, B7–B1 (set to 0b1010111). The most significant slave ID bit (B7) is transmitted first, followed by the remaining bits. Table 18 shows the possible slave IDs of the device.

#### Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the MAX30100 uses to handshake receipt each byte of data when in write mode (Figure 7). The MAX30100 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master will retry communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX30100 is in read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX30100, followed by a STOP condition.

#### Table 17. Slave ID Description

| В7 | B6 | В5 | B4 | В3 | B2 | B1 | В0  | WRITE AD-<br>DRESS | READ AD-<br>DRESS |
|----|----|----|----|----|----|----|-----|--------------------|-------------------|
| 1  | 0  | 1  | 0  | 1  | 1  | 1  | R/W | 0xAE               | 0xAF              |



Figure 6. START, STOP, and REPEATED START Conditions



Figure 7. Acknowledge

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### Write Data Format

For the write operation, send the slave ID as the first byte followed by the register address byte and then one or more data bytes. The register address pointer increments automatically after each byte of data received. For example, the entire register bank can be written by at one time. Terminate the data transfer with a STOP condition. The write operation is shown in Figure 8.

The internal register address pointer increments automatically, so writing additional data bytes fill the data registers in order.

#### **Read Data Format**

For the read operation, two I<sup>2</sup>C operations must be performed. First, the slave ID byte is sent followed by the I<sup>2</sup>C register that you wish to read. Then a REPEATED START (Sr) condition is sent, followed by the read slave ID. The MAX30100 then begins sending data beginning with the register selected in the first operation. The read pointer increments automatically, so the MAX30100 continues sending data from additional registers in sequential order until a STOP (P) condition is received. The exception to this is the FIFO\_DATA register, at which the read pointer no longer increments when reading additional bytes. To read the next register after FIFO\_DATA, an I<sup>2</sup>C write command is necessary to change the location of the read pointer.

An initial write operation is required to send the read register address.

Data is sent from registers in sequential order, starting from the register selected in the initial I<sup>2</sup>C write operation. If the FIFO\_DATA register is read, the read pointer does not automatically increment, and subsequent bytes of data contain the contents of the FIFO.



Figure 8. Writing One Data Byte to the MAX30100



Figure 9. Reading One Byte of Data from the MAX30100

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health



Figure 10. Reading Multiple Bytes of Data from the MAX30100

## **Typical Application Circuit**



## **Ordering Information**

| PART         | TEMP RANGE     | PIN-PACKAGE               |
|--------------|----------------|---------------------------|
| MAX30100EFD+ | -40°C to +85°C | 14 OESIP<br>(0.8mm pitch) |

+Denotes a lead(Pb)-free/RoHS-compliant package.

## **Chip Information**

**PROCESS: BICMOS** 

## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE TYPE | PACKAGE CODE | OUTLINE NO. | LAND PATTERN NO. |
|--------------|--------------|-------------|------------------|
| 14 OESIP     | F142D5+2     | 21-0880     | 90-0461          |



## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

#### **Package Information (continued)**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.



## Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health

## **Revision History**

| REVISION | REVISION | DESCRIPTION     | PAGES   |
|----------|----------|-----------------|---------|
| NUMBER   | DATE     |                 | CHANGED |
| 0        | 9/14     | Initial release | —       |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

## DATASHEET



# **Raspberry Pi 4 Model B**

Release 1

June 2019

Copyright 2019 Raspberry Pi (Trading) Ltd. All rights reserved.



|         |            | -             |
|---------|------------|---------------|
| Release | Date       | Description   |
| 1       | 21/06/2019 | First release |

Table 1: Release History

The latest release of this document can be found at https://www.raspberrypi.org

\_



## Contents

| 1 | Introduction                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                      |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 2 | Features         2.1       Hardware         2.2       Interfaces         2.3       Software                                                                                                                                                                                                                                                                                                            | <b>6</b><br>6<br>7                                     |
| 3 | Mechanical Specification                                                                                                                                                                                                                                                                                                                                                                               | 7                                                      |
| 4 | Electrical Specification         4.1       Power Requirements                                                                                                                                                                                                                                                                                                                                          | <b>7</b><br>9                                          |
| 5 | Peripherals                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                      |
|   | 5.1       GPIO Interface         5.1.1       GPIO Pin Assignments         5.1.2       GPIO Alternate Functions         5.1.3       Display Parallel Interface (DPI)         5.1.4       SD/SDIO Interface         5.2       Camera and Display Interfaces         5.3       USB         5.4       HDMI         5.5       Audio and Composite (TV Out)         5.6       Temperature Range and Thermals | 9<br>9<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |
| 6 | Availability                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                     |
| 7 | Support                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                     |



## List of Figures

| 1 | Mechanical Dimensions.     | 7 |
|---|----------------------------|---|
| 2 | Digital IO Characteristics | 8 |
| 3 | GPIO Connector Pinout      | 9 |


# List of Tables

| 1 | Release History                         | 1  |
|---|-----------------------------------------|----|
| 2 | Absolute Maximum Ratings                | 8  |
| 3 | DC Characteristics                      | 8  |
| 4 | Digital I/O Pin AC Characteristics      | 8  |
| 5 | Raspberry Pi 4 GPIO Alternate Functions | 10 |



# 1 Introduction

The Raspberry Pi 4 Model B (Pi4B) is the first of a new generation of Raspberry Pi computers supporting more RAM and with significantly enhanced CPU, GPU and I/O performance; all within a similar form factor, power envelope and cost as the previous generation Raspberry Pi 3B+.

The Pi4B is avaiable with either 1, 2 and 4 Gigabytes of LPDDR4 SDRAM.



## 2 Features

### 2.1 Hardware

- Quad core 64-bit ARM-Cortex A72 running at 1.5GHz
- 1, 2 and 4 Gigabyte LPDDR4 RAM options
- H.265 (HEVC) hardware decode (up to 4Kp60)
- H.264 hardware decode (up to 1080p60)
- VideoCore VI 3D Graphics
- Supports dual HDMI display output up to 4Kp60

#### 2.2 Interfaces

- 802.11 b/g/n/ac Wireless LAN
- Bluetooth 5.0 with BLE
- 1x SD Card
- 2x micro-HDMI ports supporting dual displays up to 4Kp60 resolution
- 2x USB2 ports
- 2x USB3 ports
- 1x Gigabit Ethernet port (supports PoE with add-on PoE HAT)
- 1x Raspberry Pi camera port (2-lane MIPI CSI)
- 1x Raspberry Pi display port (2-lane MIPI DSI)
- 28x user GPIO supporting various interface options:
  - Up to 6x UART
  - Up to 6x I2C
  - Up to 5x SPI
  - 1x SDIO interface
  - 1x DPI (Parallel RGB Display)
  - 1x PCM
  - Up to 2x PWM channels
  - Up to 3x GPCLK outputs



## 2.3 Software

- ARMv8 Instruction Set
- Mature Linux software stack
- Actively developed and maintained
  - Recent Linux kernel support
  - Many drivers upstreamed
  - Stable and well supported userland
  - Availability of GPU functions using standard APIs



# **3** Mechanical Specification

Figure 1: Mechanical Dimensions

# 4 Electrical Specification

**Caution!** Stresses above those listed in Table 2 may cause permanent damage to the device. This is a stress rating only; functional operation of the device under these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



| Symbol | Parameter        | Minimum | Maximum | Unit |
|--------|------------------|---------|---------|------|
| VIN    | 5V Input Voltage | -0.5    | 6.0     | V    |

#### Table 2: Absolute Maximum Ratings

Please note that VDD\_IO is the GPIO bank voltage which is tied to the on-board 3.3V supply rail.

| Symbol   | Parameter                        | Conditions                  | Minimum | Typical | Maximum | Unit    |
|----------|----------------------------------|-----------------------------|---------|---------|---------|---------|
| $V_{IL}$ | Input low voltage <sup>a</sup>   | $VDD_IO = 3.3V$             | -       | -       | TBD     | V       |
| $V_{IH}$ | Input high voltage <sup>a</sup>  | $VDD_IO = 3.3V$             | TBD     | -       | -       | V       |
| $I_{IL}$ | Input leakage current            | $TA = +85^{\circ}C$         | -       | -       | TBD     | $\mu A$ |
| $C_{IN}$ | Input capacitance                | -                           | -       | TBD     | -       | pF      |
| $V_{OL}$ | Output low voltage <sup>b</sup>  | $VDD_IO = 3.3V, IOL = -2mA$ | -       | -       | TBD     | V       |
| $V_{OH}$ | Output high voltage <sup>b</sup> | $VDD_IO = 3.3V, IOH = 2mA$  | TBD     | -       | -       | V       |
| $I_{OL}$ | Output low $current^c$           | VDD_IO = 3.3V, VO = 0.4V    | TBD     | -       | -       | mA      |
| $I_{OH}$ | Output high current <sup>c</sup> | VDD_IO = 3.3V, VO = 2.3V    | TBD     | -       | -       | mA      |
| $R_{PU}$ | Pullup resistor                  | -                           | TBD     | -       | TBD     | kΩ      |
| $R_{PD}$ | Pulldown resistor                | -                           | TBD     | -       | TBD     | kΩ      |

<sup>a</sup> Hysteresis enabled

<sup>b</sup> Default drive strength (8mA)

<sup>c</sup> Maximum drive strength (16mA)

| Pin Name        | Symbol     | Parameter                                  | Minimum | Typical | Maximum | Unit |
|-----------------|------------|--------------------------------------------|---------|---------|---------|------|
| Digital outputs | $t_{rise}$ | 10-90% rise time <sup><math>a</math></sup> | -       | TBD     | -       | ns   |
| Digital outputs | $t_{fall}$ | 90-10% fall time <sup><i>a</i></sup>       | -       | TBD     | -       | ns   |

<sup>*a*</sup> Default drive strength, CL = 5pF,  $VDD_IO = 3.3V$ 

#### Table 4: Digital I/O Pin AC Characteristics



Figure 2: Digital IO Characteristics



#### 4.1 **Power Requirements**

The Pi4B requires a good quality USB-C power supply capable of delivering 5V at 3A. If attached downstream USB devices consume less than 500mA, a 5V, 2.5A supply may be used.

# **5** Peripherals

## 5.1 GPIO Interface

The Pi4B makes 28 BCM2711 GPIOs available via a standard Raspberry Pi 40-pin header. This header is backwards compatible with all previous Raspberry Pi boards with a 40-way header.

#### 5.1.1 GPIO Pin Assignments



Figure 3: GPIO Connector Pinout

As well as being able to be used as straightforward software controlled input and output (with programmable pulls), GPIO pins can be switched (multiplexed) into various other modes backed by dedicated peripheral blocks such as I2C, UART and SPI.

In addition to the standard peripheral options found on legacy Pis, extra I2C, UART and SPI peripherals have been added to the BCM2711 chip and are available as further mux options on the Pi4. This gives users much more flexibility when attaching add-on hardware as compared to older models.



### 5.1.2 GPIO Alternate Functions

|      | Default |            |       |           |            |            |            |
|------|---------|------------|-------|-----------|------------|------------|------------|
| GPIO | Pull    | ALT0       | ALT1  | ALT2      | ALT3       | ALT4       | ALT5       |
| 0    | High    | SDA0       | SA5   | PCLK      | SPI3_CE0_N | TXD2       | SDA6       |
| 1    | High    | SCL0       | SA4   | DE        | SPI3_MISO  | RXD2       | SCL6       |
| 2    | High    | SDA1       | SA3   | LCD_VSYNC | SPI3_MOSI  | CTS2       | SDA3       |
| 3    | High    | SCL1       | SA2   | LCD_HSYNC | SPI3_SCLK  | RTS2       | SCL3       |
| 4    | High    | GPCLK0     | SA1   | DPI_D0    | SPI4_CE0_N | TXD3       | SDA3       |
| 5    | High    | GPCLK1     | SA0   | DPI_D1    | SPI4_MISO  | RXD3       | SCL3       |
| 6    | High    | GPCLK2     | SOE_N | DPI_D2    | SPI4_MOSI  | CTS3       | SDA4       |
| 7    | High    | SPI0_CE1_N | SWE_N | DPI_D3    | SPI4_SCLK  | RTS3       | SCL4       |
| 8    | High    | SPI0_CE0_N | SD0   | DPI_D4    | -          | TXD4       | SDA4       |
| 9    | Low     | SPI0_MISO  | SD1   | DPI_D5    | -          | RXD4       | SCL4       |
| 10   | Low     | SPI0_MOSI  | SD2   | DPI_D6    | -          | CTS4       | SDA5       |
| 11   | Low     | SPI0_SCLK  | SD3   | DPI_D7    | -          | RTS4       | SCL5       |
| 12   | Low     | PWM0       | SD4   | DPI_D8    | SPI5_CE0_N | TXD5       | SDA5       |
| 13   | Low     | PWM1       | SD5   | DPI_D9    | SPI5_MISO  | RXD5       | SCL5       |
| 14   | Low     | TXD0       | SD6   | DPI_D10   | SPI5_MOSI  | CTS5       | TXD1       |
| 15   | Low     | RXD0       | SD7   | DPI_D11   | SPI5_SCLK  | RTS5       | RXD1       |
| 16   | Low     | FL0        | SD8   | DPI_D12   | CTS0       | SPI1_CE2_N | CTS1       |
| 17   | Low     | FL1        | SD9   | DPI_D13   | RTS0       | SPI1_CE1_N | RTS1       |
| 18   | Low     | PCM_CLK    | SD10  | DPI_D14   | SPI6_CE0_N | SPI1_CE0_N | PWM0       |
| 19   | Low     | PCM_FS     | SD11  | DPI_D15   | SPI6_MISO  | SPI1_MISO  | PWM1       |
| 20   | Low     | PCM_DIN    | SD12  | DPI_D16   | SPI6_MOSI  | SPI1_MOSI  | GPCLK0     |
| 21   | Low     | PCM_DOUT   | SD13  | DPI_D17   | SPI6_SCLK  | SPI1_SCLK  | GPCLK1     |
| 22   | Low     | SD0_CLK    | SD14  | DPI_D18   | SD1_CLK    | ARM_TRST   | SDA6       |
| 23   | Low     | SD0_CMD    | SD15  | DPI_D19   | SD1_CMD    | ARM_RTCK   | SCL6       |
| 24   | Low     | SD0_DAT0   | SD16  | DPI_D20   | SD1_DAT0   | ARM_TDO    | SPI3_CE1_N |
| 25   | Low     | SD0_DAT1   | SD17  | DPI_D21   | SD1_DAT1   | ARM_TCK    | SPI4_CE1_N |
| 26   | Low     | SD0_DAT2   | TE0   | DPI_D22   | SD1_DAT2   | ARM_TDI    | SPI5_CE1_N |
| 27   | Low     | SD0_DAT3   | TE1   | DPI_D23   | SD1_DAT3   | ARM_TMS    | SPI6_CE1_N |

Table 5: Raspberry Pi 4 GPIO Alternate Functions

Table 5 details the default pin pull state and available alternate GPIO functions. Most of these alternate peripheral functions are described in detail in the BCM2711 Peripherals Specification document which can be downloaded from the hardware documentation section of the website.



#### 5.1.3 Display Parallel Interface (DPI)

A standard parallel RGB (DPI) interface is available the GPIOs. This up-to-24-bit parallel interface can support a secondary display.

#### 5.1.4 SD/SDIO Interface

The Pi4B has a dedicated SD card socket which suports 1.8V, DDR50 mode (at a peak bandwidth of 50 Megabytes / sec). In addition, a legacy SDIO interface is available on the GPIO pins.

#### 5.2 Camera and Display Interfaces

The Pi4B has 1x Raspberry Pi 2-lane MIPI CSI Camera and 1x Raspberry Pi 2-lane MIPI DSI Display connector. These connectors are backwards compatible with legacy Raspberry Pi boards, and support all of the available Raspberry Pi camera and display peripherals.

## 5.3 USB

The Pi4B has 2x USB2 and 2x USB3 type-A sockets. Downstream USB current is limited to approximately 1.1A in aggregate over the four sockets.

## 5.4 HDMI

The Pi4B has 2x micro-HDMI ports, both of which support CEC and HDMI 2.0 with resolutions up to 4Kp60.

## 5.5 Audio and Composite (TV Out)

The Pi4B supports near-CD-quality analogue audio output and composite TV-output via a 4-ring TRS 'A/V' jack.

The analog audio output can drive 32 Ohm headphones directly.

#### 5.6 Temperature Range and Thermals

The recommended ambient operating temperature range is 0 to 50 degrees Celcius.

To reduce thermal output when idling or under light load, the Pi4B reduces the CPU clock speed and voltage. During heavier load the speed and voltage (and hence thermal output) are increased. The internal governor will throttle back both the CPU speed and voltage to make sure the CPU temperature never exceeds 85 degrees C.

The Pi4B will operate perfectly well without any extra cooling and is designed for sprint performance - expecting a light use case on average and ramping up the CPU speed when needed (e.g. when loading a webpage). If a user wishes to load the system continually or operate it at a high termperature at full performance, further cooling may be needed.



# 6 Availability

Raspberry Pi guarantee availability Pi4B until at least January 2026.

# 7 Support

For support please see the hardware documentation section of the Raspberry Pi website and post questions to the Raspberry Pi forum.