BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Pada penelitian ini dapat ditarik beberapa kesimpulan antara lain sebagai berikut:

- 1.Pada simulasi yang telah dilakukan sensor proximity inductive bekerja dengan sangat baik dalam tingkat akurasi 100%
- 2.Sensor proximity inductive hanya bisa mendeteksi barang yang lewat hanya dalam jarak 0mm – 4mm jika melebihi jarak tersebut sensor tidak bisa mendeteksi.
- 3.Pada pengukuran Tegangan pada setiap komponen semuanya dalam kondisi yang baik dimana tegangan pada nilai yang stabil yaitu 24Vdc
- 4.Pada pengukuran Arus pada sensor memiliki nilai tertinggi yaitu 19,73mA. Memiliki nilai arus terendah pada sample Kuningan yaitu 13,20mA, pada Mildsteel 13,26 mA dan Alumunium yaitu 13,25mA
- 5. Sensor proximity induktif hanya dapat mendeteksi sebuah objek yang mengandung unsur logam (Alumunium, Mild steel, Kuningan) didalamnya dan tidak dapat mendeteksi objek selain logam.

5.2 Saran

Pada penelitian kali ini saran yang dapat diberikan oleh penulis antara lain sebagai berikut:

- 1. Saat memasang selang, proses perakitan harus sesuai dengan gambar skema rangkaian yang telah dibuat. Karena jika itu terbalik, gerakan yang dihasilkan tidak akan sesuai dengan gagasan awal.
- 2. Agar komponen dan mikrokontroller tidak rusak, mereka harus dirawat secara berkala.
- 3.Pada saat pengoperasian alat periksa kembali kabel kabel yang menghubungkan input dan output agar tidak terjadi kesalahan pada pembuatan program.

DAFTAR PUSTAKA

- Raharjo, Wahyu, and S. T. Ratnanto Fitriadi. Rancang Bangun Alat Trainer Otomasi Sebagai Media Pembelajaran Mata Kuliah Otomasi Industri Program Studi Teknik Industri Universitas Muhammadiyah Surakarta. Diss. Universitas Muhammadiyah Surakarta, 2018.
- Anggoro, A., & Rameli, I. M. (2019). Desain Diagram Ladder untuk Banyak
 Objek pada Factory Automatic Trainer menggunakan Metode Petri
 Net (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
- NUGRAHA, Raka Aditya; RAMELI, Ir Mochammad. Konstruksi Diagram Ladder dengan Bantuan Grafcet untuk Factory Automatic Trainer. Surabaya: Institut Teknologi Sepuluh Nopember, 2018.
- 4. IMRON, Muhammad; SETIAWAN, Andi. Pemilah Barang Logam Dan Non-Logam Berbasis Plc Omron Cp1E-N30Sdt-D. *Jurnal Teknik Elektro*, 2018, 1.1.
- Pramono, Aditya. 2013 .Pendeteksi logam berbasis plc (programmable logic control) dengan sistem pneumatik pada konveyor. Universitas Brawijaya Malang.
- Imaduddin, Muhammad. 2016. Rancang Bangun Trainer Alat Penyortir Barang Logam dan Non Logam sebagai Media Pembelajaran pada Mata Kuliah Dasar Sistem Kontrol. Universitas Negeri Semarang.
- Denada, Agri, dkk.2018.Rancang Bangun Sistem Kendali Alat Penyortir Barang Berwarna Merah dan Hijau dengan Sensor TCS230 Berbasis PLC SCHNEIDER. Universitas Diponogoro. Semarang.
- 8. Imron, Muhammad.2015.Pemilah Barang Logam dan Non Logam Berbasis PLC OMRON CP1E- N30SDT-D. Universitas Muhammadiyah Tanggerang.
- 9. Atmiasri,dkk.2011.Pendeteksi Logam untuk Industri Makanan Berbasis PLC. Jurnal Teknik UNIPA (vol 9 no 1)
- 10.Baptista, Yohanes.2015. Monitoring Prototip Mesin Pemilah Benda berdasarkan Jenis Bahan. Universitas Sanata Dharma. Yogyakarta
- 11. Turhamum T., Azhar A., Aidi F., (2017). Rancang Bangun Pemisah Logam dan Non Logam Menggunakan Elektro Pneumatik. Vol. 1. No. 1. 2017.

- 12.Festech CO.,LTD. (2012). MMPS manual_E_typeB. Seoul: Penerbit FESTCH CO.,LTD.
- 13.Bambang Sudarsono (2022). Dasar Dasar Pneumatik & Hidrolik. Jawa Tengah: Penerbit CV. Pena Persada
- 14. Suhana, A. K. (2022). Simulasi Perancangan Miniplant Penyortir Logam Dan Non- Logam Dengan Sistem Penggerak Pneumatik Handling And Arm Menggunakan Autodesk. "Jurnal Fisika Otomatis, 1(1), 37-44.
- Premalatha, S., Arunkumar, V., Kumar, C. S., Prasanna, R. S., & Halideen, S.
 S. Automation of Coal Sorting and Metal Detection using PLC and SCADA.
- 16.Bhosale, R., Suratwala, Y., Ranjan, S., & Thorat, R. (2021). Design and Fabrication of Faulty Product Detection and Separation System. Internaltional Journal of Advanced Research in Science, Communication and Technology, 3(1).
- 17.Bassily, H., Sekhon, R., Butts, D. E., & Wagner, J. (2007). A mechatronics educational laboratory–Programmable logic controllers and material handling experiments. Mechatronics, 17(9), 480-488.