LAMPIRAN

Product Reference Manual SKU: A000067

Description

Arduino® Mega 2560 Rev3 is an exemplary development board dedicated for building extensive applications as compared to other maker boards by Arduino. The board accommodates the ATmega2560 microcontroller, which operates at a frequency of 16 MHz. The board contains 54 digital input/output pins, 16 analog inputs, 4 UARTs (hardware serial ports), a USB connection, a power jack, an ICSP header, and a reset button.

Target Areas

3D Printing, Robotics, Maker

Features

ATmega2560 Processor

- Up to 16 MIPS Throughput at 16MHz
- 256k bytes (of which 8k is used for the bootloader)
- 4k bytes EEPROM
- 8k bytes Internal SRAM
- 32 × 8 General Purpose Working Registers
- Real Time Counter with Separate Oscillator
- Four 8-bit PWM Channels
- Four Programmable Serial USART
- Controller/Peripheral SPI Serial Interface

ATmega16U2

- Up to 16 MIPS Throughput at 16 MHz
- 16k bytes ISP Flash Memory
- 512 bytes EEPROM
- 512 bytes SRAM
- USART with SPI master only mode and hardware flow control (RTS/CTS)
- Master/Slave SPI Serial Interface

Sleep Modes

- Idle
- ADC Noise Reduction
- Power-save
- Power-down
- Standby
- Extended Standby

Power

- USB Connection
- External AC/DC Adapter

I/O

- 54 Digital
- 16 Analog
- 15 PWM Output

Contents

1 The Board	4
1.1 Application Examples	4
1.2 Accessories	4
1.3 Related Products	4
2 Ratings	5
2.1 Recommended Operating Conditions	5
3 Functional Overview	5
3.1 Block Diagram	5
3.2 Board Topology	6
3.3 Processor	7
3.4 Power Tree	7
4 Board Operation	8
4.1 Getting Started - IDE	8
4.2 Getting Started - Arduino Cloud Editor	8
4.3 Sample Sketches	8
4.4 Online Resources	8
5 Connector Pinouts	9
5.1 Analog	10
5.2 Digital	10
5.3 ATMEGA16U2 JP5	12
5.4 ATMEGA16U2 ICSP1	12
5.5 Digital Pins D22 - D53 LHS	12
5.6 Digital Pins D22 - D53 RHS	13
6 Mechanical Information	13
6.1 Board Outline	13
6.2 Board Mount Holes	14
7 Declaration of Conformity CE DoC (EU)	14
8 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021	
9 Conflict Minerals Declaration	16
10 FCC Caution	16
11 Company Information	17
12 Reference Documentation	17
13 Revision History	17

1 The Board

Mega 2560 Rev3 is a successor board of Arduino Mega, it is dedicated to applications and projects that require large number of input output pins and the use cases which need high processing power. The Mega 2560 Rev3 comes with a much larger set of IOs when we compare it with the traditional Arduino® UNO board considering the form factor of both the boards.

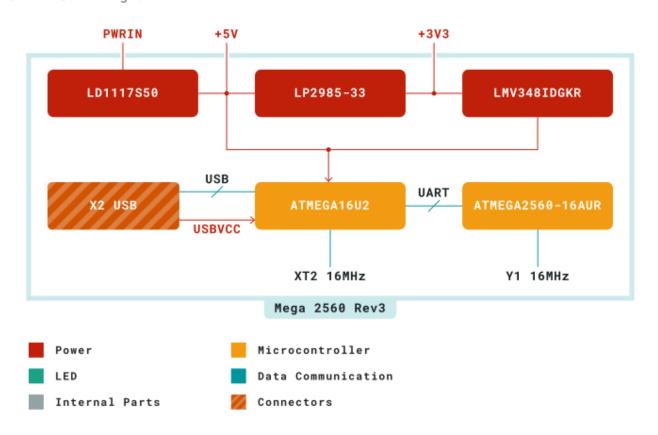
1.1 Application Examples

- Robotics: Featuring the high processing capacity, the Mega 2560 Rev3 can handle the extensive robotic applications. It is compatible with the motor controller shield that enables it to control multiple motors at an instance, thus making it perfect of robotic applications. The large number of I/O pins can accommodate many robotic sensors as well.
- **3D Printing**: Algorithms play a significant role in implementation of 3D printers. Mega 2560 Rev3 has the power to process these complex algorithms required for 3D printing. Additionally, the slight changes to the code is easily possible with the Arduino IDE and thus 3D printing programs can be customized according to user requirements.
- **Wi-Fi**: Integrating wireless functionality enhances the utility of the applications. Mega 2560 Rev3 is compatible with Wi-Fi® shields hence allowing the wireless features for the applications in 3D printing and Robotics.

1.2 Accessories

1.3 Related Products

- Arduino® UNO R3
- Arduino® Nano
- Arduino® Due without headers

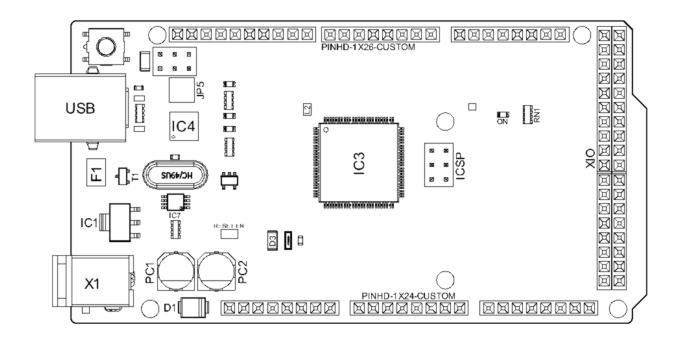

2 Ratings

2.1 Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Unit
V _{IN}	Input voltage from VIN pad / DC Jack	7	7.0	12	V
V _{USB}	Input voltage from USB connector	4.8	5.0	5.5	V
T _{OP}	Operating Temperature	-40	25	85	°C

3 Functional Overview

3.1 Block Diagram

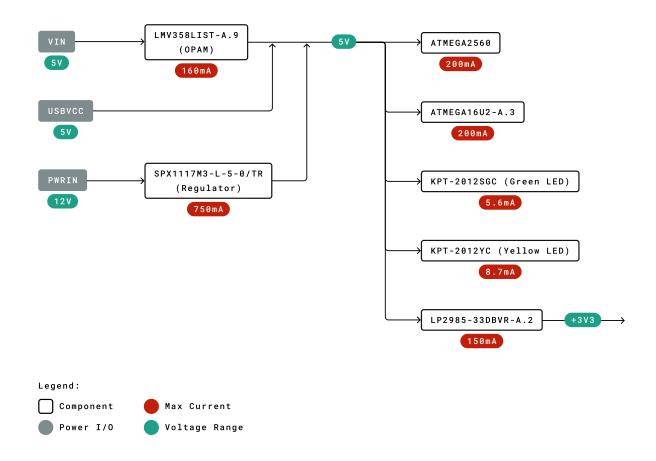


Arduino Mega 2560 Rev3 Block Diagram

3.2 Board Topology

Front View

Arduino Mega 2560 Rev3 Top View


Ref.	Description	Ref.	Description
USB	USB B Connector	F1	Chip Capacitor
IC1	5V Linear Regulator	X1	Power Jack Connector
JP5	Plated Holes	IC4	ATmega16U2 chip
PC1	Electrolytic Alumninum Capacitor	PC2	Electrolytic Alumninum Capacitor
D1	General Purpose Rectifier	D3	General Purpose Diode
L2	Fixed Inductor	IC3	ATmega2560 chip
ICSP	Connector Header	ON	Green LED
RN1	Resistor Array	XIO	Connector

3.3 Processor

Primary processor of Mega 2560 Rev3 board is ATmega2560 chip which operates at a frequency of 16 MHz. It accommodates a large number of input and output lines which gives the provision of interfacing many external devices. At the same time the operations and processing is not slowed due to its significantly larger RAM than the other processors. The board also features a USB serial processor ATmega16U2 which acts an interface between the USB input signals and the main processor. This increases the flexibility of interfacing and connecting peripherals to the Mega 2560 Rev3 board.

3.4 Power Tree

Power Tree

4 Board Operation

4.1 Getting Started - IDE

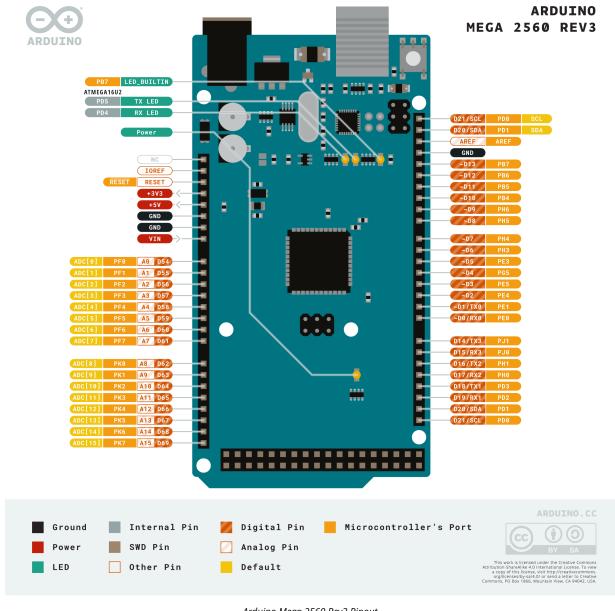
If you want to program your Mega 2560 Rev3 while offline you need to install the Arduino Desktop IDE [1] To connect the Mega 2560 Rev3 to your computer, you'll need a Type-B USB cable. This also provides power to the board, as indicated by the LED.

4.2 Getting Started - Arduino Cloud Editor

All Arduino boards, including this one, work out-of-the-box on the Arduino Cloud Editor [2], by just installing a simple plugin.

The Arduino Cloud Editor is hosted online, therefore it will always be up-to-date with the latest features and support for all boards. Follow [3] to start coding on the browser and upload your sketches onto your board.

4.3 Sample Sketches


Sample sketches for the Mega 2560 Rev3 can be found either in the "Examples" menu in the Arduino IDE or under the "Documentation" menu on the Arduino website [4].

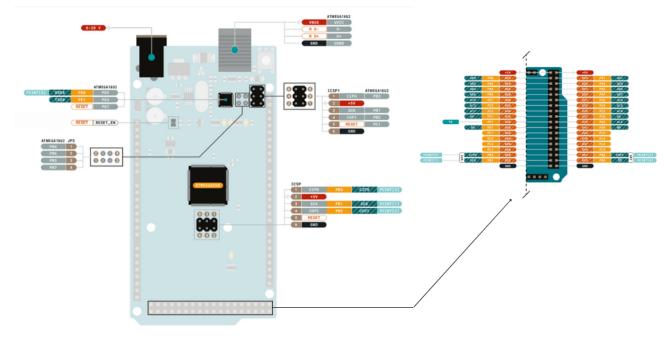
4.4 Online Resources

Now that you have gone through the basics of what you can do with the board you can explore the endless possibilities it provides by checking exciting projects on Arduino Project Hub [5], the Arduino Library Reference [6] and the online store [7] where you will be able to complement your board with sensors, actuators and more.

5 Connector Pinouts

Arduino Mega 2560 Rev3 Pinout

5.1 Analog


Pin	Function	Туре	Description	
1	NC	NC	Not Connected	
2	IOREF	IOREF	Reference for digital logic V - connected to 5V	
3	Reset	Reset	Reset	
4	+3V3	Power	+3V3 Power Rail	
5	+5V	Power	+5V Power Rail	
6	GND	Power	Ground	
7	GND	Power	Ground	
8	VIN	Power	Voltage Input	
9	A0	Analog	Analog input 0 /GPIO	
10	A1	Analog	Analog input 1 /GPIO	
11	A2	Analog	Analog input 2 /GPIO	
12	A3	Analog	Analog input 3 /GPIO	
13	A4	Analog	Analog input 4 /GPIO	
14	A5	Analog	Analog input 5 /GPIO	
15	A6	Analog	Analog input 6 /GPIO	
16	A7	Analog	Analog input 7 /GPIO	
17	A8	Analog	Analog input 8 /GPIO	
18	A9	Analog	Analog input 9 /GPIO	
19	A10	Analog	Analog input 10 /GPIO	
20	A11	Analog	Analog input 11 /GPIO	
21	A12	Analog	Analog input 12 /GPIO	
22	A13	Analog	Analog input 13 /GPIO	
23	A14	Analog	Analog input 14 /GPIO	
24	A15	Analog	Analog input 15 /GPIO	

5.2 Digital

Pin	Function	Туре	Description
1	D21/SCL	Digital Input/I2C	Digital input 21/I2C Dataline
2	D20/SDA	Digital Input/I2C	Digital input 20/I2C Dataline
3	AREF	Digital	Analog Reference Voltage
4	GND	Power	Ground
5	D13	Digital/GPIO	Digital input 13/GPIO
6	D12	Digital/GPIO	Digital input 12/GPIO
7	D11	Digital/GPIO	Digital input 11/GPIO
8	D10	Digital/GPIO	Digital input 10/GPIO
9	D9	Digital/GPIO	Digital input 9/GPIO
10	D8	Digital/GPIO	Digital input 8/GPIO
11	D7	Digital/GPIO	Digital input 7/GPIO
12	D6	Digital/GPIO	Digital input 6/GPIO
13	D5	Digital/GPIO	Digital input 5/GPIO
14	D4	Digital/GPIO	Digital input 4/GPIO

Pin	Function	Туре	Description
15	D3	Digital/GPIO	Digital input 3/GPIO
16	D2	Digital/GPIO	Digital input 2/GPIO
17	D1/TX0	Digital/GPIO	Digital input 1 /GPIO
18	D0/Tx1	Digital/GPIO	Digital input 0 /GPIO
19	D14	Digital/GPIO	Digital input 14 /GPIO
20	D15	Digital/GPIO	Digital input 15 /GPIO
21	D16	Digital/GPIO	Digital input 16 /GPIO
22	D17	Digital/GPIO	Digital input 17 /GPIO
23	D18	Digital/GPIO	Digital input 18 /GPIO
24	D19	Digital/GPIO	Digital input 19 /GPIO
25	D20	Digital/GPIO	Digital input 20 /GPIO
26	D21	Digital/GPIO	Digital input 21 /GPIO

Arduino Mega 2560 Rev3 Pinout

5.3 ATMEGA16U2 JP5

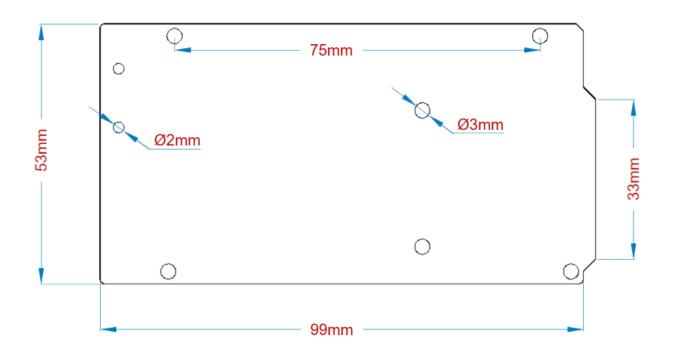
Pin	Function	Туре	Description
1	PB4	Internal	Serial Wire Debug
2	PB6	Internal	Serial Wire Debug
3	PB5	Internal	Serial Wire Debug
4	PB7	Internal	Serial Wire Debug

5.4 ATMEGA16U2 ICSP1

Pin	Function	Туре	Description
1	CIPO	Internal	Controller In Peripheral Out
2	+5V	Internal	Power Supply of 5V
3	SCK	Internal	Serial Clock
4	COPI	Internal	Controller Out Peripheral In
5	RESET	Internal	Reset
6	GND	Internal	Ground

5.5 Digital Pins D22 - D53 LHS

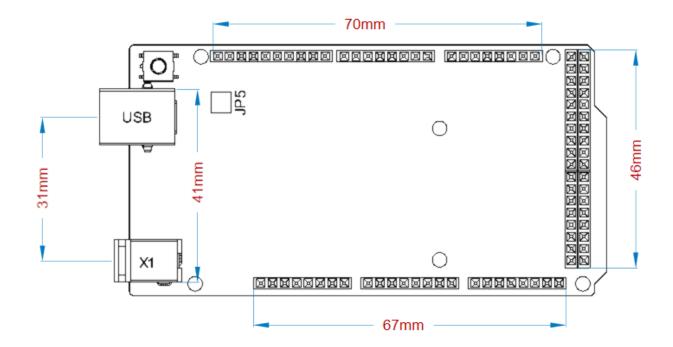
Pin	Function	Туре	Description
1	+5V	Power	Power Supply of 5V
2	D22	Digital	Digital input 22/GPIO
3	D24	Digital	Digital input 24/GPIO
4	D26	Digital	Digital input 26/GPIO
5	D28	Digital	Digital input 28/GPIO
6	D30	Digital	Digital input 30/GPIO
7	D32	Digital	Digital input 32/GPIO
8	D34	Digital	Digital input 34/GPIO
9	D36	Digital	Digital input 36/GPIO
10	D38	Digital	Digital input 38/GPIO
11	D40	Digital	Digital input 40/GPIO
12	D42	Digital	Digital input 42/GPIO
13	D44	Digital	Digital input 44/GPIO
14	D46	Digital	Digital input 46/GPIO
15	D48	Digital	Digital input 48/GPIO
16	D50	Digital	Digital input 50/GPIO
17	D52	Digital	Digital input 52/GPIO
18	GND	Power	Ground



5.6 Digital Pins D22 - D53 RHS

Pin	Function	Туре	Description
1	+5V	Power	Power Supply of 5V
2	D23	Digital	Digital input 23/GPIO
3	D25	Digital	Digital input 25/GPIO
4	D27	Digital	Digital input 27/GPIO
5	D29	Digital	Digital input 29/GPIO
6	D31	Digital	Digital input 31/GPIO
7	D33	Digital	Digital input 33/GPIO
8	D35	Digital	Digital input 35/GPIO
9	D37	Digital	Digital input 37/GPIO
10	D39	Digital	Digital input 39/GPIO
11	D41	Digital	Digital input 41/GPIO
12	D43	Digital	Digital input 43/GPIO
13	D45	Digital	Digital input 45/GPIO
14	D47	Digital	Digital input 47/GPIO
15	D49	Digital	Digital input 49/GPIO
16	D51	Digital	Digital input 51/GPIO
17	D53	Digital	Digital input 53/GPIO
18	GND	Power	Ground

6 Mechanical Information


6.1 Board Outline

Arduino Mega 2560 Rev3 Outline

6.2 Board Mount Holes

Arduino Mega 2560 Rev3 Mount Holes

Certifications

7 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements of the following EU Directives and therefore qualify for free movement within markets comprising the European Union (EU) and European Economic Area (EEA).

8 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3 Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Substance	Maximum Limit (ppm)
Lead (Pb)	1000
Cadmium (Cd)	100
Mercury (Hg)	1000
Hexavalent Chromium (Cr6+)	1000
Poly Brominated Biphenyls (PBB)	1000
Poly Brominated Diphenyl ethers (PBDE)	1000
Bis(2-Ethylhexyl} phthalate (DEHP)	1000
Benzyl butyl phthalate (BBP)	1000
Dibutyl phthalate (DBP)	1000
Diisobutyl phthalate (DIBP)	1000

Exemptions: No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of the SVHCs (https://echa.europa.eu/web/guest/candidate-list-table), the Candidate List of Substances of Very High Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products do not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list published by ECHA (European Chemical Agency) 1907 /2006/EC.

9 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regards to laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum, Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder, or as a component in metal alloys. As part of our reasonable due diligence Arduino has contacted component suppliers within our supply chain to verify their continued compliance with the regulations. Based on the information received thus far we declare that our products contain Conflict Minerals sourced from conflict-free areas.

10 FCC Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference
- (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.
- 3. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

English: User manuals for licence-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both. This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

French: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) l'appareil nedoit pas produire de brouillage
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

IC SAR Warning:

English This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

French: Lors de l'installation et de l'exploitation de ce dispositif, la distance entre le radiateur et le corps est d'au moins 20 cm.

Important: The operating temperature of the EUT can't exceed 85°C and shouldn't be lower than -40°C.

Hereby, Arduino S.r.l. declares that this product is in compliance with essential requirements and other relevant provisions of Directive 201453/EU. This product is allowed to be used in all EU member states.

11 Company Information

Company name	Arduino S.r.l.	
Company Address	Arduino SRL, Via Andrea Appiani 25, 20900 Monza MB, Italy	

12 Reference Documentation

Ref	Link
Arduino IDE (Desktop)	https://www.arduino.cc/en/Main/Software
Arduino Cloud Editor	https://create.arduino.cc/editor
Arduino Cloud Editor - Getting Started	https://docs.arduino.cc/arduino-cloud/guides/editor/
Arduino Website	https://www.arduino.cc/
Arduino Project Hub	https://create.arduino.cc/projecthub? by=part∂_id=11332&sort=trending
Library Reference	https://www.arduino.cc/reference/en/libraries/
Online Store	https://store.arduino.cc/

13 Revision History

Date	Revision	Changes
25/04/2024	3	Updated link to new Cloud Editor
09/10/2023	2	Updated recommended operating conditions
29/09/2020	1	First Release

Handson Technology

User Guide

I2C Serial Interface 1602 LCD Module

This is I2C interface 16x2 LCD display module, a high-quality 2 line 16 character LCD module with on-board contrast control adjustment, backlight and I2C communication interface. For Arduino beginners, no more cumbersome and complex LCD driver circuit connection. The real significance advantages of this I2C Serial LCD module will simplify the circuit connection, save some I/O pins on Arduino board, simplified firmware development with widely available Arduino library.

SKU: **DSP-1182**

Brief Data:

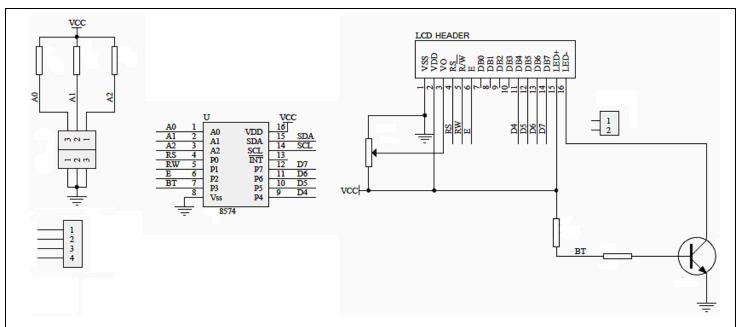
- Compatible with Arduino Board or other controller board with I2C bus.
- Display Type: Negative white on Blue backlight.
- I2C Address:0x38-0x3F (0x3F default)
- Supply voltage: 5V
- Interface: I2C to 4bits LCD data and control lines.
- Contrast Adjustment: built-in Potentiometer.
- Backlight Control: Firmware or jumper wire.
- Board Size: 80x36 mm.

Setting Up:

Hitachi's HD44780 based character LCD are very cheap and widely available, and is an essential part for any project that displays information. Using the LCD piggy-back board, desired data can be displayed on the LCD through the I2C bus. In principle, such backpacks are built around PCF8574 (from NXP) which is a general purpose bidirectional 8 bit I/O port expander that uses the I2C protocol. The PCF8574 is a silicon CMOS circuit provides general purpose remote I/O expansion (an 8-bit quasi-bidirectional) for most microcontroller families via the two-line bidirectional bus (I2C-bus). Note that most piggy-back modules are centered around PCF8574T (SO16 package of PCF8574 in DIP16 package) with a default slave address of 0x27. If your piggy-back board holds a PCF8574AT chip, then the default slave address will change to 0x3F. In short, if the piggy-back board is based on PCF8574T and the address connections (A0-A1-A2) are not bridged with solder it will have the slave address 0x27.

Address selection pads in the I2C-to-LCD piggy-back board.

Table 5. PCF8574A address map

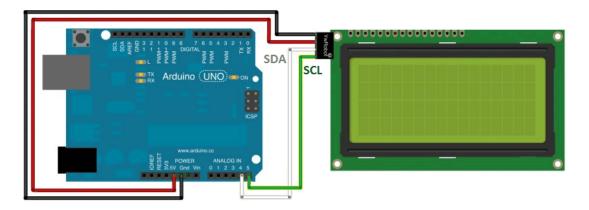

Pin c	onnec	tivity		P	Addre	ess o	f PCF	8574	Α		Address byte value		7-bit
A2	A1	A0	A6	A5	A4	А3	A2	A1	A0	R/W	Write	Read	hexadecimal address_ without R/W
V_{SS}	V _{SS}	V_{SS}	0	1	1	1	0	0	0	-	70h	71h	38h
Vss	V_{SS}	V_{DD}	0	1	1	1	0	0	1	-	72h	73h	39h
Vss	V_{DD}	V_{SS}	0	1	1	1	0	1	0	-	74h	75h	3Ah
V_{SS}	V_{DD}	V_{DD}	0	1	1	1	0	1	1	-	76h	77h	3Bh
V_{DD}	V_{SS}	V_{SS}	0	1	1	1	1	0	0	-	78h	79h	3Ch
V_{DD}	V_{SS}	V_{DD}	0	1	1	1	1	0	1	-	7Ah	7Bh	3Dh
V_{DD}	V_{DD}	V_{SS}	0	1	1	1	1	1	0	-	7Ch	7Dh	3Eh
			0	1	1	1	1	1	1	-	7Eh	7Fh	3Fh

Address Setting of PCD8574A (extract from PCF8574A data specs).

Note: When the pad A0~A2 is open, the pin is pull up to VDD. When the pin is solder shorted, it is pull down to VSS.

The default setting of this module is A0~A2 all open, so is pull up to VDD. The address is 3Fh in this case.

Reference circuit diagram of an Arduino-compatible LCD backpack is shown below. What follows next is information on how to use one of these inexpensive backpacks to interface with a microcontroller in ways it was exactly intended.


Reference circuit diagram of the I2C-to-LCD piggy-back board.

I2C LCD Display.

At first you need to solder the I2C-to-LCD piggy-back board to the 16-pins LCD module. Ensure that the I2C-to-LCD piggy-back board pins are straight and fit in the LCD module, then solder in the first pin while keeping the I2C-to-LCD piggy-back board in the same plane with the LCD module. Once you have finished the soldering work, get four jumper wires and connect the LCD module to your Arduino as per the instruction given below.

LCD display to Arduino wiring.

Arduino Setup

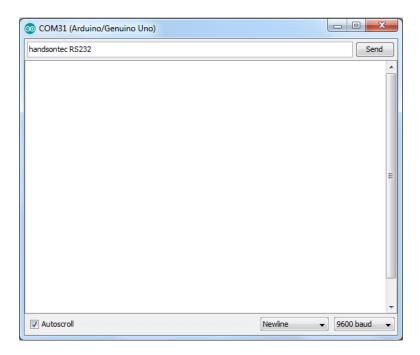
For this experiment it is necessary to download and install the "Arduino I2C LCD" library. First of all, rename the existing "LiquidCrystal" library folder in your Arduino libraries folder as a backup, and proceed to the rest of the process.

https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads

Next, copy-paste this example sketch Listing-1 for the experiment into the blank code window, verify, and then upload.

Arduino Sketch Listing-1:

```
/*_____
  Author : Handson Technology
Project : I2C to LCD with Arduino Uno
  Description : LCD with I2C Interface.
   LiquidCrystal Library - I2C Serial to LCD
   Source-Code : I2C LCD.ino
/*----( Import needed libraries )----*/
#include <Wire.h> // Comes with Arduino IDE
// Get the LCD I2C Library here:
  \underline{\texttt{https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads}}
// Move any other LCD libraries to another folder or delete them
// See Library "Docs" folder for possible commands etc.
#include <LiquidCrystal_I2C.h>
/*----( Declare Constants )----*/
// set the LCD address to 0x3F for PCF8574AT with A0,A1,A0 address line open, default
setting.
// Set the pins on the I2C chip used for LCD connections:
                   (addr, en, rw, rs, d4, d5, d6, d7, b1, b1pol)
LiquidCrystal I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C
address
/*----( Declare Variables )----*/
            /*---( SETUP: RUNS ONCE )----*/
void setup()
 Serial.begin(9600); // Used to type in characters
 lcd.begin(20,4);
                        // initialize the lcd for 20 chars 4 lines, turn on
backlight
// ----- Quick 3 blinks of backlight -----
 for (int i = 0; i < 3; i++)
 {
   lcd.backlight();
   delay(250);
   lcd.noBacklight();
   delay(250);
 lcd.backlight(); // finish with backlight on
//---- Write characters on the display -----
 // NOTE: Cursor Position: Lines and Characters start at 0
 lcd.setCursor(3,0); //Start at character 4 on line 0
 lcd.print("Hello, world!");
 delay(1000);
 lcd.setCursor(2,1);
 lcd.print("From Handsontec ");
```


```
delay(1000);
  lcd.setCursor(0,2);
  lcd.print("20 by 4 Line Display");
  lcd.setCursor(0,3);
  delay(2000);
  lcd.print(" www.handsontec.com ");
  delay(8000);
  // Wait and then tell user they can start the Serial Monitor and type in characters
to
  // Display. (Set Serial Monitor option to "No Line Ending")
  lcd.setCursor(0,0); //Start at character 0 on line 0
  lcd.print("Start Serial Monitor");
  lcd.setCursor(0,1);
  lcd.print("Type char to display");
}/*--(end setup )---*/
void loop()
              /*---( LOOP: RUNS CONSTANTLY )----*/
{
    // when characters arrive over the serial port...
    if (Serial.available()) {
      // wait a bit for the entire message to arrive
      delay(100);
      // clear the screen
      lcd.clear();
      // read all the available characters
      while (Serial.available() > 0) {
        // display each character to the LCD
        lcd.write(Serial.read());
      }
    }
}/* -- (end main loop ) -- */
/* ( THE END ) */
```

If you are 100% sure that everything is okay, but you don't see any characters on the display, try to adjust the contrast control pot of the backpack and set it a position where the characters are bright and the background does not have dirty boxes behind the characters. Following is a partial view of author's experiment with the above described code with 20x4 display module. Since the display used by the author is a very clear bright "black on yellow" type, it is very difficult to get a good catch due to polarization effects.

This sketch will also display character send from serial Monitor.

In Arduino IDE, go to "Tools" > "Serial Monitor". Set the correct baud rate at 9600. Type the character on the top empty space and hit "SEND".

The string of character will be displayed on the LCD module.

Resources:

- Handson Technology
- Complete Guide to Arduino LCD Interfacing (PDF)

Handsontec.com

We have the parts for your ideas

HandsOn Technology provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer. Information, education, inspiration and entertainment. Analog and digital, practical and theoretical; software and hardware.

Hands *On* Technology support Open Source Hardware (OSHW) Development Platform.

Learn: Design: Share

www.handsontec.com

The Face behind our product quality...

In a world of constant change and continuous technological development, a new or replacement product is never far away – and they all need to be tested.

Many vendors simply import and sell wihtout checks and this cannot be the ultimate interests of anyone, particularly the customer. Every part sell on Handsotec is fully tested. So when buying from Handsontec products range, you can be confident you're getting outstanding quality and value.

We keep adding the new parts so that you can get rolling on your next project.

Breakout Boards & Modules

Connectors

Electro-Mechanical Parts

Engineering Material

Mechanical Hardware

Electronics Components

Power Supply

Arduino Board & Shield

Tools & Accessory

GENERAL DESCRIPTION

The LM2596 Series are step-down switching regulator s with all required active functions. It is capable of driving 3A load with excellent line and load regulations. These devices are available in fixed output voltages of 3.3V, 5V, and an adjustable output version.

The LM2596 series operates at a switching frequency of 150kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. It substantially not only reduces the area of board size but also the size of heat sink, and in some cases no heat sink is required. The ±4% tolerance on output voltage within specified input voltages and output load conditions is guaranteed. Also, the oscillator frequency accuracy is within ±10%. External shutdown is included. Featuring 100µA (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- Output voltage: 3.3V, 5V & adjustable version
- Adjustable output voltage range 1.23V~38.5V
- 150kHz fixed switching frequency
- Voltage mode Non-synchronous PWM control
- Thermal shutdown and current limit protection
- ON/OFF shutdown control input
- Short circuit protect (SCP)
- Operating voltage can be up to 40V
- Output load current 3A

Applications

- Simple High-efficiency Step down Regulator
- On-Card Switching Regulators
- Positive to Negative Converter

TYPICAL APPLICATION

OUTPUT VOLTAGE	PART NO.	PACKAGE	PACKING
3.3V	LM2596SX-3.3	TO-263-5L (D ² PAK)	500pcs / 13" Reel
5.0V	LM2596SX-5.0	TO-263-5L (D ² PAK)	500pcs / 13" Reel
ADJ	LM2596SX-ADJ	TO-263-5L (D ² PAK)	500pcs / 13" Reel

Marking:

LM2596SX-3.3

TECH PUBLIC LM2596S
-3.3 P+

LM2596SX-5.0

TECH PUBLIC LM2596S
-5.0 P+

LM2596SX-ADJ

TECH PUBLIC LM2596S
-ADJ P+

PIN CONFIGURATION

TO-263-5L (D²PAK)

1

Pin Definition:

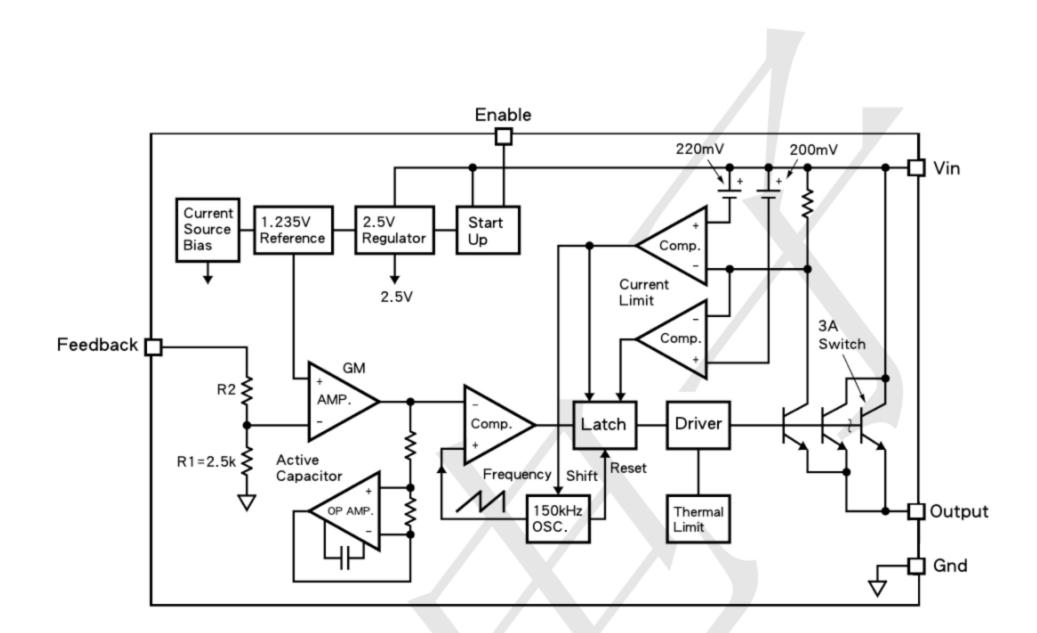
- 1. Input
- 2. SW Output
- 3. Ground
- 4. Feedback
- 5. Enable

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT	
Maximum Supply Voltage	V _{CC}	+45	V	
Recommend Operating Supply Voltage	V _{OP}	+4.5 to +40	V	
SW, EN Pin Input Voltage	V_{SW}, V_{EN}	-0.3 to +40	V	
Feedback Pin Voltage	V_{FB}	-0.3 to +12	V	
Power Dissipation	P _D	Internally Limited	W	
Output Voltage to Ground	V _{OUT}	-1	V	
Storage Temperature Range	T _{ST}	-65 ~ +150	°C	
Operating Temperature Range	T _{OP}	-40 ~ +125	°C	
ESD Susceptibility (HBM)		2	kV	

THERMAL INFORMATION

PARAMETER	SYMBOL	LIMIT	UNIT
Junction to Case Thermal Resistance	R _{eJC}	2	°C/W
Junction to Ambient Thermal Resistance	R _{OJA}	50	°C/W


Electrical Characteristics (T_A=25 C unless otherwise noted)

 $(V_{IN} = 12V \text{ for } 3.3V, 5V, \text{ Adjustable Version}, I_{LOAD} = 0.3A, T_A = 25^{\circ}\text{C unless otherwise noted})$

PARAMETER		CONDITION	SYMBOL	MIN	TYP	MAX	UNIT
Output Feedback	_ AD.I	$4.5V \le V_{IN} \le 40V$ $0.2A \le I_{LOAD} \le 3A$	V _{FB}	1.180	1.23	1.280	V
Efficiency	ADJ	$V_{IN} = 12V$, $I_{LOAD} = 3A$, $V_{OUT} = 5V$	η		77		%
Output Feedback	3.3V	$4.75V \le V_{IN} \le 40V$ $0.2A \le I_{LOAD} \le 3A$	V_{FB}	3.135	3.3V	3.465	V
Efficiency		$V_{IN} = 12V, I_{LOAD} = 3A$	η		75		%
Output Feedback	5V	$7V \le V_{IN} \le 40V$ $0.2A \le I_{LOAD} \le 3A$	V _{FB}	4.75	5	5.25	V
Efficiency		V_{IN} = 12V, I_{LOAD} = 3A	η	-	80		%
Feedback Bias Curre	ent	V _{FB} =1.3V (Adj version only)	I _{FB}		10	100	nA
Oscillator Frequency			Fosc	127	150	173	kHz
Soft-Start Time		Rising edge of EN on to I _{CL}	T _{SS}		3		ms
Current Limit		Pear Current, no outside circuit V _{FB} =0V force driver on		3.3			Α
Oscillator Frequency of Short Circuit Protect		When current limit occurred and V _{FB} <0.5V, Ta = 25°C	F _{SCP}	110	150	173	KHz
Saturation Voltage		I _{OUT} =3A, No outside circuit V _{FB} =0V force driver on	V _{SAT}		1.15	1.50	V
ON/OFF Pin Logic In	put	Low (regulator ON)	V _{IL}		1.3	0.6	V
Threshold Voltage		High (regulator OFF)	V _{IH}	2.0	1.3		V
ON/OFF Pin Logic In	Pin Logic Input V _{LOGIC} =2.5V (OFF)		I _H		5	15	
Current		V _{LOGIC} =0.5V (ON)	IL		0.02	5	μA
Maximum Duty Cycle	e (ON)	V _{FB} =0V force driver on	D0		100		0/
Maximum Duty Cycle (OFF)		V _{FB} =12V force driver off	DC		0		%
Quiescent Current		V _{FB} =12V force driver off	I _Q		5	10	mA
Standby Quiescent Current		ON/OFF pin=5V	1		00	200	^
		V _{IN} =40V	I _{STBY}		80	250	μA
SW Pin Leakage SW pin = 0		No outside circuit, V _{FB} =12V force driver off	I _{SWL}		0.3	2	mA
Current	pin = -1	V _{IN} =12V	J2		7.5	30	mA

BLOCK DIAGRAM

PIN FUNCTION DESCRIPTION

<u>V_{cc}</u>

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground

SW Output

Internal switch. The voltage at this pin switches between $(+V_{CC} - V_{SAT})$ and approximately -0.5V, with a duty cycle of approximately V_{OUT} / V_{CC} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

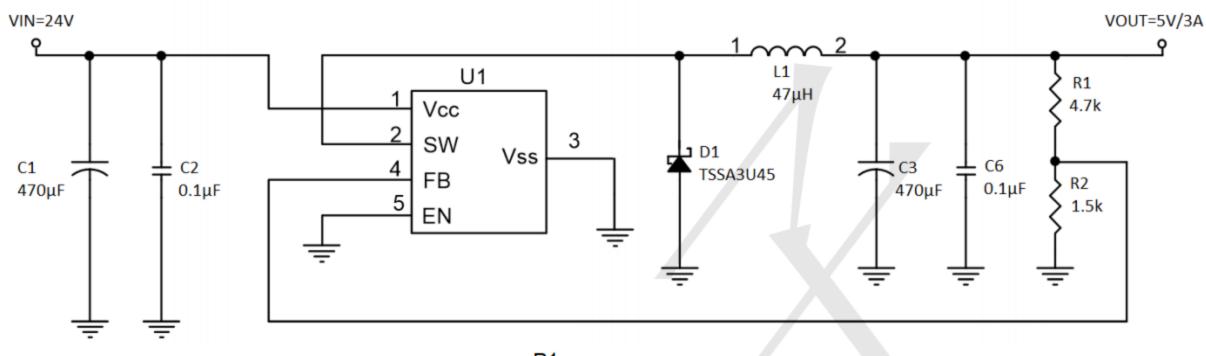
Feedback

Sense the regulated output voltage to complete the feedback loop.

Enable

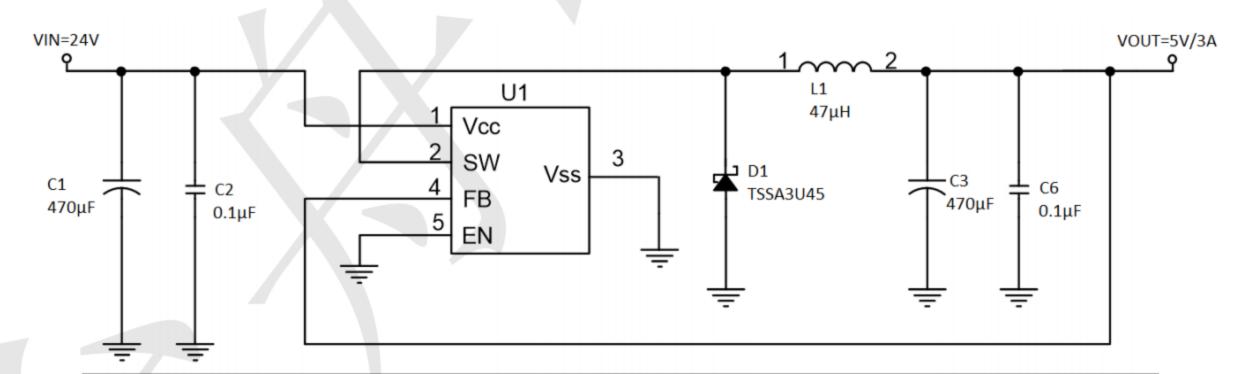
Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 100μ A. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of V_{CC}) shuts the regulator down. If this shutdown feature is not needed, the EN pin can be wired to the ground pin.

Thermal Considerations


The LM2596 (TO-263-5L package) junction temperature rise above ambient temperature with a 3A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 3A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

TYPICAL APPLICATIN CIRCUIT


Adjustable Output Voltage Version

$$V_{OUT} = V_{FB} \times (1 + \frac{R1}{R2}), V_{FB} = 1.23V, R2 = 0.7k \sim 3k$$

V _{OUT}	R2	R1
5.0V	1.5kΩ	4.7kΩ
3.3V	1.5kΩ	2.5kΩ
2.5V	1.5kΩ	1.5kΩ

Fixed Output Voltage Version

L1 recommend value (I _{OUT} =3A,)							
V _{OUT}	V _{OUT} 2.5V 3.3V 5V 12V						
V _{IN} =12V	33µH	33µH	33~47µH	NA			
V _{IN} =24V	33µH	33µH	47µH	68µH			

ELECTRICAL CHARACTERISTICS CURVES

www.sot23.com.tw

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

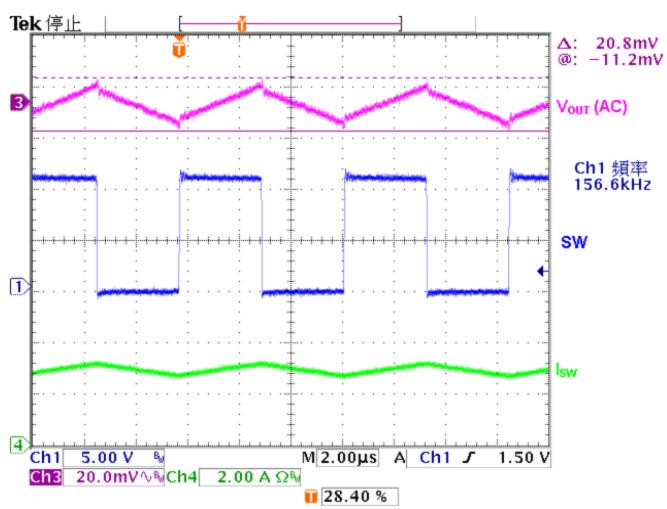


Figure 1. Output Ripple (V_{IN}=12V, V_{OUT}=5V, I_O=3A)

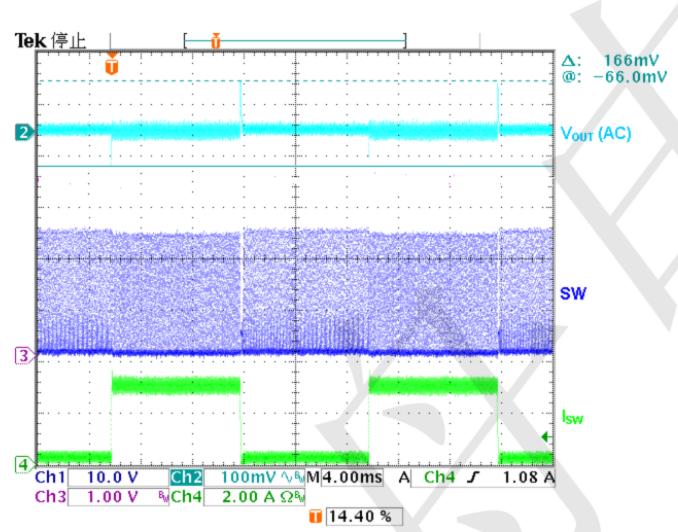


Figure 3. Load Transient Response (V_{IN}=12V, V_{OUT}=5V, I_O=0.2~3A)

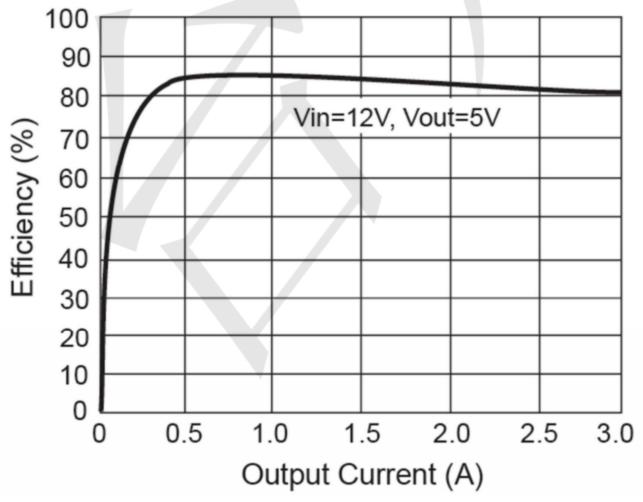


Figure 5. Efficiency

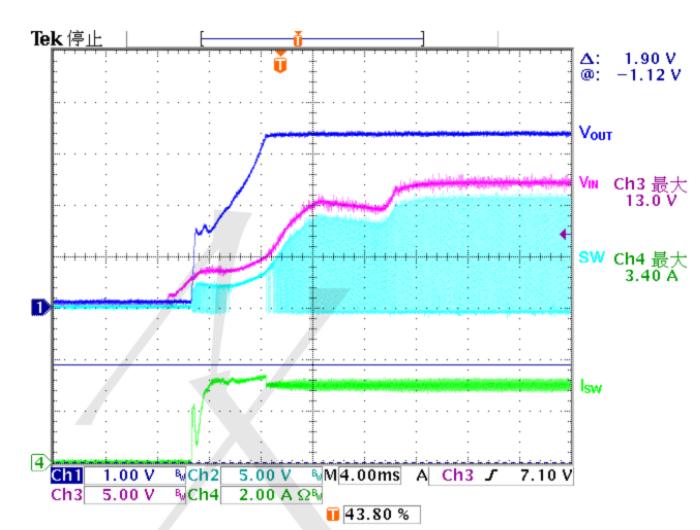


Figure 2. Power On Test Wave (V_{IN}=12V, V_{OUT}=5V, I_O=3A)

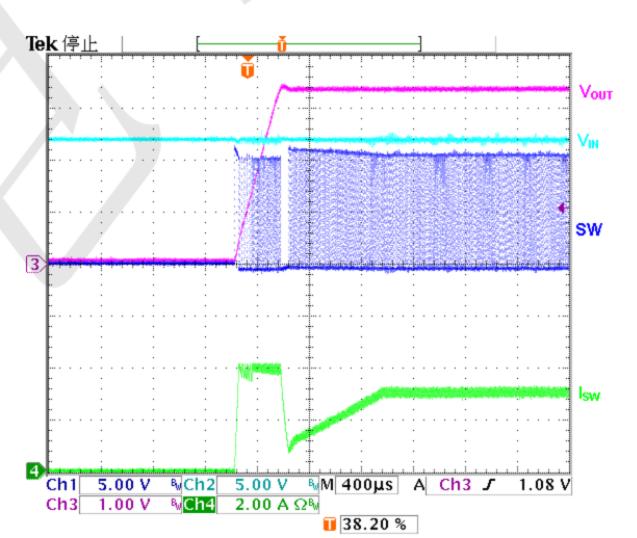


Figure 4. EN On Test Wave (V_{IN}=12V, V_{OUT}=5V, I_O=3A)

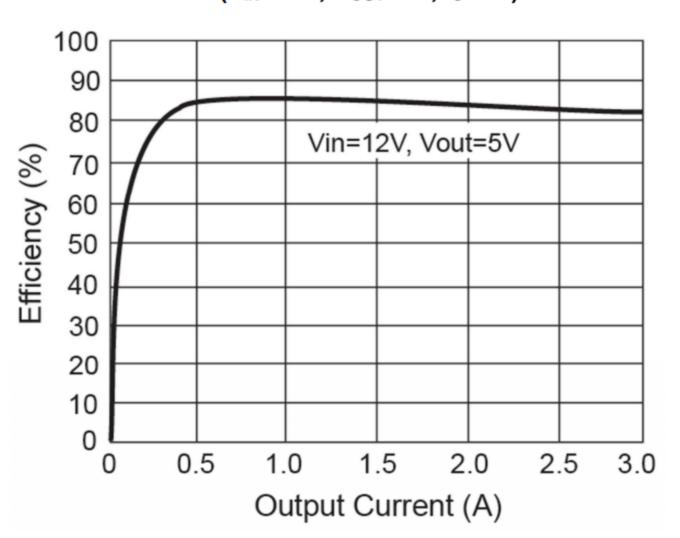
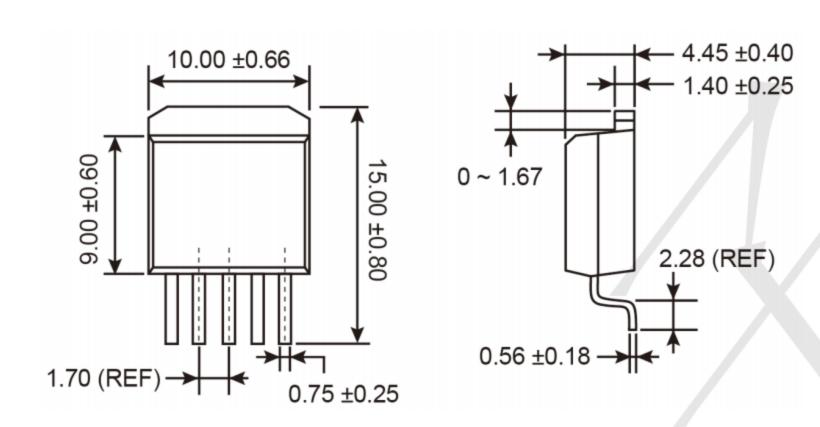
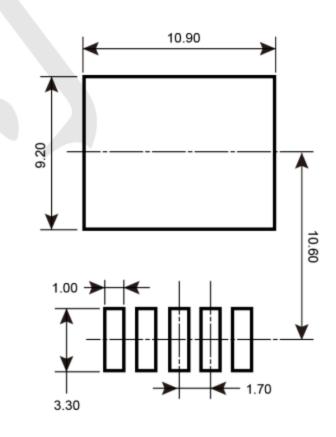



Figure 6. Efficiency



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TO-263-5L (D²PAK)

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MFRC522

Contactless Reader IC

Rev. 3.2 — 22 May 2007

Product data sheet PUBLIC INFORMATION

1. Introduction

This document describes the functionality of the contactless reader/writer MFRC522. It includes the functional and electrical specifications.

2. General description

The MFRC522 is a highly integrated reader/writer for contactless communication at 13.56 MHz. The MFRC522 reader supports ISO 14443A / MIFARE® mode.

The MFRC522's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/MIFARE® cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A/MIFARE® compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity & CRC). The MFRC522 supports MIFARE® Classic (e.g. MIFARE® Standard) products. The MFRC522 supports contactless communication using MIFARE® higher transfer speeds up to 848 kbit/s in both directions.

Various host interfaces are implemented:

- SPI interface
- serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I²C interface.

3. Features

- Highly integrated analog circuitry to demodulate and decode responses
- Buffered output drivers to connect an antenna with minimum number of external components
- Supports ISO/IEC 14443A / MIFARE®
- Typical operating distance in Reader/Writer mode for communication to a ISO/IEC 14443A / MIFARE® up to 50 mm depending on the antenna size and tuning
- Supports MIFARE® Classic encryption in Reader/Writer mode
- Supports ISO/IEC 14443A higher transfer speed communication up to 848 kbit/s
- Support of the MFIN / MFOUT
- Additional power supply to directly supply the smart card IC connected via MFIN / MFOUT
- Supported host interfaces

Contactless Reader IC

- ◆ SPI interface up to 10 Mbit/s
- ♦ I²C interface up to 400 kbit/s in Fast mode, up to 3400 kbit/s in High-speed mode
- ◆ serial UART in different transfer speeds up to 1228.8 kbit/s, framing according to the RS232 interface with voltage levels according pad voltage supply
- Comfortable 64 byte send and receive FIFO-buffer
- Flexible interrupt modes
- Hard reset with low power function
- Power-down mode per software
- Programmable timer
- Internal oscillator to connect 27.12 MHz quartz
- 2.5 3.3 V power supply
- CRC Co-processor
- Free programmable I/O pins
- Internal self test

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
AV_{DD}	Supply Voltage	$AV_{SS} = DV_{SS} = PV_{SS} = TV_{SS} = 0 V,$	[1][2]	2.5	-	3.6	V
DV_DD		$PV_{DD} \leq AV_{DD} = DV_{DD} = TV_{DD}$	[1][2]				
TV_DD			[1][2]				
PV_{DD}	Pad power supply	$AV_{SS} = DV_{SS} = PV_{SS} = TV_{SS} = 0 V,$	[3]	1.6	-	3.6	V
		$PV_{DD} \leq AV_{DD} = DV_{DD} = TV_{DD}$					
SV _{DD}	MFIN/MFOUT Pad Power Supply	$AV_{SS} = DV_{SS} = PV_{SS} = TV_{SS} = 0 V,$		1.6	-	3.6	V
I _{HPD}	Hard Power-down Current	$AV_{DD} = DV_{DD} = TV_{DD} = PV_{DD} = 3 V,$ $N_{RESET} = LOW$	<u>[4]</u>	-	-	5	μΑ
I _{SPD}	Soft Power-down Current	$AV_{DD} = DV_{DD} = TV_{DD} = PV_{DD} = 3 V$, RF level detector on	[4]	-	-	10	μΑ
I _{DVDD}	Digital Supply Current	$DV_{DD} = 3 V$		-	6.5	9	mA
I _{AVDD}	Analog Supply Current	$AV_{DD} = 3 \text{ V, bit RCVOff} = 0$		-	7	10	mA
I _{AVDD,RCVOFF}	Analog Supply Current, receiver switched off	$AV_{DD} = 3 \text{ V, bit RCVOff} = 1$		-	3	5	mA
I _{PVDD}	Pad Supply Current		[2]	-	-	40	mA
I _{TVDD}	Transmitter Supply Current	Continuous Wave	[1][3][8]	-	60	100	mA
T _{amb}	operating ambient temperature			-25		+85	°C
-							

^[1] Supply voltage below 3 V reduces the performance (e.g. the achievable operating distance).

^[2] AV_{DD} , DV_{DD} and TV_{DD} shall always be on the same voltage level.

^[3] PV_{DD} shall always be on the same or lower voltage level than DV_{DD} .

^[4] I_{TVDD} depends on TV_{DD} and the external circuitry connected to Tx1 and Tx2

^[5] I_{PVDD} depends on the overall load at the digital pins.

^[6] During operation with a typical circuitry the overall current is below 100 mA.

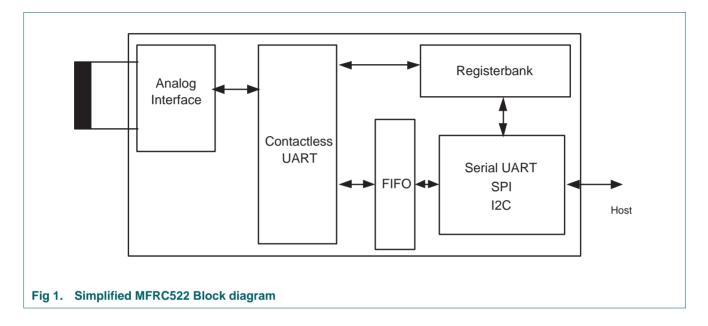
^[7] I_{SPD} and I_{HPD} are the total currents over all supplies.

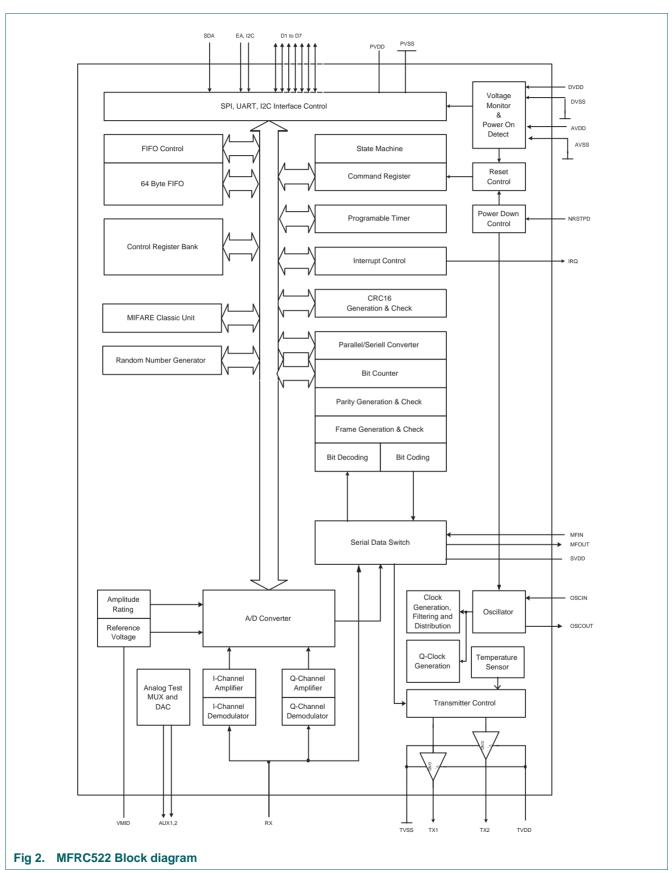
^[8] Typical value using a complementary driver configuration and an antenna matched to 40 Ω between TX1 and TX2 at 13.56 MHz

Contactless Reader IC

5. Ordering information

Table 2: Ordering information


Type number	Package					
	Name	Description	Version			
MFRC52201HN1/TRAYB (delivered in 1 Tray)	HVQFN32	see Package Outline in Figure 33 "Package outline package version (HVQFN32)" see Packing Information in Figure 34 "Packing Information 1 Tray"	SOT617-1			
MFRC52201HN1/TRAYBM (delivered in 5 Tray)	HVQFN32	see Package Outline in Figure 33 "Package outline package version (HVQFN32)" see Packing Information in Figure 35 "Packing Information 5Tray"	SOT617-1			


6. Block diagram

The Analog interface handles the modulation and demodulation of the analog signals.

The contactless UART handles the protocol requirements for the communication schemes in co-operation with the host. The comfortable FIFO buffer allows a fast and convenient data transfer from the host to the contactless UART and vice versa.

Various host interfaces are implemented to fulfil different customer requirements.

Pinning information

7.1 Pinning

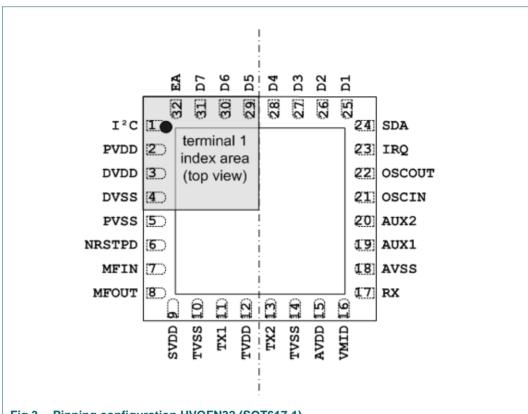


Fig 3. Pinning configuration HVQFN32 (SOT617-1).

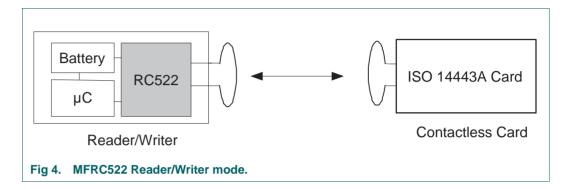
7.2 Pin description

Table 3: Pin description

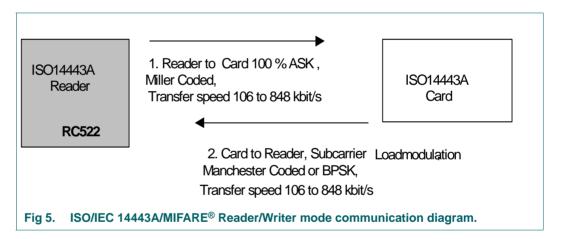
Symbol	Pin	Туре	Description
I ² C	1	I	I2C enable[2]
PVDD	2	PWR	Pad power supply
DVDD	3	PWR	Digital Power Supply
DVSS	4	PWR	Digital Ground ^[1]
PVSS	5	PWR	Pad power supply ground
NRSTPD	6	I	Not Reset and Power-down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts.
MFIN	7	I	Mifare Signal Input
MFOUT	8	0	Mifare Signal Output
SVDD	9	PWR	MFIN / MFOUT Pad Power Supply: provides power to for the MFIN / MFOUT pads
TVSS	10, 14	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2

Contactless Reader IC

 Table 3:
 Pin description ...continued


Table 5.	i ili descrip		minueu		
Symbol	Pin	Type	Description		
TX1	11	0	Transmitter 1: delivers the modulated 13.56 MHz energy carrier		
TVDD	12	PWR	Transmitter Power Supply: supplies the output stage of TX1 and TX2		
TX2	13	0	Transmitter 2: delivers the modulated 13.56 MHz energy carrier		
TVSS	10, 14	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2		
AVDD	15	PWR	Analog Power Supply		
VMID	16	PWR	Internal Reference Voltage: This pin delivers the internal reference voltage.		
RX	17	I	Receiver Input. Pin for the received RF signal.		
AVSS	18	PWR	Analog Ground		
AUX1	19	0	Auxiliary Outputs: These pins are used for testing.		
AUX2	20	0			
OSCIN	21	I	Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ($f_{osc} = 27.12 \text{ MHz}$).		
OSCOUT	22	0	Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.		
IRQ	23	0	Interrupt Request: output to signal an interrupt event		
SDA	24	I	Serial Data Line[2]		
D1	25	I/O	Data Pins for different interfaces (test port, I ² IC, SPI,		
D2	26	I/O	UART)[2]		
D3	27	I/O			
D4	28	I/O			
D5	29	I/O			
D6	30	I/O			
D7	31	I/O			
EA	32	I	External Address: This Pin is used for coding I2C Address ^[2]		

^[1] Connection of heat sink pad on package buttom side is not necessary. Optional connection to DVSS is possible.

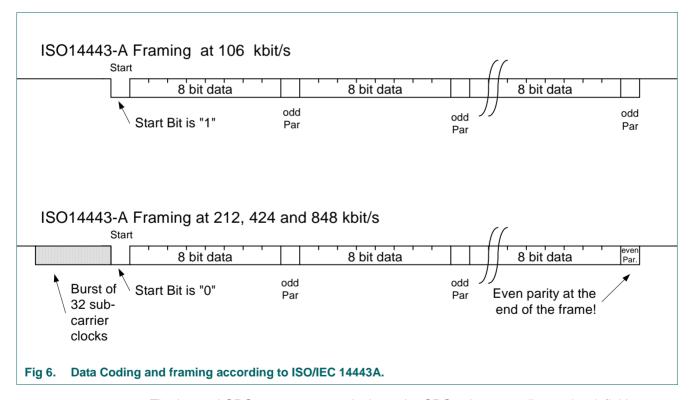

^[2] The pin functionality for the interfaces is explained in Section 10 "DIGITAL Interfaces".

8. Functional description

MFRC522 transmission module supports the Reader/Writer mode for ISO/IEC 14443A/MIFARE® with different transfer speeds and modulation schemes.

The following diagram Figure 5 "ISO/IEC 14443A/MIFARE® Reader/Writer mode communication diagram." describes the communication on a physical level.

The communication overview in <u>Table 4 "Communication overview for</u> ISO/IEC 14443A/MIFARE® reader/writer" describes the physical parameters.


Table 4: Communication overview for ISO/IEC 14443A/MIFARE® reader/writer

Communication		ISO/IEC 14443A/ MIFARE®					
direction	transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s		
Reader → Card (send data from the MFRC522 to a card)	Modulation on reader side	100% ASK	100% ASK	100% ASK	100% ASK		
	bit coding	Modified Miller coding	Modified Miller coding	Modified Miller coding	Modified Miller coding		
	Bitlength	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	(16/13.56) μs		

Table 4:	Communication	overview for ISO/IEC	14443A/MIFARE®	reader/writer	continued
----------	---------------	----------------------	----------------	---------------	-----------

Communication		ISO/IEC 14443A/ MIFARE®					
direction	transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s		
Card → Reader (MFRC522 receives data from a card)	modulation on card side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation		
	subcarrier frequency	13.56 MHz/16	13.56MHz/16	13.56MHz/16	13.56MHz/16		
	bit coding	Manchester coding	BPSK	BPSK	BPSK		

The contactless UART of MFRC522 and a dedicated external host are required to handle the complete MIFARE® / ISO/IEC 14443A / MIFARE® protocol. The following Figure 6 "Data Coding and framing according to ISO/IEC 14443A." shows the Data Coding and framing according to ISO/IEC 14443A / MIFARE®.

The internal CRC co-processor calculates the CRC value according to the definitions given in the ISO/IEC 14443A part 3 and handles parity generation internally according to the transfer speed. Automatic parity generation can be switched off by bit *ParityDisable* in register *0x1D ManualRCVReg*.

9. MFRC522 Register SET

9.1 MFRC522 Registers Overview

Table 5: MFRC522 Registers Overview

Addr (hex)	Register Name	Function
Page 0: 0	Command and Sta	tus
0	Reserved	Reserved for future use
1	CommandReg	Starts and stops command execution
2	ComlEnReg	Controls bits to enable and disable the passing of Interrupt Requests
3	DivlEnReg	Controls bits to enable and disable the passing of Interrupt Requests
4	ComlrqReg	Contains Interrupt Request bits
5	DivIrqReg	Contains Interrupt Request bits
6	ErrorReg	Error bits showing the error status of the last command executed
7	Status1Reg	Contains status bits for communication
8	Status2Reg	Contains status bits of the receiver and transmitter
9	FIFODataReg	In- and output of 64 byte FIFO buffer
Α	FIFOLevelReg	Indicates the number of bytes stored in the FIFO
В	WaterLevelReg	Defines the level for FIFO under- and overflow warning
С	ControlReg	Contains miscellaneous Control Registers
D	BitFramingReg	Adjustments for bit oriented frames
E	CollReg	Bit position of the first bit collision detected on the RF-interface
F	Reserved	Reserved for future use
Page 1: 0	Command	
0	Reserved	Reserved for future use
1	ModeReg	Defines general modes for transmitting and receiving
2	TxModeReg	Defines the transmission data rate and framing
3	RxModeReg	Defines the receive data rate and framing
4	TxControlReg	Controls the logical behavior of the antenna driver pins TX1 and TX2
5	TxASKReg	Controls the setting of the TX modulation
6	TxSelReg	Selects the internal sources for the antenna driver
7	RxSelReg	Selects internal receiver settings
8	RxThresholdReg	Selects thresholds for the bit decoder
9	DemodReg	Defines demodulator settings
Α	Reserved	Reserved for future use
В	Reserved	Reserved for future use
С	MfTxReg	Controls some MIFARE® communication transmit parameters
D	MfRxReg	Controls some MIFARE® communication receive parameters
Е	Reserved	Reserved for future use
F	SerialSpeedReg	Selects the speed of the serial UART interface
Page 2: 0	CFG	
0	Reserved	Reserved for future use

Table 5: MFRC522 Registers Overview ...continued

Table 5:	MFRC522 Registers Overviewcontinued					
Addr (hex)	Register Name	Function				
1	CRCResultReg	Shows the actual MSB and LSB values of the CRC calculation				
2						
3	Reserved	Reserved for future use				
4	ModWidthReg	Controls the setting of the ModWidth				
5	Reserved	Reserved for future use				
6	RFCfgReg	Configures the receiver gain				
7	GsNReg	Selects the conductance of the antenna driver pins TX1 and TX2 for				
8	CWGsPReg	modulation				
9	ModGsPReg					
A	TModeReg	Defines settings for the internal timer				
В	TPrescalerReg					
С	TReloadReg	Describes the 16 bit timer reload value				
D						
E	TCounterValReg	Shows the 16 bit actual timer value				
F						
Page 3:	TestRegister					
0	Reserved	Reserved for future use				
1	TestSel1Reg	General test signal configuration				
2	TestSel2Reg	General test signal configuration and PRBS control				
3	TestPinEnReg	Enables pin output driver on D1-D7				
4	TestPinValueReg	Defines the values for D1 - D7 when it is used as I/O bus				
5	TestBusReg	Shows the status of the internal testbus				
6	AutoTestReg	Controls the digital selftest				
7	VersionReg	Shows the version				
8	AnalogTestReg	Controls the pins AUX1 and AUX2				
9	TestDAC1Reg	Defines the test value for the TestDAC1				
Α	TestDAC2Reg	Defines the test value for the TestDAC2				
В	TestADCReg	Shows the actual value of ADC I and Q				
C-F	Reserved	Reserved for production tests				

9.1.1 Register Bit Behavior

Depending on the functionality of a register, the access conditions to the register can vary. In principle bits with same behavior are grouped in common registers. In <u>Table 6</u> the access conditions are described.

Table 6: Behavior of Register Bits and its Designation

	•	•
Abbreviation	Behavior	Description
r/w	read and write	These bits can be written and read by the $\mu\text{-}Controller.$ Since they are used only for control means, there content is not influenced by internal state machines, e.g. the <code>ComlEnReg-Register</code> may be written and read by the $\mu\text{-}Controller.$ It will also be read by internal state machines, but never changed by them.
dy	dynamic	These bits can be written and read by the μ -Controller. Nevertheless, they may also be written automatically by internal state machines, e.g. the Command-Register changes its value automatically after the execution of the actual command.
r	read only	These register bits hold values which are determined by internal states only, e.g. the <i>CRCReady</i> bit can not be written from external but shows internal states.
w	write only	Reading these register bits returns always ZERO.
RFU	-	These registers are reserved for future use and shall not be changed. In case of a write access, it is recommended to write always the value "0".
RFT	-	These register bits are reserved for future use or production test and shall not be changed.

9.2 Register Description

9.2.1 Page 0: Command and Status

9.2.1.1 Reserved

Functionality is reserved for further use.

Table 7: Reserved register (address 00h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol				•	-			
Access Rights		RFU						

Table 8: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.1.2 CommandReg

Starts and stops command execution.

Table 9: CommandReg register (address 01h); reset value: 20h

Bit	7	6	5	4	3	2	1	0
Symbol	-		RcvOff	Power Down	Command			
Access Rights	RFU		r/w	dy	dy			

Table 10: Description of CommandReg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5	RcvOff	Set to logic 1, the analog part of the receiver is switched off.
4	PowerDown	Set to logic 1, Soft Power-down mode is entered.
		Set to logic 0, the MFRC522 starts the wake up procedure. During this procedure this bit still shows a logic 1. A logic 0 indicates that the MFRC522 is ready for operations; see Section 16.2 "Soft Power-down" .
		Remark: The bit PowerDown cannot be set, when the command SoftReset has been activated.
3 to 0	Command	Activates a command according to the Command Code. Reading this register shows which command is actually executed (see Section 18.3 "MFRC522 Commands Overview").

9.2.1.3 CommlEnReg

Control bits to enable and disable the passing of interrupt requests.

Table 11: CommlEnReg register (address 02h); reset value: 80h

Bit	7	6	5	4	3	2	1	0
Symbol	IRqInv	TxIEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn	ErrlEn	TimerIEn
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 12: Description of CommlEnReg bits

Bit	Symbol	Description
7	IRqInv	Set to logic 1, the signal on pin IRQ is inverted with respect to bit <i>IRq</i> in the register <i>Status1Reg</i> . Set to logic 0, the signal on pin IRQ is equal to bit <i>IRq</i> . In combination with bit <i>IRqPushPull</i> in register <i>DivIEnReg</i> , the default value of logic 1 ensures, that the output level on pin IRQ is tristate.
6	TxIEn	Allows the transmitter interrupt request (indicated by bit <i>TxIRq</i>) to be propagated to pin IRQ.
5	RxIEn	Allows the receiver interrupt request (indicated by bit $RxIRq$) to be propagated to pin IRQ.
4	IdleIEn	Allows the idle interrupt request (indicated by bit <i>IdleIRq</i>) to be propagated to pin IRQ.
3	HiAlertIEn	Allows the high alert interrupt request (indicated by bit <i>HiAlertIRq</i>) to be propagated to pin IRQ.

Contactless Reader IC

Table 12: Description of CommlEnReg bits

Bit	Symbol	Description
2	LoAlertIEn	Allows the low alert interrupt request (indicated by bit <i>LoAlertIRq</i>) to be propagated to pin IRQ.
1	ErrlEn	Allows the error interrupt request (indicated by bit <i>ErrIRq</i>) to be propagated to pin IRQ.
0	TimerIEn	Allows the timer interrupt request (indicated by bit <i>TimerIRq</i>) to be propagated to pin IRQ.

9.2.1.4 DivIEnReg

Control bits to enable and disable the passing of interrupt requests.

Table 13: DivIEnReg register (address 03h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	IRQPushPull	-		MfinActIEn	-	CRCIEn	-	
Access Rights	r/w	RFU		r/w	RFU	r/w	RI	- U

Table 14: Description of DivlEnReg bits

	•	
Bit	Symbol	Description
7	IRQPushPull	Set to logic 1, the pin IRQ works as standard CMOS output pad.
		Set to logic 0, the pin IRQ works as open drain output pad.
6 to 5	-	Reserved for future use.
4	MfinActIEn	Allows the MFIN active interrupt request to be propagated to pin IRQ.
3	-	Reserved for future use.
2	CRCIEn	Allows the CRC interrupt request (indicated by bit <i>CRCIRq</i>) to be propagated to pin IRQ.
1 to 0	-	Reserved for future use.

9.2.1.5 CommlRqReg

Contains Interrupt Request bits.

Table 15: CommlRqReg register (address 04h); reset value: 14h

Bit	7	6	5	4	3	2	1	0
Symbol	Set1	TxIRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq	ErrlRq	TimerIRq
Access Rights	W	dy	dy	dy	dy	dy	dy	dy

Table 16: Description of CommlRqReg bits

All bits in the register CommlRqReg shall be cleared by software.

Bit	Symbol	Description
7	Set1	Set to logic 1, Set1 defines that the marked bits in the register CommlRqReg are set.
		Set to logic 0, Set1 defines, that the marked bits in the register CommlRqReg are cleared.
6	TxIRq	Set to logic 1 immediately after the last bit of the transmitted data was sent out.
5	RxIRq	Set to logic 1 when the receiver detects the end of a valid data stream.
		If the bit $RxNoErr$ in register $RxModeReg$ is set to logic 1, Bit $RxIRq$ is only set to logic 1 when data bytes are available in the FIFO.
4	IdleIRq	Set to logic 1, when a command terminates by itself e.g. when the CommandReg changes its value from any command to the Idle Command.
		If an unknown command is started, the <i>CommandReg</i> changes its content to the idle state and the bit $IdleIRq$ is set. Starting the Idle Command by the μ -Controller does not set bit $IdleIRq$.
3	HiAlertIRq	Set to logic 1, when bit <i>HiAlert</i> in register <i>Status1Reg</i> is set. In opposition to <i>HiAlert</i> , <i>HiAlertIRq</i> stores this event and can only be reset as indicated by bit <i>Set1</i> .

Table 16: Description of CommlRqReg bits ...continued

All bits in the register CommlRqReg shall be cleared by software.

Bit	Symbol	Description
2	LoAlertIRq	Set to logic 1, when bit <i>LoAlert</i> in register <i>Status1Reg</i> is set. In opposition to <i>LoAlert</i> , <i>LoAlertIRq</i> stores this event and can only be reset as indicated by bit <i>Set1</i> .
1	ErrIRq	Set to logic 1 if any error bit in the <i>ErrorReg</i> Register is set.
0	TimerIRq	Set to logic 1 when the timer decrements the <i>TimerValue</i> Register to zero.

9.2.1.6 DivIRqReg

Contains Interrupt Request bits

Table 17: DivIRqReg register (address 05h); reset value: X0h

Bit	7	6	5	4	3	2	1	0
Symbol	Set2	-		MfinActIRq	-	CRCIRq	-	
Access Rights	W	RFU		dy	RFU	dy	RI	⁼U

Table 18: Description of DivIRqReg bits

All bits in the register DivIRqReg shall be cleared by software.

Bit	Symbol	Description
7	Set2	Set to logic 1, Set2 defines that the marked bits in the register DivIRqReg are set.
		Set to logic 0, Set2 defines, that the marked bits in the register DivIRqReg are cleared
6 to 5	-	Reserved for future use.
4	MfinActIRq	Set to logic 1, when MFIN is active. This interrupt is set when either a rising or falling signal edge is detected.
3	-	Reserved for future use.
2	CRCIRq	Set to logic 1, when the CRC command is active and all data are processed.
1 to 0	-	Reserved for future use.

9.2.1.7 ErrorReg

Error bit register showing the error status of the last command executed.

Table 19: ErrorReg register (address 06h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	WrErr	TempErr	-	BufferOvfl	CollErr	CRCErr	ParityErr	ProtocolErr
Access Rights	r	r	RFU	r	r	r	r	r

Table 20: Description of ErrorReg bits

Bit	Symbol	Description
7	WrErr	Set to logic 1, when data is written into the FIFO by the host during the MFAuthent command or if data is written into the FIFO by the host during the time between sending the last bit on the RF interface and receiving the last bit on the RF interface.
6	TempErr ^[1]	Set to logic 1, if the internal temperature sensor detects overheating. In this case, the antenna drivers are switched off automatically.
5	-	Reserved for future use.
4	BufferOvfl	Set to logic 1, if the host or a MFRC522's internal state machine (e.g. receiver) tries to write data into the FIFO buffer although the FIFO buffer is already full.
3	CollErr	Set to logic 1, if a bit-collision is detected. It is cleared automatically at receiver start-up phase. This bit is only valid during the bitwise anticollision at 106 kbit/s. During communication schemes at 212, 424 and 848 kbit/s this bit is always set to logic 0.
2	CRCErr	Set to logic 1, if bit <i>RxCRCEn</i> in register <i>RxModeReg</i> is set and the CRC calculation fails. It is cleared to logic 0 automatically at receiver start-up phase.
1	ParityErr	Set to logic 1, if the parity check has failed. It is cleared automatically at receiver start-up phase. Only valid for ISO/IEC 14443A/MIFARE® communication at 106 kbit/s.
0	ProtocolErr	Set to logic 1, if one out of the following cases occur:
		 Set to logic 1 if the SOF is incorrect. It is cleared automatically at receiver start-up phase. The bit is only valid for 106 kbit/s.
		 During the MFAuthent Command, bit ProtocolErr is set to logic 1, if the number of bytes received in one data stream is incorrect.

^[1] Command execution will clear all error bits except for bit TempErr. A setting by software is impossible.

9.2.1.8 Status1Reg

Contains status bits of the CRC, Interrupt and FIFO buffer.

Table 21: Status1Reg register (address 07h); reset value: 21h

Bit	7	6	5	4	3	2	1	0
Symbol	-	CRCOk	CRCReady	IRq	TRunning	-	HiAlert	LoAlert
Access Rights	RFU	r	r	r	r	RFU	r	r

Table 22: Description of Status1Reg bits

Bit	Symbol	Description
7	-	Reserved for future use.
6	CRCOk	Set to logic 1, if the CRC result is zero. For data transmission and reception the bit <i>CRCOk</i> is undefined (use <i>CRCErr</i> in register <i>ErrorReg</i>). <i>CRCOk</i> indicates the status of the CRC co-processor, during calculation the value changes to logic 0, when the calculation is done correctly, the value changes to logic 1.
5	CRCReady	Set to logic 1, when the CRC calculation has finished. This bit is only valid for the CRC co-processor calculation using the command CalcCRC.
4	IRq	This bit shows, if any interrupt source requests attention (with respect to the setting of the interrupt enable bits, see register <i>CommlEnReg</i> and <i>DivIEnReg</i>).
3	TRunning	Set to logic 1, if the MFRC522's timer unit is running, e.g. the timer will decrement the <i>TCounterValReg</i> with the next timer clock.
		Remark: In the gated mode the bit TRunning is set to logic 1, when the timer is enabled by the register bits. This bit is not influenced by the gated signal.
2	-	Reserved for future use.
1	HiAlert	Set to logic 1, when the number of bytes stored in the FIFO buffer fulfils the following equation: $HiAlert = (64 - FIFOLength) \le WaterLevel$
		Example:
		FIFOLength = 60, WaterLevel = $4 \rightarrow HiAlert = 1$
		FIFOLength = 59, WaterLevel = $4 \rightarrow HiAlert = 0$
0	LoAlert	Set to logic 1, when the number of bytes stored in the FIFO buffer fulfils the following equation: $LoAlert = FIFOLength \leq WaterLevel$
		Example:
		FIFOLength = 4, WaterLevel = $4 \rightarrow LoAlert = 1$
		FIFOLength = 5, WaterLevel = $4 \rightarrow \text{LoAlert} = 0$

9.2.1.9 Status2Reg

Contains status bits of the receiver, transmitter and data mode detector.

Table 23: Status2Reg register (address 08h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	TempSens Clear	I ² CForceHS	-		MFCrypto1On Modem State		ate	
Access Rights	r/w	r/w	RFU		dy		r	

Table 24: Description of Status2Reg bits

Bit	Symbol	Description
7	TempSensClear	Set to logic 1, this bit clears the temperature error, if the temperature is below the alarm limit of 125 $^{\circ}\text{C}.$
6	I ² CForceHS	I ² C input filter settings. Set to logic 1, the I ² C input filter is set to the High-speed mode independent of the I ² C protocol. Set to logic 0, the I ² C input filter is set to the used I ² C protocol.
5 to 4	-	Reserved for future use.
3	MFCrypto1On	This bit indicates that the MIFARE® Crypto1 unit is switched on and therefore all data communication with the card is encrypted.
		This bit can only be set to logic 1 by a successful execution of the MFAuthent Command. This bit is only valid in Reader/Writer mode for MIFARE® Standard cards. This bit shall be cleared by software.
2 to 0	Modem State	ModemState shows the state of the transmitter and receiver state machines.
		Status Description
		000 IDLE
		001 Wait for bit StartSend in register BitFramingReg
		O10 TxWait: Wait until Rf field is present, if the bit <i>TxWaitRF</i> is set to logic 1. The minimum time for TxWait is defined by the <i>TxWaitReg</i> register.
		011 Transmitting
		100 RxWait: Wait until RF field is present, if the bit <i>RxWaitRF</i> is set to logic 1. The minimum time for RxWait is defined by the <i>RxWaitReg</i> register.
		101 Wait for data
		110 Receiving

9.2.1.10 FIFODataReg

In- and output of 64 byte FIFO buffer.

Table 25: FIFODataReg register (address 09h); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol		FIFOData						
Access Rights				d	у			

Table 26: Description ofFIFODataReg bits

Bit	Symbol	Description
7 to 0	FIFOData	Data input and output port for the internal 64 byte FIFO buffer. The FIFO buffer acts as parallel in/parallel out converter for all serial data stream in- and outputs.

9.2.1.11 FIFOLevelReg

Indicates the number of bytes stored in the FIFO.

Table 27: FIFOLevelReg register (address 0Ah); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	FlushBuffer	FIFOLevel						
Access Rights	W	r						

Table 28: Description of FIFOLevelReg bits

Bit	Symbol	Description
7	FlushBuffer	Set to logic 1, this bit clears the internal FIFO-buffer's read- and write-pointer and the bit <i>BufferOvfl</i> in the register <i>ErrReg</i> immediately. Reading this bit will always return 0.
6 to 0	FIFOLevel	Indicates the number of bytes stored in the FIFO buffer. Writing to the FIFODataReg increments, reading decrements the FIFOLevel.

9.2.1.12 WaterLevelReg

Defines the level for FIFO under- and overflow warning.

Table 29: WaterLevelReg register (address 0Bh); reset value: 08h

Bit	7	6	5	4	3	2	1	0	
Symbol	-		WaterLevel						
Access Rights	RFU				r/	W			

Table 30: Description of WaterLevelReg bits

	•	_
Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	WaterLevel	This register defines a warning level to indicate a FIFO-buffer over- or underflow:
		The bit <i>HiAlert</i> in <i>Status1Reg</i> is set to logic 1, if the remaining number of bytes in the FIFO-buffer space is equal or less than the defined number of <i>WaterLevel</i> bytes.
		The bit LoAlert in Status1Reg is set to logic 1, if equal or less than WaterLevel bytes are in the FIFO.
		Remark: For the calculation of <i>HiAlert</i> and <i>LoAlert</i> see Section 9.2.1.8 "Status1Reg".

9.2.1.13 ControlReg

Miscellaneous control bits.

Table 31: ControlReg register (address 0Ch); reset value: 10h

Bit	7	6	5	4	3	2	1	0
Symbol	TStopNow	TStartNow	-			RxLastBits		
Access Rights	W	W		RFU			r	

Table 32: Description of ControlReg bits

Bit	Symbol	Description
7	TStopNow	Set to logic 1, the timer stops immediately.
		Reading this bit will always return 0.
6	TStartNow	Set to logic 1 starts the timer immediately.
		Reading this bit will always return 0.
5 to 3	-	Reserved for future use.
2 to 0	RxLastBits	Shows the number of valid bits in the last received byte. If 0, the whole byte is valid.

9.2.1.14 BitFramingReg

Adjustments for bit oriented frames.

Table 33: BitFramingReg register (address 0Dh); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	StartSend		RxAlign			TxLastBits		
Access Rights	W		r/w				r/w	

Table 34: Description of BitFramingReg bits

Bit	Symbol	Description				
7	StartSend	Set to logic 1, the transmission of data starts.				
		This bit is only valid in combination with the Transceive command.				
6 to 4	RxAlign	Used for reception of bit oriented frames: <i>RxAlign</i> defines the bit position for the first bit received to be stored in the FIFO. Further received bits are stored at the following bit positions.				
		Example:				
		RxAlign = 0: the LSB of the received bit is stored at bit 0, the second received bit is stored at bit position 1.				
		RxAlign = 1: the LSB of the received bit is stored at bit 1, the second received bit is stored at bit position 2.				
		RxAlign = 7: the LSB of the received bit is stored at bit 7, the second received bit is stored in the following byte at bit position 0.				
		This bits shall only be used for bitwise anticollision at 106 kbit/s. In all other modes it shall be set to 0.				
3	-	Reserved for future use.				
2 to 0	TxLastBits	Used for transmission of bit oriented frames: <i>TxLastBits</i> defines the number of bits of the last byte that shall be transmitted. A 000b indicate that all bits of the last byte shall be transmitted.				

9.2.1.15 CollReg

Defines the first bit collision detected on the RF interface.

Table 35: CollReg register (address 0Eh); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol	Values AfterColl	-	CollPos NotValid			CollPos		
Access Rights	r/w	RFU	r			r		

Table 36: Description of CollReg bits

Bit	Symbol	Description
7	ValuesAfterColl	If this bit is set to logic 0, all receiving bits will be cleared after a collision. This bit shall only be used during bitwise anticollision at 106 kbit/s, otherwise it shall be set to logic 1.
6	-	Reserved for future use.
5	CollPosNotValid	Set to logic 1, if no collision is detected or the position of the collision is out of the range of bits <i>CollPos</i> .

Contactless Reader IC

Table 36: Description of CollReg bits

Bit	Symbol	Description					
4 to 0	CollPos	These bits show the bit position of the first detected collision in a received frame. Only data bits are interpreted.					
		Example:					
		00h indicates a bit collision in the 32 nd bit					
		01h indicates a bit collision in the 1 st bit					
		08h indicates a bit collision in the 8 th bit					
		These bits shall only be interpreted if bit CollPosNotValid is set to logic 0.					

9.2.1.16 Reserved

Functionality is reserved for further use.

Table 37: Reserved register (address 0Fh); reset value: 00h

Bit	7	6	5	4	3	2	1	0			
Symbol		-									
Access Rights				RF	₹U						

Table 38: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.2 Page 1: Communication

9.2.2.1 Reserved

Functionality is reserved for further use.

Table 39: Reserved register (address 10h); reset value: 00h

Bit	7	6	5	4	3	2	1	0			
Symbol		-									
Access Rights				RF	₹U						

Table 40: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.2.2 ModeReg

Defines general mode settings for transmitting and receiving.

Table 41: ModeReg register (address 11h); reset value: 3Fh

Bit	7	6	5	4	3	2	1	0
Symbol	MSBFirst	-	TxWaitRF	-	PolMFin	-	CRCPreset	
Access Rights	r/w	RFU	r/w	RFU	r/w	RFU	r/	W

Table 42: Description of ModeReg bits

Table 42.	Description of	Moderte	wiodeneg bits				
Bit	Symbol	Descript	ion				
7	MSBFirst	first and	gic 1, the CRC co-processor calculates the CRC with MSB the CRCResultMSB and the CRCResultLSB in the cultReg register are bit reversed.				
		Remark:	During RF communication this bit is ignored.				
6	-	Reserve	d for future use.				
5	TxWaitRF	Set to log generate	to logic 1 the transmitter can only be started, if an RF field is nerated.				
4	-	Reserve	d for future use.				
3	PolMFin		defines the polarity of the MFIN pin. Set to logic 1, the polarity pin is active high. Set to logic 0 the polarity of MFIN pin is w.				
		Remark:	The internal envelope signal is coded active low. Changing this bit will generate a MFinActIRq event.				
2	-	Reserve	d for future use.				
1 to 0	CRCPreset	Defines to CalCRC.	he preset value for the CRC co-processor for the command				
		Remark:	During any communication, the preset values is selected automatically according to the definition in the bits in RxModeReg and TxModeReg.				
		Value	Description				
		00	0000				
		01	6363				
		10	A671				
		11	FFFF				

9.2.2.3 TxModeReg

Defines the data rate during transmission.

Table 43: TxModeReg register (address 12h); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol	TxCRCEn		TxSpeed			-			
Access Rights	r/w		dy		r/w		RFU		

Table 44: Description of TxModeReg bits

	•					
Bit	Symbol	Descripti	on			
7	TxCRCEn	Set to log transmiss	ic 1, this bit enables the CRC generation during data ion.			
		Remark:	This bit shall only be set to logic 0 at 106 kbit/s.			
6 to 4	TxSpeed	Defines the bit rate while data transmission. The MFRC522 handels transfer speeds up to 848 kbit/s.				
		Value	Description			
		000	106 kbit/s			
		001	212 kbit/s			
		010	424 kbit/s			
		011	848 kbit/s			
		100	Reserved			
		101	Reserved			
		110	Reserved			
		111	Reserved			
3	InvMod	Set to log	ic 1, the modulation for transmitting data is inverted.			
2 to 0	-	Reserved	for future use.			

9.2.2.4 RxModeReg

Defines the data rate during reception.

Table 45: RxModeReg register (address 13h); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol	RxCRCEn	RxSpeed I			RxNoErr	RxMultiple	-		
Access Rights	r/w		dy		r/w	r/w	RI	=U	

Table 46: Description of RxModeReg bits

Table 40.	Description	OI IXXIVIOU	erred pira				
Bit	Symbol	Descript	tion				
7	RxCRCEn	Set to lo	gic 1, this bit enables the CRC calculation during reception.				
		Remark	: This bit shall only be set to logic 0 at 106 kbit/s.				
6 to 4	RxSpeed		Defines the bit rate while data receiving. The MFRC522 handles transfer speeds up to 848kbit/s.				
		Value	Description				
		000	106 kbit/s				
		001	212 kbit/s				
		010	424 kbit/s				
		011	848 kbit/s				
		100	Reserved				
		101	Reserved				
		110	Reserved				
		111	Reserved				

Table 46: Description of RxModeReg bits ...continued

Bit	Symbol	Description
3	RxNoErr	If set to logic 1, a not valid received data stream (less than 4 bits received) will be ignored. The receiver will remain active.
2	RxMultiple	Set to logic 0, the receiver is deactivated after receiving a data frame. Set to logic 1, it is possible to receive more than one data frame. This bit is only valid for data rates above 106 kbit/s to handle the Polling command. Having set this bit, the receive and transceive commands will not terminate automatically. In this case the multiple receiving can only be deactivated by writing any command (except the Receive command) to the CommandReg register or by clearing the bit by the host. If set to logic 1, at the end of a received data stream an error byte is added to the FIFO. The error byte is a copy of the <i>ErrorReg</i> register.
1 to 0	-	Reserved for future use.

9.2.2.5 TxControlReg

Controls the logical behavior of the antenna driver pins Tx1 and Tx2.

Table 47: TxControlReg register (address 14h); reset value: 80h

Bit	7	6	5	4	3	2	1	0
Symbol	InvTx2RF On	InvTx1RF On	InvTx2RF Off	InvTx1RF Off	Tx2CW	-	Tx2RFEn	Tx1RFEn
Access Rights	r/w	r/w	r/w	r/w	r/w	RFU	r/w	r/w

Table 48: Description of TxControlReg bits

Bit	Symbol	Description
7	InvTx2RFOn	Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is enabled.
6	InvTx1RFOn	Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is enabled.
5	InvTx2RFOff	Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is disabled.
4	InvTx1RFOff	Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is disabled.
3	Tx2CW	Set to logic 1, the output signal on pin TX2 will deliver continuously the un-modulated 13.56 MHz energy carrier.
		Set to logic 0, <i>Tx2CW</i> is enabled to modulate the 13.56 MHz energy carrier.
2	-	Reserved for future use.
1	Tx2RFEn	Set to logic 1, the output signal on pin TX2 will deliver the 13.56 MHz energy carrier modulated by the transmission data.
0	Tx1RFEn	Set to logic 1, the output signal on pin TX1 will deliver the 13.56 MHz energy carrier modulated by the transmission data.
	·	

9.2.2.6 TxASKReg

Controls the settings of the transmit modulation.

Table 49: TxAutoReg register (address 15h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	-	Force100ASK	-					
Access Rights	RFU	r/w			RI	- U		

Table 50: Description of TxAutoReg bits

Bit	Symbol	Description
7	-	Reserved for future use.
6	Force100ASK	Set to logic 1, Force 100ASK forces a 100% ASK modulation independent of the setting in register ModGsPReg.
5 to 0	-	Reserved for future use.

9.2.2.7 TxSelReg

Selects the internal sources for the analog part.

Table 51: TxSelReg register (address 16h); reset value: 10h

Bit	7	6	5	4	3	2	1	0	
Symbol	-	-	DriverSel		MfOutSel				
Access Rights	RF	⁼U	r/	w		r/	W		

Table 52: Description of TxSelReg bits

Bit	Symbol	Descript	Description						
7 to 6	-	Reserved	Reserved for future use.						
5 to 4 DriverSel	Selects th	ne input of driver Tx1 and Tx2.							
	Value	Description							
		00	Tristate						
			Remark: In soft power-down the drivers are only in tristate mode if DriverSel is set to tristate mode.						
		01	Modulation signal (envelope) from the internal coder, Miller Pulse Coded.						
		10	Modulation signal (envelope) from MIFIN						
		11	High						
			Remark: The High level depends on the setting of InvTx1RFOn/ InvTx1RFOff and InvTx2RFOn/ InvTx2RFOff.						

Table 52: Description of TxSelReg bits

Bit	Symbol	Description	n					
3 to 0	MFOutSel	Selects the	Selects the input for the MFOUT Pin.					
		Value	Description					
		0000	Tristate					
		0001	Low					
		0010	High					
		0011	TestBus signal as defined by bit <i>TestBusBitSel</i> in register <i>TestSel1Reg</i> .					
		0100	Modulation signal (envelope) from the internal coder, Miller Puls Coded					
		0101	Serial data stream to be transmitted, data stream before Miller Coder					
		0110	Reserved					
		0111	Serial data stream received, data stream after Manchester Decoder					
		1000-1111	Reserved					

9.2.2.8 RxSelReg

Selects internal receiver settings.

Table 53: RxSelReg register (address 17h); reset value: 84h

Bit	7	6	5	4	3	2	1	0		
Symbol	Uar	tSel	RxWait							
Access Rights	r/	W			r/	W				

Table 54: Description of RxSelReg bits

Bit	Symbol	Descript	Description						
7 to 6	UartSel	Selects t	Selects the input of the contactless UART						
		Value	Description						
		00	Constant Low						
		01	Manchester with sub-carrier from MFIN pin						
		10	Modulation signal from the internal analog part, default						
		11	NRZ coding without sub-carrier from MFIN pin. Only valid for transfer speeds above 106 kbit/s.						
5 to 0	RxWait	RxWait bignored.	a transmission, the activation of the receiver is delayed for bit-clocks. During this 'frame guard time' any signal at pin Rx is This parameter is ignored by the receive command. commands (e.g. Transceive, MFAuthent) use this parameter.						
		The cour	The counter starts immediately after the external RF field is switched on.						

9.2.2.9 RxThresholdReg

Selects thresholds for the bit decoder.

Table 55: RxThresholdReg register (address 18h); reset value: 84h

Bit	7	6	5	4	3	2	1	0	
Symbol		MinL	_evel		-	CollLevel			
Access Rights		r/w					r/w		

Table 56: Description of RxThresholdReg bits

Bit	Symbol	Description
7 to 4	MinLevel	Defines the minimum signal strength at the decoder input that shall be accepted. If the signal strength is below this level, it is not evaluated.
3	-	Reserved for future use.
2 to 0	CollLevel	Defines the minimum signal strength at the decoder input that has to be reached by the weaker half-bit of the Manchester-coded signal to generate a bit-collision relatively to the amplitude of the stronger half-bit.

9.2.2.10 **DemodReg**

Defines demodulator settings.

Table 57: DemodReg register (address 19h); reset value: 4Dh

Bit	7	6	5	4	3	2	1	0
Symbol	AddIQ		FixIQ	-	TauRcv		TauSync	
Access Rights	r/w		r/w	RFU	r/	w	r/	w

Table 58: Description of DemodReg bits

	·							
Bit	Symbol	Descri	Description					
7 to 6	AddIQ	Defines the use of I and Q channel during reception						
		Remarl	k: FixIQ has to be set to logic 0 to enable the following settings.					
		Value	Description					
		00	Select the stronger channel					
		01	Select the stronger channel and freeze the selected during communication					
		10	Reserved					
		11	Reserved					
5	FixIQ	If set to I chann	logic 1 and the bits AddIQ are set to X0b, the reception is fixed to el.					
		If set to Q chan	logic 1 and the bits <i>AddIQ</i> are set to X1b, the reception is fixed to nel.					
4	-	Reserve	ed for future use.					
3 to 2	TauRcv	Change	es the time constant of the internal PLL during data reception.					
		Remarl	k: If set to 00b, the PLL is frozen during data reception.					
1 to 0	TauSync	Change	es the time constant of the internal PLL during burst.					

9.2.2.11 Reserved

Functionality is reserved for further use.

Table 59: Reserved register (address 1Ah); reset value: 00h

Bit	7	6	5	4	3	2	1	0		
Symbol		-								
Access Rights				RF	⁼U					

Table 60: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.2.12 Reserved

Functionality is reserved for further use.

Table 61: Reserved register (address 1Bh); reset value: 00h

Bit	7	6	5	4	3	2	1	0		
Symbol		-								
Access Rights				RI	⁼U					

Table 62: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.2.13 MfTxReg

Controls some MIFARE® communication transmit parameters

Table 63: MfTxReg register (address 1Ch); reset value: 62h

Bit	7	6	5	4	3	2	1	0		
Symbol		- TxWait								
Access Rights			R	FU			r/	w		

Table 64: Description of MifNFCReg bits

Bit	Symbol	Description
7 to 2	-	Reserved for future use.
1 to 0	TxWait	These bits define the additional response time. Per default 7 bits are added to the value of the register bit.

9.2.2.14 MfRxReg

Table 65: MfRxReg register (address 1Dh); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol	-			Parity Disable		-			
Access Rights		RFU		r/w		RI	FU		

Table 66: Description of ManualRCVReg bits

Bit	Symbol	Description
7 to 5	-	Reserved for future use.
4	Parity Disable	If this bit is set to logic 1, the generation of the Parity bit for transmission and the Parity-Check for receiving is switched off. The received Parity bit is handled like a data bit.
3 to 0	-	Reserved for future use.

9.2.2.15 Reserved

Functionality is reserved for further use.

Table 67: Reserved register (address 1Eh); reset value: 00h

Bit	7	6	5	4	3	2	1	0			
Symbol		-									
Access Rights				RI	=U						

Table 68: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.2.16 SerialSpeedReg

Selects the speed of the serial UART interface.

Table 69: SerialSpeedReg register (address 1Fh); reset value: EBh

Bit	7	6	5	4	3	2	1	0	
Symbol		BR_T0		BR_T1					
Access Rights	r/w					r/w			

Table 70: Description of SerialSpeedReg bits

Bit	Symbol	Description
7 to 5	BR_T0	Factor BR_T0 to adjust the transfer speed, for description see <u>Section</u> 10.3.2 "Selection of the transfer speeds".
4 to 0	BR_T1	Factor BR_T1 to adjust the transfer speed, for description see <u>Section</u> 10.3.2 "Selection of the transfer speeds".

9.2.3 Page 2: Configuration

9.2.3.1 Reserved

Functionality is reserved for further use.

Table 71: Reserved register (address 20h); reset value: 00h

Bit	7	6	5	4	3	2	1	0			
Symbol		-									
Access Rights				RI	⁼U						

Table 72: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.3.2 CRCResultReg

Shows the actual MSB and LSB values of the CRC calculation.

Remark: The CRC is split into two 8-bit register.

Table 73: CRCResultReg register (address 21h); reset value: FFh

Bit	7	6	5	4	3	2	1	0		
Symbol	CRCResultMSB									
Access Rights				ı	r					

Table 74: Description of CRCResultReg higher bits

Bit	Symbol	Description
7 to 0	CRCResultMSB	This register shows the actual value of the most significant byte of the <i>CRCResultReg</i> register. It is valid only if bit <i>CRCReady</i> in register <i>Status1Reg</i> is set to logic 1.

Table 75: CRCResultReg register (address 22h); reset value: FFh

Bit	7	6	5	4	3	2	1	0			
Symbol	CRCResultLSB										
Access Rights				ļ	r						

Table 76: Description of CRCResultReg lower bits

Bit	Symbol	Description
7 to 0	CRCResultLSB	This register shows the actual value of the least significant byte of the CRCResult register. It is valid only if bit CRCReady in register Status1Reg is set to logic 1.

9.2.3.3 Reserved

Functionality is reserved for further use.

Table 77: Reserved register (address 23h); reset value: 88h

Bit	7	6	5	4	3	2	1	0
Symbol				•	-			
Access Rights				RF	⁼U			

Table 78: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.3.4 ModWidthReg

Controls the setting of modulation width.

Table 79: ModWidthReg register (address 24h); reset value: 26h

Bit	7	6	5	4	3	2	1	0			
Symbol		ModWidth									
Access Rights				r/	W						

Table 80: Description of ModWidthReg bits

Bit	Symbol	Description
7 to 0	ModWidth	These bits define the width of the Miller modulation as multiples of the carrier frequency (ModWidth +1/fc). The maximum value is half the bit period.

9.2.3.5 Reserved

Functionality is reserved for further use.

Table 81: Reserved register (address 25h); reset value: 87h

Bit	7	6	5	4	3	2	1	0				
Symbol		-										
Access Rights				RI	₹U							

Table 82: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.3.6 RFCfgReg

Configures the receiver gain.

Table 83: RFCfgReg register (address 26h); reset value: 48h

Bit	7	6	5	4	3	2	1	0
Symbol	-		RxGain		-			
Access Rights	RFU		r/w			RI	FU	

Table 84: Description of RFCfgReg bits

Bit	Symbol	Description						
7	-	Reserved for	Reserved for future use.					
6 to 4	RxGain	This register	defines the receivers signal voltage gain factor:					
		Value	Description					
		000	18 dB					
		001	23 dB					
		010	18 dB					
		011	23 dB					
		100	33 dB					
		101	38 dB					
		110	43 dB					
		111	48 dB					
3 to 0	-	.Reserved fo	r future use.					

9.2.3.7 **GsNReg**

Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched on.

Table 85: GsNReg register (address 27h); reset value: 88h

Bit	7	6	5	4	3	2	1	0	
Symbol		CW	GsN		ModGsN				
Access Rights		r/	W			r/	w .		

Table 86: Description of GsNOnReg bits

Bit	Symbol	Description
7 to 4	CWGsN	The value of this register defines the conductance of the output N-driver during times of no modulation. This may be used to regulate the output power and subsequently current consumption and operating distance.
		Remark: The conductance value is binary weighted.
		During soft Power-down mode the highest bit is forced to 1.
		This value is only used if the driver TX1 or TX2 are switched on.
3 to 0	ModGsN	The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index.
		Remark: The conductance value is binary weighted.
		During soft Power-down mode the highest bit is forced to 1.
		This value is only used if the driver TX1 or Tx2 are switched on.

9.2.3.8 CWGsPReg

Defines the conductance of the P-driver during times of no modulation

Table 87: CWGsPReg register (address 28h); reset value: 20h

Bit	7	6	5	4	3	2	1	0		
Symbol	-	-		CWGsP						
Access Rights	RF	₹U			r/	W				

Table 88: Description of CWGsPReg bits

Bit	Symbol	Description				
7 to 6	-	Reserved for future use.				
5 to 0	CWGsP	The value of this register defines the conductance of the output P-driver. This may be used to regulate the output power and subsequently current consumption and operating distance.				
		Remark: The conductance value is binary weighted.				
		During soft Power-down mode the highest bit is forced to 1.				

9.2.3.9 ModGsPReg

Defines the driver P-output conductance during modulation.

Table 89: ModGsPReg register (address 29h); reset value: 20h

Bit	7	6	5	4	3	2	1	0
Symbol		-	ModGsP					
Access Rights	RFU				r/	W		

Table 90: Description of ModGsPReg bits

Bit	Symbol	Description			
7 to 6	-	Reserved for future use.			
5 to 0	ModGsP	The value of this register defines the conductance of the output P-driver for the time of modulation. This may be used to regulate the modulation index.			
		Remark: The conductance value is binary weighted.			
		During soft Power-down mode the highest bit is forced to 1.			
		If Force100ASK is set to logic 1, the value of ModGsP has no effect.			

9.2.3.10 TMode Register, TPrescaler Register

Defines settings for the timer.

Remark: The Prescaler value is split over two registers.

Table 91: TModeReg register (address 2Ah); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	TAuto	TGated		TAutoRestart	TPrescaler_Hi			
Access Rights	r/w	r/w		r/w		r/w		

Table 92: Description of TModeReg bits

Table 92:	Description of	of TModeF	f TModeReg bits					
Bit	Symbol	Descript	ion					
7	TAuto	transmiss immediat	et to logic 1, the timer starts automatically at the end of the ansmission in all communication modes at all speeds. The timer stops mediately after receiving the first data bit if the bit <i>RxMultiple</i> in the gister <i>RxModeReg</i> is not set.					
		If <i>RxMultiple</i> is set to logic 1, the timer never stops. In this case the timer can be stopped by setting the bit <i>TStopNow</i> in register <i>Contro</i> to logic 1.						
		Set to log	gic 0 indicates, that the timer is not influenced by the protocol.					
6 to 5	TGated	The inter	nal timer is running in gated mode.					
		Remark:	In the gated mode, the bit <i>TRunning</i> is logic 1 when the timer is enabled by the register bits. This bit does not influence the gating signal.					
		Value	Description					
		00	Non gated mode					
		01	Gated by MFIN					
		10	Gated by AUX1					
		11	Gated by A3					
4	TAutoRestart	•	gic 1, the timer automatically restart its count-down from Value, instead of counting down to zero.					
		Set to logic 0 the timer decrements to 0 and the bit <i>TimerIF</i> logic 1.						
3 to 0	TPrescaler_Hi	Defines higher 4 bits for TPrescaler.						
		The following formula is used to calculate f _{Timer} :						
		$f_{Timer} =$	6.78 MHz/TPreScaler.					
		For detai	led description see Section 13 "Timer Unit".					

Table 93: TPrescalerReg register (address 2Bh); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol		TPrescaler_Hi							
Access Rights	r/w								

Table 94: Description of TPrescalerReg bits

Bit	Symbol	Description
7 to 0	TPrescaler_Lo	Defines lower 8 bits for <i>TPrescaler</i> .
		The following formula is used to calculate f _{Timer} :
		f _{Timer} = 6.78 MHz/TPreScaler.
		For detailed description see Section 13 "Timer Unit".

9.2.3.11 TReloadReg

Describes the 16 bit long timer reload value.

Remark: The Reload value is split into two 8-bit registers.

Table 95: TReloadReg (Higher bits) register (address 2Ch); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol		TReloadVal_Hi							
Access Rights		r/w							

Table 96: Description of higher TReloadReg bits

Bit	Symbol	Description
7 to 0	TReloadVal_Hi	Defines the higher 8 bits for the TReloadReg.
		With a start event the timer loads the <i>TReloadVal</i> . Changing this register affects the timer only at the next start event.

Table 97: TReloadReg (Lower bits)register (address 2Dh); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol		TReloadVal_Lo						
Access Rights		r/w						

Table 98: Description of lower TReloadReg bits

Bit	Symbol	Description
7 to 0	TReloadVal_Lo	Defines the lower 8 bits for the TReloadReg.
		With a start event the timer loads the <i>TReloadVal</i> . Changing this register affects the timer only at the next start event.

9.2.3.12 TCounterValReg

Contains the current value of the timer.

Remark: The Counter value is split into two 8-bit register.

Table 99: TCounterValReg (Higher bits) register (address 2Eh); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol		TCounterVal_Hi						
Access Rights				ı	r			

Table 100: Description of higher TCounterValReg bits

Bit	Symbol	Description
7 to 0	TCounterVal_Hi	Current value of the timer, higher 8 bits.

Table 101: TCounterValReg (Lower bits) register (address 2Fh); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol		TCounterVal_Lo						
Access Rights				I	r			

Table 102: Description of lower TCounterValReg bits

Bit	Symbol	Description
7 to 0	TCounterVal_Lo	Current value of the timer, lower 8 bits.

9.2.4 Page 3: Test

9.2.4.1 Reserved

Functionality is reserved for further use.

Table 103: Reserved register (address 30h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol		•						
Access Rights				RI	=U			

Table 104: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for future use.

9.2.4.2 TestSel1Reg

General test signal configuration.

Table 105: TestSel1Reg register (address 31h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol			-	TstBusBitSel				
Access Rights			RFU				r/w	

Table 106: Description of TestSel1Reg bits

Bit	Symbol	Description
7 to 3	-	Reserved for future use.
2 to 0	TstBusBitSel	Select the TestBus bit from the testbus to be propagated to MFOUT.

9.2.4.3 TestSel2Reg

General test signal configuration and PRBS control

Table 107: TestSel2Reg register (address 32h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	TstBusFlip	PRBS9	PRBS15			TestBusSe	I	
Access Rights	r/w	r/w	r/w			r/w		

Table 108: Description of TestSel2Reg bits

Bit	Symbol	Description
7	TstBusFlip	If set to logic 1, the testbus is mapped to the parallel port by the following order:
		TstBusBit4,TstBusBit3, TstBusBit2,TstBusBit6,TstsBusBit5, TstBusBit0. See Section 19 "Testsignals".
6	PRBS9	Starts and enables the PRBS9 sequence according ITU-TO150.
		Remark: All relevant registers to transmit data have to be configured before entering PRBS9 mode.
		The data transmission of the defined sequence is started by the send command.
5	PRBS15	Starts and enables the PRBS15 sequence according ITU-TO150.
		Remark: All relevant registers to transmit data have to be configured before entering PRBS15 mode.
		The data transmission of the defined sequence is started by the send command.
4 to 0	TestBusSel	Selects the testbus. See Section 19 "Testsignals"

9.2.4.4 TestPinEnReg

Enables the pin output driver on the test bus.

Table 109: TestPinEnReg register (address 33h); reset value: 80h

Bit	7	6	5	4	3	2	1	0
Symbol	RS232LineEn		TestPinEn					-
Access Rights	r/w			r/	W			RFU

Table 110: Description of TestPinEnReg bits

Bit	Symbol	Description
7	RS232LineEn	Set to logic 0, the lines MX and DTRQ for the serial UART are disabled.
6 to 1	TestPinEn	Enables the pin output driver on D1 to D7.
		Example:
		Setting bit 1 to logic 1 enables D1
		Setting bit 5 to logic 1 enables D5
		Remark: If the SPI interface is used only D1 to D4 can be used. If the serial UART interface is used and RS232LineEn is set to logic 1 only D1 to D4 can be used.
0	-	Reserved for future use.

9.2.4.5 TestPinValueReg

Defines the values for the test port when it is used as I/O.

Table 111: TestPinValueReg register (address 34h); reset value: 00h

Bit	7	6	5	4	3	2	1	0
Symbol	UselO		TestPinValue					
Access Rights	r/w			r/	w			RFU

Table 112: Description of TestPinValueReg bits

Bit	Symbol	Description
7	UseIO	Set to logic 1, this bit enables the I/O functionality for the test port if one of the serial interfaces is used. The input / ouput behaviour is defined by <i>TestPinEn</i> in register <i>TestPinEnReg</i> . The value for the output behaviour is defined in the bits <i>TestPinVal</i> .
6 to 0	TestPinValue	Defines the value of the test port, when it is used as I/O. Each output has to be enabled by the <i>TestPinEn</i> bits in register <i>TestPinEnReg</i> .
		Remark: Reading the register indicates the actual status of the pins D6 - D1 if UselO is set to logic 1. If UselO is set to logic 0, the value of the register TestPinValueReg is read back.
0	-	Reserved for future use.

9.2.4.6 TestBusReg

Shows the status of the internal testbus.

Table 113: TestBusReg register (address 35h); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol		TestBus						
Access Rights				ı	r			

Table 114: Description of TestBusReg bits

Bit	Symbol	Description
7 to 0	TestBus	Shows the status of the internal test bus. The test bus is selected by the register <i>TestSel2Reg</i> . See Section 19 "Testsignals".

9.2.4.7 AutoTestReg

Controls the digital selftest.

Table 115: AutoTestReg register (address 36h); reset value: 40h

Bit	7	6	5	4	3	2	1	0	
Symbol	-	AmpRcv	-		SelfTest				
Access Rights	RFU	r/w	RI	FT		r/	W		

Table 116: Description of AutoTestReg bits

Bit	Symbol	Description
7	-	Reserved for production tests.
6	AmpRcv	If set to logic 1, the internal signal processing in the receiver chain is performed non-linear. This increases the operating distance in communication modes at 106 kbit/s.
		Remark: Due to the non linearity the effect of the bits <i>MinLevel</i> and <i>CollLevel</i> in the register <i>RxThreshholdReg</i> are as well non linear.
5 to 4	-	Reserved for production tests.
3 to 0	SelfTest	Enables the digital self test. The selftest can be started by the selftest command in the command register. The selftest is enabled by 1001b. Remark: For default operation the selftest has to be disabled by 0000b.

9.2.4.8 VersionReg

Shows the version.

Table 117: VersionReg register (address 37h); reset value: XXh

Bit	7	6	5	4	3	2	1	0
Symbol		Version						
Access Rights				ı	r			

Table 118: Description of VersionReg bits

Bit	Symbol	Description
7 to 0	Version	Indicates current version.
		Remark: The current version for MFRC522 is 90h or 91h.

9.2.4.9 AnalogTestReg

Controls the pins AUX1 and AUX2

Table 119: AnalogTestReg register (address 38h); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol	AnalogSelAux1				AnalogSelAux2				
Access Rights		r/w				r/	W		

Table 120: Description of AnalogTestReg bits

Bit	Symbol	Descrip	otion
7 to 4	AnalogSelAux1	Controls	s the AUX pin.
3 to 0	AnalogSelAux2	Remark	c: All test signals are described in Section 19 "Testsignals".
		Value	Description
		0000	Tristate
		0001	Output of TestDAC1 (AUX1), output of TestDAC2 (AUX2) [1]
		0010	Testsignal Corr1 [1]
		0011	Reserved
		0100	Testsignal MinLevel [1]
		0101	Testsignal ADC channel I [1]
		0110	Testsignal ADC channel Q [1]
		0111	Reserved
		1000	Reserved, Testsignal for production test [1]
		1001	Reserved
		1010	HIGH
		1011	LOW
		1100	TxActive
			At 106 kbit/s: HIGH during Startbit, Databit, Parity and CRC. At 212, 424 and 848 kbit/s: High during Data and CRC.
		1101	RxActive
			At 106 kbit/s: High during Databit, Parity and CRC. At 212, 424 and 848 kbit/s: High during Data and CRC.
		1110	Subcarrier detected
			106 kbit/s: not applicable 212, 424 and 848 kbit/s: High during last part of Data and CRC.
		1111	Test bus bit as defined by the <i>TstBusBitSel</i> in register <i>TestSel1Reg</i> .

^[1] Remark: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended

9.2.4.10 TestDAC1Reg

Defines the test values for TestDAC1.

Table 121: TestDAC1Reg register (address 39h); reset value: XXh

Bit	7	6	5	4	3	2	1	0	
Symbol	-		TestDAC1						
Access Rights	RF	=U			r/	W			

Table 122: Description of TestDAC1Reg bits

Bit	Symbol	Description
7	-	Reserved for production tests.
6	-	Reserved for future use.
5 to 0	TestDAC1	Defines the test value for <i>TestDAC1</i> . The output of the DAC1 can be switched to AUX1 by setting <i>AnalogSelAux1</i> to 0001b in register <i>AnalogTestReg</i> .

9.2.4.11 TestDAC2Reg

Defines the test value for TestDAC2.

Table 123: TestDAC2Reg register (address 3Ah); reset value: XXh

Bit	7	6	5	4	3	2	1	0		
Symbol		-	TestDAC2							
Access Rights	RFU				r/	W				

Table 124: Description of TestDAC2Reg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	TestDAC2	Defines the testvalue for TestDAC2. The output of the DAC2 can be switched to AUX2 by setting <i>AnalogSelAux2</i> to 0001b in register <i>AnalogTestReg</i> .

9.2.4.12 TestADCReg

Shows the actual value of ADC I and Q channel.

Table 125: TestADCReg register (address 3Bh); reset value: XXh

Bit	7	6	5	4	3	2	1	0	
Symbol		AD	C_I		ADC_Q				
Access Rights			r				r		

Table 126: Description of TestADCReg bits

Bit	Symbol	Description
7 to 4	ADC_I	Shows the actual value of ADC I channel.
3 to 0	ADC_Q	Shows the actual value of ADC Q channel.

9.2.4.13 Reserved

Functionality reserved for production test.

Table 127: Reserved register (address 3Ch); reset value: FFh

Bit	7	6	5	4	3	2	1	0	
Symbol		-							
Access Rights				RI	FT				

Table 128: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

Table 129: Reserved register (address 3Dh); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol		-							
Access Rights				RI	-T				

Table 130: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

Table 131: Reserved register (address 3Eh); reset value: 03h

Bit	7	6	5	4	3	2	1	0	
Symbol		-							
Access Rights		RFT							

Table 132: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

Table 133: Reserved register (address 3Fh); reset value: 00h

Bit	7	6	5	4	3	2	1	0	
Symbol		-							
Access Rights				RI	FT				

Table 134: Description of Reserved register bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

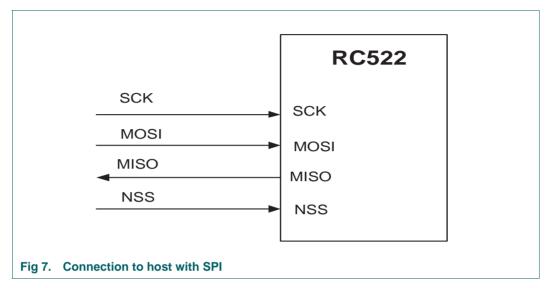
10. DIGITAL Interfaces

10.1 Automatic μ-Controller Interface Type Detection

The MFRC522 supports direct interfacing of various hosts as the SPI, I²C and serial UART interface type. The MFRC522 resets its interface and checks the current host interface type automatically having performed a Power-On or Hard Reset. The MFRC522 identifies the host interface by the means of the logic levels on the control pins after the Reset Phase. This is done by a combination of fixed pin connections. The following table shows the different configurations:

Table 135: Connection Scheme for detecting the different Interface Types

MFRC522		Serial Interface Types						
Pin	UART	SPI	I ² C					
SDA	RX	NSS	SDA					
I ² C	0	0	1					
EA	0	1	EA					
D7	TX	MISO	SCL					
D6	MX	MOSI	ADR_0					
D5	DTRQ	SCK	ADR_1					
D4	-	-	ADR_2					
D3	-	-	ADR_3					
D2	-	-	ADR_4					
D1	-	-	ADR_5					
Remark: Overview or	Remark: Overview on the pin behavior							
Pin behavior	Input	Output	In/Out					


10.2 SPI Compatible interface

A serial peripheral interface (SPI compatible) is supported to enable high speed communication to the host. The SPI Interface can handle data speed of up to 10 Mbit/s. In the communication with a host MFRC522 acts as a slave receiving data from the external host for register settings and to send and receive data relevant for the communication on the RF interface.

10.2.1 General

An interface compatible to an SPI interface enables a high-speed serial communication between the MFRC522 and a μ -Controller for the communication. The implemented SPI compatible interface is according to a standard SPI interface.

For timing specification refer to Section 23.8 "Timing for the SPI compatible interface".

The MFRC522 acts as a slave during the SPI communication. The SPI clock SCK has to be generated by the master. Data communication from the master to the slave uses the Line MOSI. Line MISO is used to send data back from the MFRC522 to the master.

On both lines (MOSI, MISO) each data byte is sent by MSB first. Data on MOSI line should be stable on rising edge of the clock line and can changed on falling edge. The same is valid for the MISO line. Data is provided by the MFRC522 on falling edge and is stable during rising edge.

10.2.2 Read data

To read out data using the SPI compatible interface the following byte order has to be used. It is possible to read out up to n-data bytes.

The first sent byte defines both, the mode itself and the address byte.

Table 136: Byte Order for MOSI and MISO

	byte 0	byte 1	byte 2	to	byte n	byte n+1
MOSI	adr 0	adr 1	adr 2		adr n	00
MISO	Χ	data 0	data 1		data n-1	data n

Remark: The most significant bit (MSB) has to be send first.

10.2.3 Write data

To write data to the MFRC522 using the SPI interface the following byte order has to be used. It is possible to write out up to n-data bytes by only sending one's address byte.

The first send byte defines both, the mode itself and the address byte.

Table 137: Byte Order for MOSI and MISO

	byte 0	byte 1	byte 2	to	byte n	byte n+1
MOSI	adr 0	data 0	data 1		data n-1	data n
MISO	Х	Х	Х		X	Х

Remark: The most significant bit (MSB) has to be send first.

10.2.4 Address byte

The address byte has to fulfil the following format:

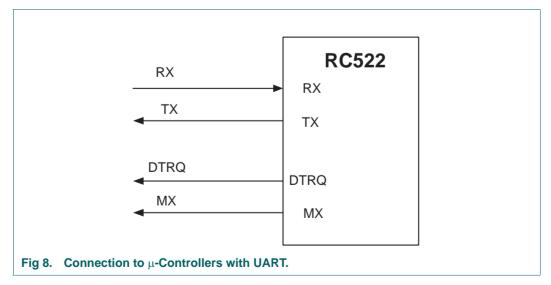

The MSB bit of the first byte defines the used mode. To read data from the MFRC522 the MSB bit is set to logic 1. To write data to the MFRC522 the MSB bit has to be set to logic 0. The bits 6 to 1 define the address and the LSB shall be set to logic 0.

Table 138. Address byte 0 register; address MOSI

7	6	5	4	3	2	1	0
1 (read) 0 (write)			add	ress			RFU
MSB							LSB

10.3 UART Interface

10.3.1 Connection to a host

Remark: DTRQ and MX can be disabled by clearing the bit *RS232LineEn* in register *TestPinEnReg*.

10.3.2 Selection of the transfer speeds

The internal UART interface is compatible to an RS232 serial interface.

<u>Table 140 "Selectable transfer speeds"</u> describes examples for different transfer speeds and relevant register settings.

The resulting transfer speed error is less than 1.5% for all described transfer speeds.

The default transfer speed is 9.6 kbit/s.

To change the transfer speed, the host controller has to write a value for the new transfer speed to the register *SerialSpeedReg*. The bits *BR_T0* and *BR_T1* define factors to set the transfer speed in the *SerialSpeedReg*.

Table 139 "Settings of BR_T0 and BR_T1" describes the settings of BR_T0 and BR_T1.

Table 139: Settings of BR_T0 and BR_T1

BR T0	0	1	2	3	4	5	6	7
factor BR_T0	1	1	2	4	8	16	32	64
range BR_T1	1 to 32	33 to 64						

Table 140: Selectable transfer speeds

Transfer Speed [bit/s]	SerialSp	eedReg	Transfer Speed Accuracy
	decimal	heximal	
7.2 k	250	FAh	-0.25%
9.6 k	235	EBh	0.32%
14.4 k	218	DAh	-0.25%
19.2 k	203	CBh	0.32%
38.4 k	171	ABh	0.32%
57.6 k	154	9Ah	-0.25%
115.2 k	122	7Ah	-0.25%
128 k	116	74h	-0.06%
230.4 k	90	5Ah	-0.25%
460.8 k	58	3Ah	-0.25%
921.6 k	28	1Ch	1.45%
1228.8 k	21	15h	0.32%

The selectable transfer speeds as shown in <u>Table 140 "Selectable transfer speeds"</u> are calculated according to the following formulas:

if BR_T0 =0: transfer speed = 27.12 MHz/(BR_T1 +1)

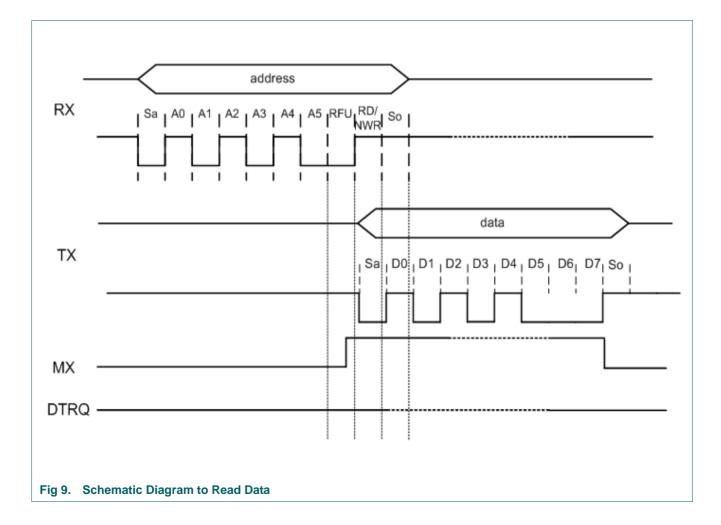
if $BR_T0>0$: transfer speed = 27.12 MHz/(BR_T1+33)/2^(BR_T0-1)

Remark: Transfer speeds above 1228.8 k are not supported.

10.3.3 Framing

Table 141: UART Framing

	Length	Value
Start bit	1 bit	0
Data bits	8 bits	Data
Stop bit	1 bit	1

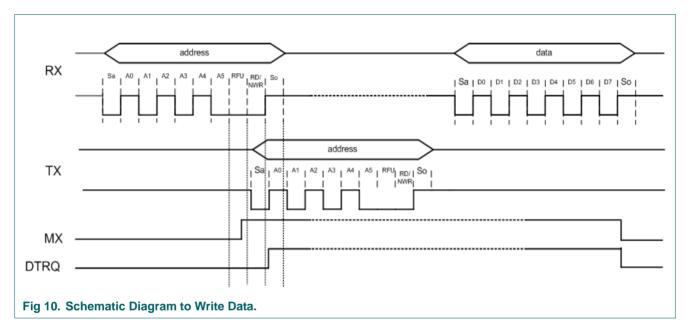

Remark: For data and address bytes the LSB bit has to be sent first. No parity bit is used during transmission.

Read data:

To read out data using the UART interface the flow described below has to be used. The first send byte defines both the mode itself and the address.

Table 142: Byte Order to Read Data

	byte 0	byte 1
RX	adr	
TX		data 0


Write data:

To write data to the MFRC522 using the UART interface the following structure has to be used.

The first send byte defines both, the mode itself and the address.

Table 143: Byte Order to Write Data

	byte 0	byte 1
RX	adr 0	data 0
TX		adr 0

Remark: The data byte can be send directly after the address byte on RX.

Address byte:

The address byte has to fulfil the following format:

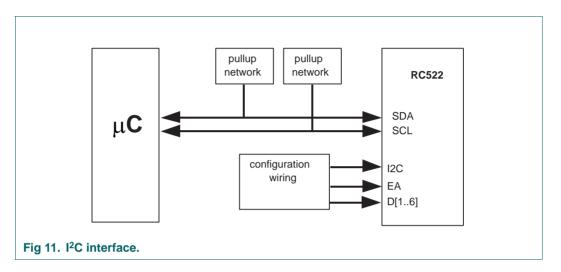

The MSB of the first byte sets the used mode. To read data from the MFRC522 the MSB is set to logic 1. To write data to the MFRC522 the MSB has to be set to logic 0. The bit 6 is reserved for further use and the bits 5 to 0 define the address.

Table 144. Address byte 0 register; address MOSI

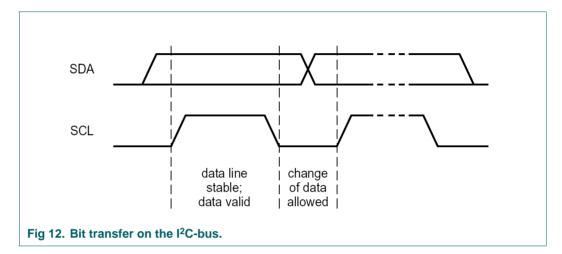
7	6	5	4	3	2	1	0
1 (read) 0 (write)	RFU			add	Iress		
MSB							LSB

10.4 I²C Bus Interface

An Inter IC (I²C) bus interface is supported to enable a low cost, low pin count serial bus interface to the host. The implemented I²C interface is implemented according the NXP Semiconductors I²C interface specification, rev. 2.1, January 2000. The implemented interface can only act in Slave mode. Therefore no clock generation and access arbitration is implemented in the MFRC522.

10.4.1 General

The implemented interface is conform to the I²C-bus specification version 2.1, January 2000. The MFRC522 can act as a slave receiver or slave transmitter in Standard mode, Fast mode and High-speed mode.


SDA is a bi-directional line, connected to a positive supply voltage via a current-source or a pull-up resistor. Both lines SDA and SCL are set to HIGH level if no data is transmitted. The MFRC522 has a tri-state output stage to perform the wired-AND function. Data on the I²C-bus can be transferred at data rates of up to 100 kbit/s in Standard mode, up to 400 kbit/s in the Fast mode or up to 3.4 Mbit/s in the High-speed mode.

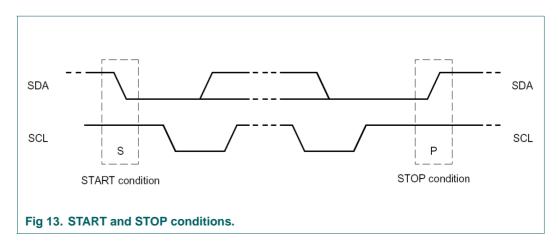
If the I²C interface is selected, a spike suppression according to the I²C interface specification on SCL and SDA is activated.

For timing requirements refer to Section 23.9 "I2C Timing"

10.4.2 Data validity

Data on the SDA line shall be stable during the HIGH period of the clock. The HIGH or LOW state of the data line shall only change when the clock signal on SCL is LOW.

10.4.3 START and STOP conditions


To handle the data transfer on the I²C-bus, unique START (S) and STOP (P) conditions are defined.

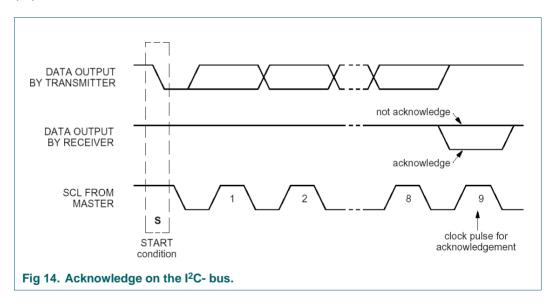
A START condition is defined with a HIGH to LOW transition on the SDA line while SCL is HIGH.

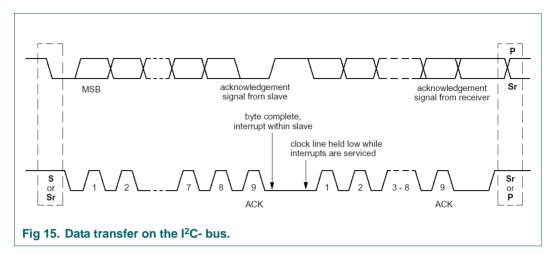
A STOP condition is defined with a LOW to HIGH transition on the SDA line while SCL is HIGH.

The master always generates the START and STOP conditions. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In this respect, the START (S) and repeated START (Sr) conditions are functionally identical. Therefore, the S symbol will be used as a generic term to represent both the START and repeated START (Sr) conditions.

10.4.4 Byte format


Each byte has to be followed by an acknowledge bit. Data is transferred with the MSB first, see Figure 16 "First byte following the START procedure.". The number of transmitted bytes during one data transfer is unrestricted but shall fulfil the read/ write cycle format.


10.4.5 Acknowledge

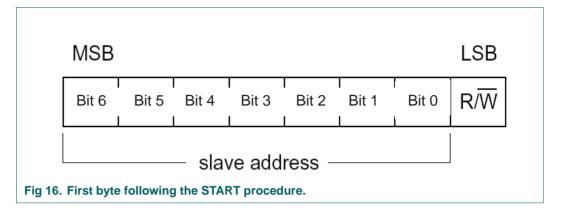
An acknowledge at the end of one data byte is mandatory. The acknowledge-related clock pulse is generated by the master. The transmitter of data, either master or slave, releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver shall pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse.

The master can then generate either a STOP (P) condition to stop the transfer, or a repeated START (Sr) condition to start a new transfer.

A master-receiver shall indicate the end of data to the slave- transmitter by not generating an acknowledge on the last byte that was clocked out by the slave. The slave-transmitter shall release the data line to allow the master to generate a STOP (P) or repeated START (Sr) condition.

10.4.6 7-BIT ADDRESSING

During the I²C-bus addressing procedure, the first byte after the START condition is used to determine which slave will be selected by the master.


As an exception several address numbers are reserved. During device configuration, the designer has to ensure, that no collision with these reserved addresses is possible. Check the corresponding I²C specification for a complete list of reserved addresses.

The I²C address specification is dependent on the definition of the EA Pin. Immediately after releasing the reset pin or after power on reset, the device defines the I²C address according EA pin.

If EA Pin is set to LOW than for all MFRC522 devices the upper 4 bits of the device bus address are reserved by NXP and set to 0101(bin). The remaining 3 bits (ADR_0, ADR_1, ADR_2) of the Slave Address can freely configured by the customer in order to prevent collisions with other I²C devices.

If EA Pin is set to HIGH than ADR_0 to ADR_5 can be completely specified at the external pins according to Table <u>Table 135 "Connection Scheme for detecting the different Interface Types"</u>. ADR_6 is always set to logic 0.

In both modes, the external address coding is latched immediately after releasing the reset condition. Further changes at the used pins are not taken into consideration. Depending on the external wiring, the I²C address pins could be used for test signal output.

10.4.7 Register Write Access

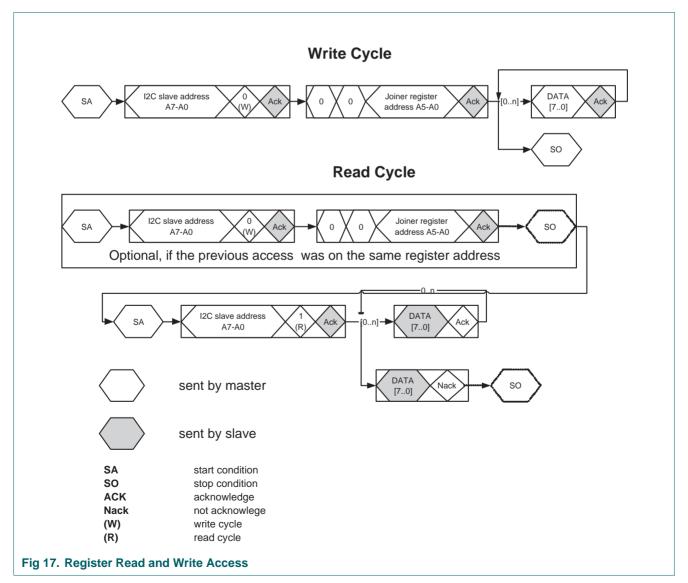
To write data from the host controller via I²C to a specific register of the MFRC522 the following frame format shall be used.

The first byte of a frame indicates the device address according to the I²C rules. The second byte indicates the register address followed by up to n-data bytes. In one frame all n-data bytes are written to the same register address. This enables for example a fast FIFO access.

The read/write bit shall be set to logic 0.

10.4.8 Register Read Access

To read out data from a specific register address of the MFRC522 the host controller shall use the procedure:


First a write access to the specific register address has to be performed as indicated in the following frame.

The first byte of a frame indicates the device address according to the I²C rules. The second byte indicates the register address. No data bytes are added.

The read/write bit shall be 0.

Having performed this write access, the read access can start. The host has to send the device address of the MFRC522. As an answer to this the MFRC522 responds with the content of this register. In one frame all n-data bytes could be read from the same register address. This enables for example a fast FIFO access or register polling.

The read/write bit shall be set to logic 1.

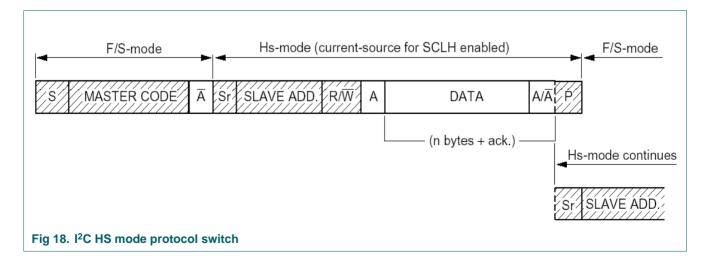
10.4.9 HS mode

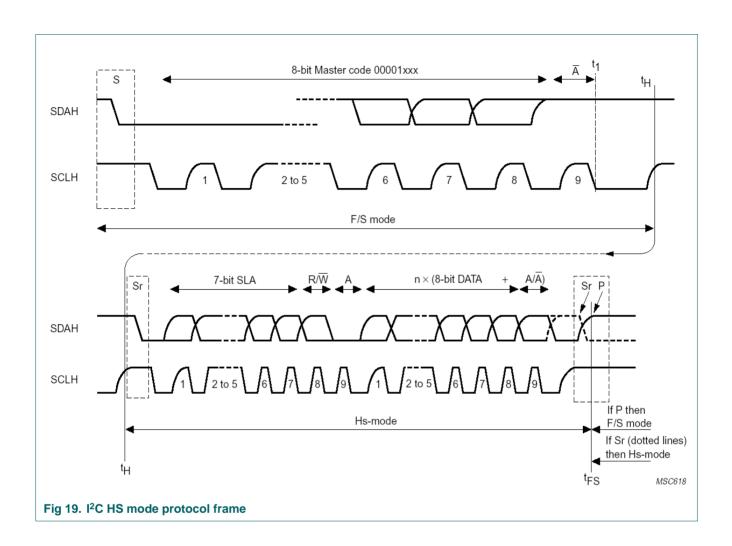
In High-speed mode (HS mode) the device can transfer information at data rates of up to 3.4 Mbit/s, it remains fully downward compatible with Fast- or Standard mode (F/S mode) for bi-directional communication in a mixed-speed bus system.

10.4.10 High Speed Transfer

To achieve a data rates of up to 3.4 Mbit/s the following improvements have been made to the regular I²C-bus behavior.

- The inputs of the device in HS mode incorporates spike suppression and a Schmitt-trigger at the SDA and SCL inputs with different timing constants compared to F/S mode.
- The output buffers of the device in HS mode incorporates slope control of the falling edges of the SDA and SCL signals with different fall time compared to F/S mode.


10.4.11 Serial Data transfer Format in HS mode


Serial data transfer format in HS mode meets the Standard mode I²C-bus specification. HS mode can only commence after the following conditions (all of which are in F/S mode):

- 1. START condition (S)
- 2. 8-bit master code (00001XXX)
- 3. Not-acknowledge bit (A)

The active master then sends a repeated START condition (Sr) followed by a 7-bit slave address with a R/W bit address, and receives an acknowledge bit (A) from the selected MFRC522.

Data transfer continues in in Hs-mode after the next repeated START (Sr), and only switches back to F/S-mode after a STOP condition (P). To reduce the overhead of the master code, it's possible that a master links a number of Hs-mode transfers, separated by repeated START conditions (Sr).

10.4.12 Switching from F/S to HS mode and Vice Versa

After reset and initialization, the MFRC522 is in Fast mode (which is in effect F/S mode as Fast mode is downward compatible to Standard mode). The connected MFRC522 recognizes the "S 00001XXX A" sequence and switches its internal circuitry from the Fast mode setting to the HS mode setting.

Following actions are taken:

- Adapt the SDA and SCL input filters according to the spike suppression requirement in HS mode.
- 2. Adapt the slope control of the SDA output stages.

For system configurations, where no other I²C devices are involved in the communication, have an additional possibility to switch to HS-mode. By setting the bit I²CForceHS in register Status2Reg to logic 1, the HS mode is entered. Setting this bit to logic 1 changes the HS-mode permanent meaning that sending the master code is no longer necessary. This is not according the specification and should only be used when no other devices are connected on the bus. Spikes on the I²C lines shall be avoided because of the reduced spike suppression.

10.4.13 MFRC522 at Lower Speed modes

MFRC522 is fully downwards compatible, and can be connected to an F/S mode I²C-bus system. As no master code will be transmitted in such a configuration, the device stays in F/S mode and communicates at F/S mode speeds.

11. Analog Interface and Contactless UART

11.1 General

The integrated contactless UART supports the external host online with framing and error checking of the protocol requirements up to 848 kbit/s. An external circuit can to be connected to the communication interface pins MFIN/MFOUT to modulate and demodulate the data.

The contactless UART handles the protocol requirements for the communication schemes in co-operation with the host. The protocol handling itself generates bit- and byte-oriented framing and handles error detection like Parity and CRC according to the different contactless communication schemes.

Remark: The size and the tuning of the antenna and the power supply voltage have an important impact on the achievable operating distance.

11.2 TX Driver

The signal delivered on pin TX1 and pin TX2 is the 13.56 MHz energy carrier modulated by an envelope signal. It can be used to drive an antenna directly, using a few passive components for matching and filtering, see <u>Section 24 "Application information"</u>. The signal on TX1 and TX2 can be configured by the register *TxControlReg*, see <u>Section 9.2.2.5 "TxControlReg"</u>.

The modulation index can be set by adjusting the impedance of the drivers. The impedance of the p-driver can be configured by the registers *CWGsPReg* and *ModGsPReg*. The impedance of the n-driver can be configured by the register *GsNReg*. Furthermore, the modulation index depends on the antenna design and tuning.

The register *TxModeReg* and *TxAutoSelReg* control the data rate and framing during transmission and the setting of the antenna driver to support the different requirements at the different modes and transfer speeds.

Table 145: Settings for TX1

TX1RFEn	Force 100ASK	InVTx1 RFON	InVTx1 RFOFF	Envelope	TX1	GSPMos	GSNMos	Remarks
0	Х	X	x	X	x	Х	х	not specified if RF is switched off
1	0	0	Х	0	RF	pMod	nMod	100% ASK: TX1 pulled to
				1	RF	pCW	nCW	0, independent of InvTx1RFOff
	0	1	Х	0	RF	pMod	nMod	IIIVIXII OII
				1	RF	pCW	nCW	
	1	1	Х	0	0	pMod	nMod	
				1	RF_n	pCW	nCW	

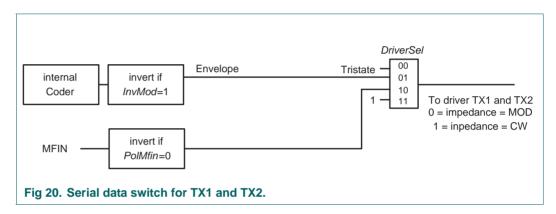
Table 146: Settings for TX2

TX1RFEn	Force 100ASK	TX2CW	InVTx2 RFON	InVTx2 RFOFF	Envelope	TX2	GSPMos	GSNMos	Remarks
0	Х	X	Х	х	х	х	Х	х	not specified if RF is switched off
1	0	0	0	х	0	RF	pMod	nMod	
					1	RF	pCW	nCW	
			1	Х	0	RF_n	pMod	nMod	
					1	RF_n	pCW	nCW	7
		1	0	х	X	RF	pCW	nCW	Gs always CW for
			1	х	X	RF_n	pCW	nCW	TX2CW
	1	0	0	х	0	0	pMod	nMod	100%ASK:Tx2
					1	RF	pCW	nCW	pulled to 0
			1	х	0	0	pMod	nMod	(independent of InvTx2RFOn/INVT X2RFOff)
					1	RF_n	pCW	nCW	
		1	0	х	X	RF	pCW	nCW	1
			1	х	X	RF_n	pCW	nCW	1

The following abbreviations are used:

- RF: 13.56 MHz clock derived from 27.12 MHz quartz divided by 2
- RF n: inverted 13.56 MHz clock
- gspmos: Conductance, configuration of the PMOS array
- gspmos: Conductance, configuration of the NMOS array
- pCW: PMOS conductance value for continuos wave defined by CWGsP register
- pMod: PMOS conductance value for modulation defined by *ModGsP* register
- nCW: NMOS conductance value for continuos wave defined by CWGsN register
- nMod: NMOS conductance value for modulation defined by ModGsN register

Remark: If only 1 driver is switched on, the values for *ModGsN*, *ModGsP* and *CWGsN*, *CWGsP* are used for both drivers.


11.3 Serial Data Switch

Two main blocks are implemented in the MFRC522. A digital circuitry, comprising state machines, coder and decoder logic and an analog circuitry with the modulator and antenna drivers, receiver and amplification circuitry. For example, the interface between these two blocks can be configured in the way, that the interfacing signals may be routed to the pins MFIN and MFOUT.

This topology supports, that the analog part of the MFRC522 may be connected to the digital part of another device.

The serial signal switch is controlled by the register TxSelReg and RxSelReg.

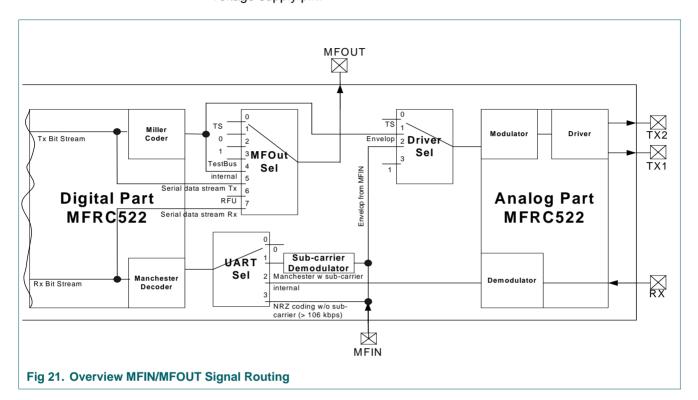
The following figure shows the serial data switch for TX1 and TX2.

11.4 MFIN/MFOUT interface support

The MFRC522 is basically divided into digital circuitry and analog circuitry. The digital circuitry contains state machines, coder and decoder logic and so on and the analog circuitry contains the modulator and antenna drivers, receiver and amplification circuitry. The interface between these two blocks can be configured in the way, that the interfacing signals may be routed to the pins MFIN and MFOUT (see Figure 21 "Overview MFIN/MFOUT Signal Routing"). The configuration is done by bits *MFOutSel*, *DriverSel* and *UARTSel* of registers *TxSelReg* and *RxSelReg*.

This topology supports, that some parts of the analog part of the MFRC522 may be connected to the digital part of another device.

The switch *MFOutSel* in register *TxSelReg* can be used to measure MIFARE® and ISO/IEC14443 related signals. This is especially important during the design In phase or for test purposes to check the transmitted and received data.


However, the most important use of MFIN/MFOUT pins is the active antenna concept. An external active antenna circuit can be connected to the digital circuit of the MFRC522. *MFOutSel* has to be configured in that way that the signal of the internal Miller Coder is send to MFOUT pin (*MFOutSel* = 4). *UARTSel* has to be configured to receive Manchester signal with sub-carrier from MFIN pin (*UARTSel* = 1).

It is possible, to connect a 'passive antenna' to pins TX1, TX2 and RX (via the appropriate filter and matching circuit) and at the same time an Active Antenna to the pins MFOUT and MFIN. In this configuration, two RF-parts may be driven (one after another) by one host processor.

Remark: The MFRC522 has an extra supply pin (SVDD and PVSS as Ground line) for the MFIN and MFOUT pads.

If MFIN pin is not used it should be connected to SVDD or PVSS.

If SVDD pin is not used it should be connected to DVDD or PVDD or any other voltage supply pin.

11.5 CRC co-processor

The following parameters of the CRC co-processor can be configured. The CRC preset value can either be 0000h, 6363h, A671h or FFFFh depending on the bits CRCPreset in register *ModeReg*.

The CRC polynomial for the 16-bit CRC is fixed to $x^{16} + x^{12} + x^5 + 1$.

The register *CRCResultReg* indicates the result of the CRC calculation. This register is split into two 8-bit registers indicating the higher and lower byte.

The bit MSBFirst in the register ModeReg indicates that data will be loaded with MSB first.

Table 147: CRC co-processor parameters

Parameter	Value
CRC Register Length	16 bit CRC
CRC Algorithm	Algorithm according ISO/IEC 14443A and CCITT
CRC Preset Value	0000h, 6363h,A671h or FFFFh depending on the <i>CRCPresetReg</i> register settings

12. FIFO Buffer

12.1 Overview

An 64×8 -bit FIFO buffer is implemented in the MFRC522. It buffers the input and output data stream between the host and the internal state machine of the MFRC522. Thus, it is possible to handle data streams with lengths of up to 64 bytes without taking timing constraints into account.

12.2 Accessing the FIFO Buffer

The FIFO-buffer input and output data bus is connected to the register *FIFODataReg*. Writing to this register stores one byte in the FIFO-buffer and increments the internal FIFO-buffer write-pointer. Reading from this register shows the FIFO-buffer contents stored at the FIFO-buffer read-pointer and decrements the FIFO-buffer read-pointer. The distance between the write- and read-pointer can be obtained by reading the register *FIFOLevelReg*.

When the μ -Controller starts a command, the MFRC522 may, while the command is in progress, access the FIFO-buffer according to that command. Physically only one FIFO-buffer is implemented, which can be used in input- and output direction. Therefore the μ -Controller has to take care, not to access the FIFO-buffer in an unintended way.

12.3 Controlling the FIFO-Buffer

Besides writing to and reading from the FIFO-buffer, the FIFO-buffer pointers might be reset by setting the bit *FlushBuffer* in the register *FIFOLevelReg* to 1. Consequently, the *FIFOLevel* bits are set to logic 0, the bit *BufferOvfl* in the register *ErrorReg* is cleared, the actually stored bytes are not accessible any more and the FIFO-buffer can be filled with another 64 bytes again.

12.4 Status Information about the FIFO-Buffer

The host may obtain the following data about the FIFO-buffers status:

- Number of bytes already stored in the FIFO-buffer: FIFOLevel in register FIFOLevelReg
- Warning, that the FIFO-buffer is almost full: HiAlert in register Status1Reg
- Warning, that the FIFO-buffer is almost empty: LoAlert in register Status1Reg
- Indication, that bytes were written to the FIFO-buffer although it was already full: BufferOvfl in register ErrorReg. BufferOvfl can be cleared only by setting bit FlushBuffer in the register FIFOLevelReg.

The MFRC522 can generate an interrupt signal

- If LoAlertIEn in register CommIEnReg is set to logic 1 it will activate pin IRQ when LoAlert in the register Status1Reg changes to 1.
- If *HiAlertIEN* in register *CommIEnReg* is set to logic 1 it will activate pin IRQ when *HiAlert* in the register *Status1Reg* changes to 1.

Contactless Reader IC

The bit *HiAlert* is set to logic 1 if maximum *WaterLevel* bytes (as set in register *WaterLevelReg*) or less can be stored in the FIFO-buffer. It is generated according to the following equation:

$$HiAlert = (64 - FIFOLength) \le WaterLevel$$

The bit *LoAlert* is set to logic 1 if *WaterLevel* bytes (as set in register *WaterLevelReg*) or less are actually stored in the FIFO-buffer. It is generated according to the following equation:

 $LoAlert = FIFOLength \le WaterLevel$

13. Timer Unit

A timer unit is implemented in the MFRC522. The external host may use this timer to manage timing relevant tasks. The timer unit may be used in one of the following configurations:

- Time-out counter
- Watch-dog counter
- Stop watch
- Programmable one-shot
- Periodical trigger

The timer unit can be used to measure the time interval between two events or to indicate that a specific event occurred after a specific time. The timer can be triggered by events which will be explained in the following, but the timer itself does not influence any internal event (e.g. A time-out during data reception does not influence the reception process automatically). Furthermore, several timer related bits are set and these bits can be used to generate an interrupt.

The timer has an input clock of 6.78 MHz (derived from the 27.12 MHz quartz). The timer consists of two stages: 1 prescaler and 1 counter.

The prescaler is a 12 bit counter. The reload value for TPrescaler can be defined between 0 and 4095 in register *TModeReg* and *TPrescalerReg*.

The reload value for the counter is defined by 16 bits in a range of 0 to 65535 in the register *TReloadReg*.

The current value of the timer is indicated by the register TCounterValReg.

If the counter reaches 0 an interrupt will be generated automatically indicated by setting the *TimerIRq* bit in the register *CommonIRqReg*. If enabled, this event can be indicated on the IRQ line. The bit *TimerIRq* can be set and reset by the host. Depending on the configuration the timer will stop at 0 or restart with the value in register *TReloadReg*.

The status of the timer is indicated by bit TRunning in register Status 1Reg.

The timer can be manually started by *TStartNow* in register *ControlReg* or manually stopped by *TStopNow* in register *ControlReg*.

Furthermore the timer can be activated automatically by setting the bit *TAuto* in the register *TModeReg* to fulfil dedicated protocol requirements automatically.

The time delay of a timer stage is the reload value +1.

Maximum time: TPrescaler = 4095, TReloadVal = 65535 => $4096 \times 65536/6.78$ MHz = 39.59 s

Example:

To indicate 100 us it is required to count 678 clock cycles. This means the value for TPrescaler has to be set to TPrescaler = 677. The timer has now an input clock of 100 us. The timer can count up to 65535 timeslots of each 100 us.

14. Interrupt Request System

The MFRC522 indicates certain events by setting bit *IRq* in the register *Status1Reg* and additionally, if activated, by pin IRQ. The signal on pin IRQ may be used to interrupt the host using its interrupt handling capabilities. This allows the implementation of efficient host software.

The following table shows the available interrupt bits, the corresponding source and the condition for its activation. The interrupt bit *TimerlRq* in register *CommlRqReg* indicates an interrupt set by the timer unit. The setting is done when the timer decrements from 1 down to 0.

The TxIRq bit in register CommIRqReg indicates that the transmitter has finished. If the state changes from sending data to transmitting the end of the frame pattern, the transmitter unit sets the interrupt bit automatically. The CRC coprocessor sets the bit CRCIRq in the register DivIRqReg after having processed all data from the FIFO buffer. This is indicated by the bit CRCReady = 1.

The bit *RxIRq* in register *CommIRqReg* indicates an interrupt when the end of the received data is detected.

The bit *IdleIRq* in register *CommIRqReg* is set if a command finishes and the content of the command register changes to idle.

The bit *HiAlertIRq* in register *CommIRqReg* is set to logic 1 if the *HiAlert* bit is set to logic 1, that means the FIFO buffer has reached the level indicated by the bit *WaterLevel*.

The bit LoAlertIRq in register CommIRqReg is set to logic 1 if the LoAlert bit is set to logic 1, that means the FIFO buffer has reached the level indicated by the bit WaterLevel.

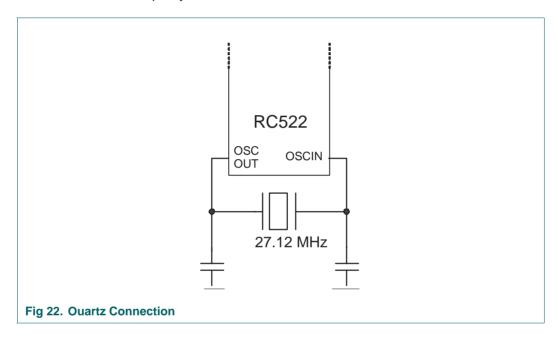

The bit *ErrIRq* in register *CommIRqReg* indicates an error detected by the contactless UART during sending or receiving. This is indicated by any bit set to logic 1 in register *ErrorReg*.

Table 148: Interrupt Sources

Interrupt bit	Interrupt Source	Is set automatically, when
TimerIRq	Timer Unit	the timer counts from 1 to 0
TxIRq	Transmitter	a transmitted data stream ends
CRCIRq	CRC co-processor	all data from the FIFO buffer has been processed
RxIRq	Receiver	a received data stream ends
IdleIRq	Command Register	a command execution finishes
HiAlertIRq	FIFO-buffer	the FIFO-buffer is getting full
LoAlertIRq	FIFO-buffer	the FIFO-buffer is getting empty
ErrIRq	contactless UART	an error is detected

15. Oscillator Circuitry

The clock applied to the MFRC522 acts as time basis for the coder and decoder of the synchronous system. Therefore stability of the clock frequency is an important factor for proper performance. To obtain highest performance, clock jitter has to be as small as possible. This is best achieved by using the internal oscillator buffer with the recommended circuitry. If an external clock source is used, the clock signal has to be applied to pin OSCIN. In this case special care for clock duty cycle and clock jitter is needed and the clock quality has to be verified.

16. Power Reduction modes

16.1 Hard Power-down

A Hard Power-down is enabled with LOW level on pin NRSTPD. This turns off all internal current sinks as well as the oscillator. All digital input buffers are separated from the input pads and clamped internally (except pin NRSTPD itself). The output pins are frozen at a certain value.

16.2 Soft Power-down

The Soft Power-down mode is entered immediately after setting the bit *PowerDown* in the register *CommandReg* to 1. All internal current sinks are switched off (including the oscillator buffer).

In opposition to the Hard Power-down mode, the digital input-buffers are not separated by the input pads and keep their functionality. The digital output pins do not change their state.

During Soft Power-down, all registers values, the FIFO's content and the configuration itself will keep its current content.

After setting bit *PowerDown* in the register *CommandReg* to 0 it takes 1024 clocks until the Soft Power-down mode is left as indicated by the *PoweDown* bit itself. Setting it to logic 0 does not immediately clear it. It is cleared automatically by the MFRC522 when the Soft Power-down mode is left.

Remark: If the internal oscillator is used, you have to take into account that it is supplied by AVDD and it will take a certain time $t_{\rm osc}$ until the oscillator is stable and the clock cycles can be detected by the internal logic.

For the serial UART it is recommended to send the value 55 (hex) to the MFRC522 first. For further access to the registers the oscillator must be stable. Therefore, perform a read accesses to address 0 till the MFRC522 answers to the last read command with the register content of address 0. This indicates that the MFRC522 is active for further operation.

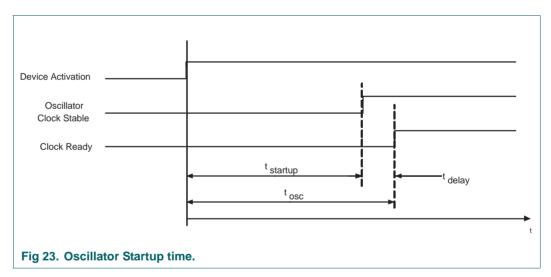
16.3 Transmitter Power-down

The Transmitter Power-down mode switches off the internal antenna drivers to turn off the RF field by setting either *Tx1RfEn* or *TX2RFEn* in the register *TXControlReg* to logic 0.

17. Reset and Oscillator Startup Time

17.1 Reset Timing Requirements

The reset signal is filtered by a hysteresis circuit and a spike filter (rejects signals shorter than 10 ns) before it enters the digital circuit. In order to perform a reset, the signal has to be low for at least 100 ns.


17.2 Oscillator Startup Time

Having set the MFRC522 to a Power-down mode or supplying the IC with XVDD the following figure describes the startup timing for the oscillator.

The time t_{startup} defines the startup time of crystal oscillator circuit. The crystal oscillator startup time is defined by the crystal itself.

The t_{delay} defines the internal delay time of the MFRC522 when the clock signal is stable before the MFRC522 can be addressed. The delay time is calculated as follows: $t_{delay} \, [\mu s] = 1024/27.12 = 37.76 \, \mu s$.

The time t_{osc} is defined as the sum of the time t_{delay} and t_{startup} .

18. MFRC522 Command Set

18.1 General Description

The behavior is determined by a state machine capable to perform a certain set of commands. By writing the according command-code to register *CommandReg* the command is executed.

Arguments and/or data necessary to process a command are exchanged via the FIFO buffer.

18.2 General Behavior

- Each command, that needs a data stream (or data byte stream) as input will
 immediately process the data it finds in the FIFO buffer. An exception to this rule is the
 Transceive command. Using this command the transmission is started with the
 StartSend bit in the BitFramingReg register.
- Each command that needs a certain number of arguments will start processing only when it has received the correct number of arguments via the FIFO buffer.
- The FIFO buffer is not cleared automatically at command start. Therefore, it is also
 possible to write the command arguments and/or the data bytes into the FIFO buffer
 and start the command afterwards.
- Each command may be interrupted by the host by writing a new command code into register *CommandReg* e.g.: the Idle-Command.

18.3 MFRC522 Commands Overview

Table 149: Command overview

Command	Command code	Action
Idle	0000	No action; cancels current command execution.
Mem	0001	Stores 25 byte into the internal buffer
Generate RandomID	0010	Generates a 10 byte random ID number
CalcCRC	0011	Activates the CRC co-processor or performs a selftest.
Transmit	0100	Transmits data from the FIFO buffer.
NoCmd Change	0111	No command change. This command can be used to modify different bits in the command register without touching the command. E.g. Power-down.
Receive	1000	Activates the receiver circuitry.
Transceive	1100	Transmits data from FIFO buffer to the antenna and activates automatically the receiver after transmission.
-	1101	Reserved for further use
MFAuthent	1110	Performs the MIFARE® standard authentication as a reader
Soft Reset	1111	Resets the MFRC522

18.3.1 MFRC522 Command Description

18.3.1.1 Idle Command

The MFRC522 is in Idle mode. This command is also used to terminate the actual command.

18.3.1.2 Mem Command

Transfers 25 byte from the FIFO to the internal buffer.

To read out the 25 byte from the internal buffer, the command Mem with an empty FIFO buffer has to be started. In this case the 25 bytes are transferred from the internal buffer to the FIFO.

During a hard power down (reset pin) the 25 byte in the internal buffer remains unchanged but will be lost when supply power is removed from MFRC522.

This command terminates automatically when finished and the active command is idle.

18.3.1.3 Generate RandomID Command

This command generates a 10 byte random number stored in the internal buffer and overwrites the 10 bytes internal 25 byte buffer. This command terminates automatically when finished and the MFRC522 returns to idle.

18.3.1.4 CalcCRC Command

The content of the FIFO is transferred to the CRC co-processor and a CRC calculation is started. The result of this calculation is stored in the *CRCResultReg* register. The CRC calculation is not limited to a dedicated number of bytes. The calculation is not stopped, when the FIFO gets empty during the data stream. The next byte written to the FIFO is added to the calculation.

The pre-set value of the CRC is controlled by the *CRCPreset* bits of the *ModeReg* register and the value is loaded to the CRC co-processor when the command is started.

This command has to be terminated by writing any command to register *CommandReg* e.g. the command Idle.

If the *SelfTest* bits in the register *AutoTestReg* are set correct, the MFRC522 is in Self Test mode and starting the CalCCRC command performs a digital selftest. The result of the selftest is written to the FIFO.

18.3.1.5 Transmit Command

The content of the FIFO is transmitted immediately after starting the command. Before transmitting the FIFO content all relevant register have to be set to transmit data.

This command terminates automatically when the FIFO gets empty. It can be terminated by any other command written to the command register.

18.3.1.6 NoCmdChange Command

This command does not influence any ongoing command in the *CommandReg* register. It can be used to manipulate any bit except the *command* bits in the *CommandReg* register, e.g. the bits *RcvOff* or *PowerDown*.

18.3.1.7 Receive Command

The MFRC522activates the receiver path and waits for any data stream to be received. The correct settings have to be chosen before starting this command.

This command terminates automatically when the received data stream ends. This is indicated either by the end of frame pattern or by the length byte depending on the selected framing and speed.

Remark: If the bit *RxMultiple* in the *RxModeReg* register is set to logic 1, the Receive command does not terminate automatically. It has to be terminated by activating any other command in the *CommandReg* register.

18.3.1.8 Transceive Command

This circular command repeats transmitting data from the FIFO and receiving data from the RF field continuously. The first action is transmitting and after a transmission the command is changed to receive a data stream.

Each transmission process has to be started by setting bit *StartSend* in the register *BitFramingReg* to logic 1. This command has to be cleared by software by writing any command to register *CommandReg* e.g. the command idle.

Remark: If the bit *RxMultiple* in register *RxModeReg* is set to logic 1, this command will never leave the receiving state, because the receiving will not be cancelled automatically.

18.3.1.9 MFAuthent Command

This command handles the MIFARE® authentication to enable a secure communication to any MIFARE® classic card. The following data shall be written to the FIFO before the command can be activated:

- Authentication command code (60h, 61h)
- Block address
- Sector key byte 0
- Sector key byte 1
- Sector key byte 2
- Sector key byte 3
- · Sector key byte 4
- Sector key byte 5
- Card serial number byte 0
- Card serial number byte 1
- Card serial number byte 2
- Card serial number byte 3

In total 12 bytes shall be written to the FIFO.

Remark: When the MFAuthent command is active, any FIFO access is blocked. Anyhow if there is an access to the FIFO, the bit *WrErr* in the **ErrorReg** register is set.

Contactless Reader IC

This command terminates automatically when the MIFARE® card is authenticated and the bit *MFCrypto1On* in the *Status2Reg* register is set to logic 1.

This command does not terminate automatically when the card does not answer, therefore the timer should be initialized to automatic mode. In this case, beside the bit *IdleIrq*, the bit *TimerIrq* can be used as termination criteria. During authentication processing the bit *RxIrq* and bit *TxIrq* are blocked. The *Crypto1On* bit is only valid after termination of the authent command (either after processing the protocol or after writing IDLE to the command register).

In case there is an error during authentication, the bit *ProtocolErr* in the *ErrorReg* register is set to logic 1 and the bit *Crypto1On* in register *Status2Reg* is set to logic 0.

18.3.1.10 SoftReset Command

This command performs a reset of the device. The configuration data of the internal buffer remains unchanged. All registers are set to the reset values. This command terminates automatically when finished.

Remark: The *SerialSpeedReg* register is reset and therefore the serial data rate is set to 9.6 kbps.

19. Testsignals

19.1 Selftest

The MFRC522 has the capability to perform a digital selftest. To start the selftest the following procedure has to be performed:

- 1. Perform a soft reset.
- 2. Clear the internal buffer by writing 25 bytes of 00h and perform the Config Command.
- 3. Enable the Selftest by writing the value 09h to the register AutoTestReg.
- 4. Write 00h to the FIFO.
- 5. Start the Selftest with the CalcCRC Command.
- 6. The Selftest will be performed.
- 7. When the Selftest is finished, the FIFO contains the following bytes:

Correct answer for register VersionReg equal to 90h:

```
00h, 87h, 98h, 0fh, 49h, FFh, 07h, 19h
BFh, 22h, 30h, 49h, 59h, 63h, ADh, CAh
7Fh, E3h, 4Eh, 03h, 5Ch, 4Eh, 49h, 50h
47h, 9Ah, 37h, 61h, E7h, E2h, C6h, 2Eh
75h, 5Ah, EDh, 04h, 3Dh, 02h, 4Bh, 78h
32h, FFh, 58h, 3Bh, 7Ch, E9h, 00h, 94h
B4h, 4Ah, 59h, 5Bh, FDh, U9h, 29h, DFh
35h, 96h, 98h, 9Eh, 4Fh, 30h, 32h, 8Dh
```

Correct answer for register VersionReg equal to 91h:

```
00h, C6h, 37h, D5h, 32h, B7h, 57h, 5Ch, C2h, D8h, 7Ch, 4Dh, D9h, 70h, C7h, 73h, 10h, E6h, D2h, AAh, 5Eh, A1h, 3Eh, 5Ah, 14h, AFh, 30h, 61h, C9h, 70h, DBh, 2Eh, 64h, 22h, 72h, B5h, BDh, 65h, F4h, ECh, 22h, BCh, D3h, 72h, 35h, CDh, AAh, 41h, 1Fh, A7h, F3h, 53h, 14h, DEh, 7Eh, 02h, D9h, 0Fh, B5h, 5Eh, 25h, 1Dh, 29h, 79h
```

19.2 Test bus

The test bus is implemented for production test purposes. The following configuration can be used to improve the design of a system using the MFRC522. The test bus allows to route internal signals to the digital interface. The test bus signals are selected by accessing *TestBusSel* in register *TestSel2Reg*.

Table 150: TestSel2Reg register (address 07h)

Pins	D6	D5	D4	D3	D2	D1
Testsignal	sdata	scoll	svalid	sover	RCV_reset	-

Table 151: Description of Testsignals

Pins	Testsignal	Description
D6	sdata	shows the actual received data stream.
D5	scoll	shows if in the actual bit a collision has been detected (106 kbit/s only)
D4	svalid	shows if sdata and scoll are valid
D3	sover	shows that the receiver has detected a stop condition
D2	RCV_reset	shows if the receiver is reset
D1	-	reserved

Table 152: TestSel2Reg register (address 0Dh)

Pins	D6	D5	D4	D3	D2	D1
Testsignal	clkstable	clk27/8	-	-	clk27	-

Table 153: Description of Testsignals

Pins	Testsignal	Description
D6	clkstable	shows if the oscillator delivers a stable signal.
D5	clk27/8	shows the output signal of the oscillator divided by 8
D4 to D3	-	reserved
D2	clk27	shows the output signal of the oscillator
D1	-	reserved

19.3 Testsignals at pin AUX

With the MFRC522, the user may select internal signals to measure them at pin AUX. These measurements can be helpful during the design-in phase to optimise the design or for test purpose.

<u>Table 154</u> shows an overview of the signal that can be switched to pin AUX1 or AUX2 by setting *SelAux1* or *SelAux2* in the register *AnalogTestReg*.

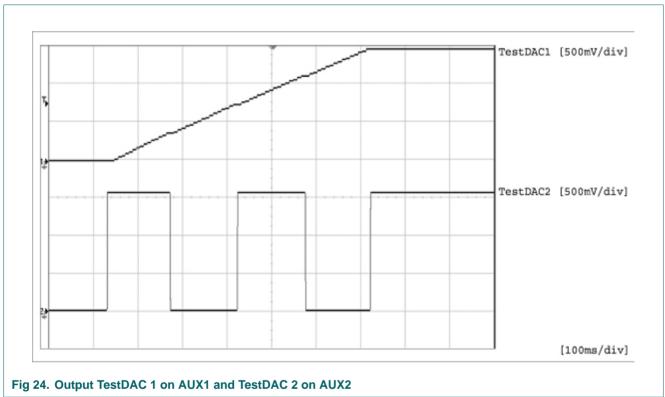
Please also refer to register AnalogSelAux.

Remark: The DAC has a current output. It is recommended to use a 1 $k\Omega$ pull-down resistance at pins AUX1/AUX2.

Table 154: Testsignals description

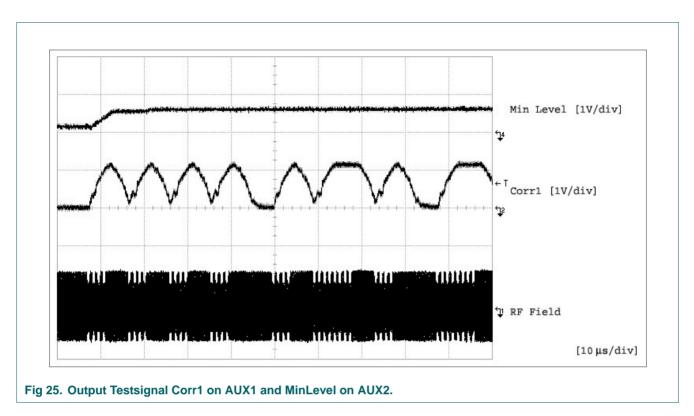
SelAux	Description for Aux1 / Aux2
0000	Tristate
0001	DAC: register TestDAC 1/2
0010	DAC: testsignal corr1
0011	Reserved
0100	DAC: testsignal MinLevel
0101	DAC: ADC_I
0110	DAC: ADC_Q
0111 - 1001	Reserved
1010	High
1011	low

Contactless Reader IC

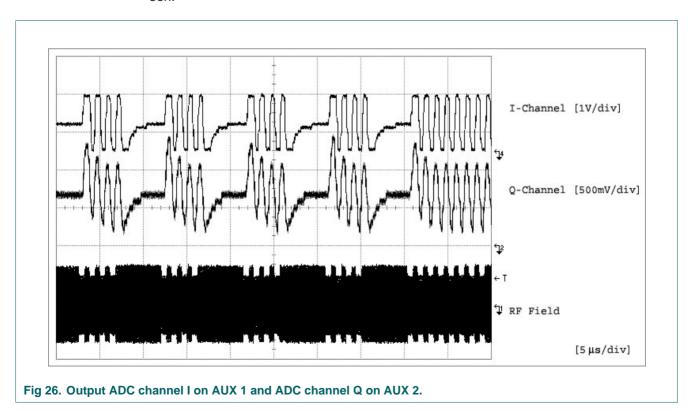

Table 154: Testsignals description

SelAux	Description for Aux1 / Aux2
1100	TxActive
1101	RxActive
1110	Subcarrier detected
1111	TstBusBit

19.3.1 Example: Output TestDAC 1 on AUX1 and TestDAC 2 on AUX2


Register *AnalogTestReg* is set to 11h. The output of AUX1 corresponds to the TestDAC 1 and the output of AUX2 to the TestDAC 2. The value of TestDAC 1 and TestDAC 2 is controlled by register *TestDAC1Reg* and *TestDAC2Reg*.

<u>Figure 24</u> shows *TestDAC1Reg* programmed with a slope from 00h to 3Fh. *TestDAC2Reg* has been programmed with a rectangular signal with values of 00h and 3Fh.

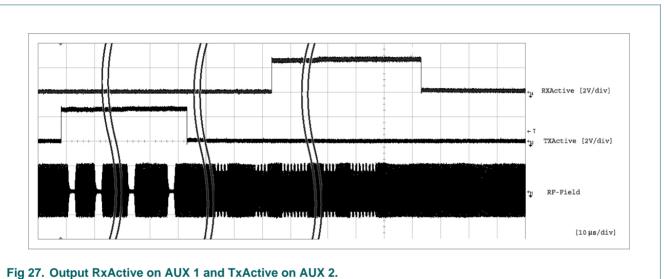

19.3.2 Example: Output Testsignal Corr1 on AUX1 and MinLevel on AUX2

The following Figure 25 shows the test signal Corr 1 and the test signal MinLevel. The *AnalogTestReg* is set to 24h. The output of AUX1 corresponds to the Corr1 signal and AUX2 to the MinLevel.

19.3.3 Example: Output ADC channel I on AUX 1 and ADC channel Q on AUX 2

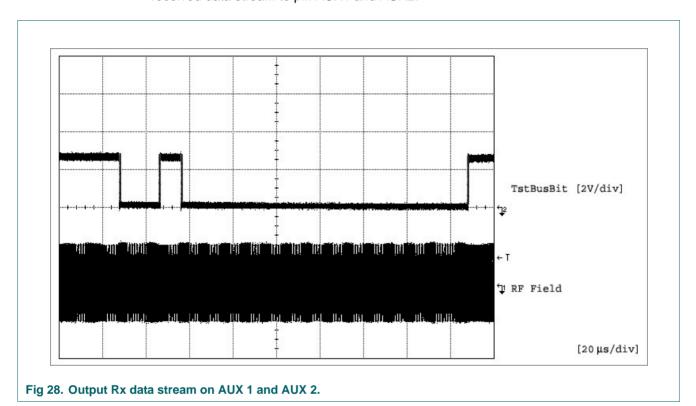
Figure 26 shows the ADC_I and ADC_Q channel behaviour. The AnalogTestReg is set to 56h.

19.3.4 Example: Output RxActive on AUX 1 and TxActive on AUX 2


The following Figure 27 shows the RXActive and TXActive signal in accordance to the RF communication. The AnalogTestReg was set to CDh.

Remark: At 106 kbit/s, RxActive is HIGH during databits, parity and CRC reception. Startbits are not included.

> At 106 kbit/s, TxActive is HIGH during startbits, databits, parity and CRC transmission.


At 212, 424 and 848 kbit/s, RxActive is HIGH during datbits and CRC reseption. Startbits are not included.

At 212, 424 and 848 kbit/s, TxActive is HIGH during databits and CRC transmission.

19.3.5 Example: Output Rx Data Stream on AUX 1 and AUX 2

The following <u>Figure 28</u> shows the actual received data stream. *TestSel2Reg* is set to 07h to enable certain digital test data on D1-D6 (see <u>Section 19.2 "Test bus"</u>). The register *TestSel1Reg* is set to 06h (D6 = sdata) and *AnalogTestReg* is set to FFh to output the received data stream to pin AUX1 and AUX2.

19.4 PRBS (Pseudo-Random Binary Sequence)

Enables the PRBS9 or PRBS15 sequence according to ITU-TO150. To start the transmission of the defined datastream the command TRANSMIT has to be activated. The preamble/Sync byte/start bit/parity bit are generated automatically depending on the selected mode.

Remark: All relevant register to transmit data have to be configured before entering PRBS mode according ITU-TO150.

20. Limiting values

Table 155. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
AV_{DD}	Supply voltage		-0.5	+4.0	V
DV_DD					
PV_{DD}					
TV_DD					
SV_{DD}					
V _{in}	Input voltage	for all input-pins except MFIN and Rx	PV _{SS} -0.5	PV _{DD} +0.5	V
$V_{\text{in,MFIN}}$	Input voltage	for MFIN pin only	PV _{SS} -0.5	SV _{DD} +0.5	V
P _{tot}	Total power dissipation per package (V _{BUS} and DV _{DD} in short cut mode)		-	200	mW
T _J	Junction temperature range			100	°C
ESDH	ESD Susceptibility (Human Body model)	1500 Ω, 100 pF; JESD22-A114-B		2000	V
ESDM	ESD Susceptibility (Machine model)	0.75 μH, 200 pF; JESD22-A114-A		200	V

21. Recommended operating conditions

Table 156: Operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
T _{amb}	Ambient Temperature	HVQFN32		-25	-	+85	°C
AV_{DD} DV_{DD} TV_{DD}	Supply Voltage	$\begin{aligned} &AV_{SS} = DV_{SS} = PV_{SS} = \\ &TV_S = 0 \; V, PV_{DD} \leq AV_{DD} = \\ &DV_{DD} = &TV_{DD} \end{aligned}$	[2]	2.5	3.3	3.6	V
PV_{DD}			[3]	1.6	1.8	3.6	V

^[1] Supply voltages below 3 V reduces the performance (e.g. the achievable operating distance).

22. Thermal characteristics

Table 157: Thermal characteristics

Symbol	Parameter	Conditions	Package	Тур	Unit
R _{thj-a}	Thermal resistance from junction to ambient	In still air with exposed pad soldered on a 4 layer Jedec PCB	HVQFN32	40	K/W

112132 © NXP B.V. 2007. All rights reserved.

^[2] AV_{DD} , DV_{DD} and TV_{DD} shall always be on the same voltage level.

^[3] PV_{DD} shall always be on the same or lower voltage level than DV_{DD} .

23. Characteristics

23.1 Input Pin Characteristics

23.1.1 Input Pin characteristics for pins EA, I2C and NRESET

Table 158: Input Pin characteristics for pins EA, I2C and NRESET

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Leak}	Input Leakage current		-1	-	1	μΑ
V _{IH}	Input voltage High		$0.7~\mathrm{PV}_\mathrm{DD}$	-	-	V
V _{IL}	Input voltage Low		-	-	0.3 PV _{DD}	V

23.1.2 Input Pin characteristics for pin MFIN

Table 159: Input Pin characteristics for MFIN

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{Leak}	Input Leakage current		-1	-	1	μΑ
V _{IH}	Input voltage High		$0.7~\mathrm{SV}_\mathrm{DD}$	-	-	V
V _{IL}	Input voltage Low		-	-	$0.3~\mathrm{SV}_\mathrm{DD}$	V

23.1.3 Input/Output Pin characteristics for pins D1, D2, D3, D4, D5, D6 and D7

Table 160: Input/Output Pin characteristics for pins D1, D2, D3, D4, D5, D6 and D7

	<u> </u>		<u> </u>			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Leak}	Input Leakage current		-1	-	1	μΑ
V_{IH}	Input voltage High		$0.7~\mathrm{PV}_\mathrm{DD}$	-	-	V
V_{IL}	Input voltage Low		-	-	0.3 PV _{DD}	V
V _{OH}	Output voltage HIGH	$PV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	PV _{DD} -400 mV	-	PV_{DD}	V
V_{OL}	Output voltage LOW	$PV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	PV_{SS}	-	PV _{SS} +400 mV	V
I _{OH}	Output current drive HIGH	$PV_{DD} = 3 V$	-	-	4	mA
I _{OL}	Output current drive LOW	$PV_{DD} = 3 V$	-	-	4	mA

23.1.4 Input Pin characteristics for pin SDA

Table 161: Input Pin characteristics for pin SDA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Leak}	Input Leakage current		-1	-	1	μΑ
V_{IH}	Input voltage High		0.7 PV _{DD}	-	-	V
V_{IL}	Input voltage Low		-	-	0.3 PV _{DD}	V

23.1.5 Output Pin characteristics for Pin MFOUT

Table 162: Output Pin characteristics for Pin MFOUT

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	Output voltage HIGH	$SV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	SV _{DD} -400 mV	-	SV _{DD}	V
V_{OL}	Output voltage LOW	$SV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	SV _{SS}	-	PV _{SS} +400 mV	V
I _{OL}	Output current drive LOW	$SV_{DD} = 3 V$	-	-	4	mA
I _{OH}	Output current drive HIGH	$SV_{DD} = 3 V$	-	-	4	mA

23.1.6 Output Pin characteristics for Pin IRQ

Table 163: Output Pin characteristics for Pin IRQ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	Output voltage HIGH	$PV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	PV _{DD} -400 mV	-	PV_{DD}	V
V_{OL}	Output voltage LOW	$PV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	PV _{SS}	-	PV _{SS} +400 mV	V
I _{OL}	Output current drive LOW	$PV_{DD} = 3 V$	-	-	4	mA
I _{OH}	Output current drive HIGH	$PV_{DD} = 3 V$	-	-	4	mA

23.1.7 Input Pin characteristics for Pin Rx

Table 164: Input Pin characteristics for Pin Rx

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{\text{IN,RX}}$	Input voltage range		-1	-	AV_{DD} +1 V	V
C _{IN,RX}	RX Input capacitance	$AV_{DD} = 3 \text{ V},$ Receiver active, $V_{RX} = 1 \text{ V}_{PP},$ 1.5 V_{DC} offset	-	10	-	pF
R _{IN,RX}	RX Input Series resistance	$AV_{DD} = 3 \text{ V},$ Receiver active, $V_{RX} = 1 \text{ V}_{PP},$ 1.5 V_{DC} offset	-	350	-	Ω

^[1] The voltage on RX in clamped by internal diodes to AV_{SS} and AV_{DD} .

23.1.8 Input Pin characteristics for pin OSCIN

Table 165: Input Pin characteristics for OSCIN

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{Leak}	Input Leakage current		-1	-	1	μΑ

112132 © NXP B.V. 2007. All rights reserved.

Table 165: Input Pin characteristics for OSCIN

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	Input voltage High		$0.7~\mathrm{AV_{DD}}$	-	-	V
V_{IL}	Input voltage Low		-	-	$0.3~{\rm AV_{DD}}$	V
C _{OSCIN}	Input capacitance	$AV_{DD} = 2.8 \text{ V},$ $V_{DC} = 0.65 \text{ V},$ $V_{AC} = 1 \text{ V}_{PP}$	-	2	-	pF

23.1.9 Output Pin characteristics for Pins AUX1 and AUX2

Table 166: Output Pin characteristics for Pins AUX1 and AUX2

	·									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V_{OH}	Output voltage HIGH	$DV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	DV _{DD} -400 mV	-	DV_DD	V				
V _{OL}	Output voltage LOW	$DV_{DD} = 3 V$, $I_{O} = 4 \text{ mA}$	DV _{SS}	-	DV _{SS} +400 mV	V				
I _{OL}	Output current drive LOW	$DV_{DD} = 3 V$	-	-	4	mA				
I _{OH}	Output current drive HIGH	$DV_{DD} = 3 V$	-	-	4	mA				

23.1.10 Output Pin characteristics for Pins TX1 and TX2

Table 167: Output Pin characteristics for Pins TX1 and TX2

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH,C32,3V}	Output voltage HIGH	$TV_{DD} = 3 \text{ V}$ and $I_{TX} = 32 \text{ mA}$, $CWGsP = 3\text{Fh}$	TV _{DD} -150 mV	-	-	mV
V _{OH,C80,3V}		$TV_{DD} = 3 \text{ V}$ and $I_{TX} = 80 \text{ mA}$, $CWGsP = 3\text{Fh}$	TV _{DD} -400 mV	-	-	mV
V _{OH,C32,2V5}		$TV_{DD} = 2.5 \text{ V and}$ $I_{TX} = 32 \text{ mA},$ CWGsP = 3Fh	TV _{DD} -240 mV	-	-	mV
V _{OH,C80,2V5}		$TV_{DD} = 2.5 \text{ V}$ and $I_{TX} = 80 \text{ mA}$, $CWGsP = 3\text{Fh}$	TV _{DD} -640 mV	-	-	mV
V _{OL,C32,3V}	Output voltage LOW	$TV_{DD} = 3 \text{ V}$ and $I_{TX} = 32 \text{ mA}$, $CWGsP = 0\text{Fh}$	-	-	150	mV
V _{OL,C80,3V}		$TV_{DD} = 3 \text{ V}$ and $I_{TX} = 80 \text{ mA}$, $CWGsP = 0\text{Fh}$	-	-	400	mV
V _{OL,C32,2V5}		$TV_{DD} = 2.5 \text{ V}$ and $I_{TX} = 32 \text{ mA}$, $CWGsP = 0\text{Fh}$	-	-	240	mV
V _{OL,C80,2V5}		$TV_{DD} = 2.5 \text{ V}$ and $I_{TX} = 80 \text{ mA}$, $CWGsP = 0\text{Fh}$	-	-	640	mV

23.2 Current Consumption

Table 168: Current Consumption

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{HPD}	Hard Power-down Current	$\begin{aligned} &AV_{DD} = DV_{DD} = \\ &TV_{DD} = PV_{DD} = 3 \; V, \\ &N_{RESET} = LOW \end{aligned}$	[4]	-	-	5	μΑ
I _{SPD}	Soft Power-down Current	$AV_{DD} = DV_{DD} = $ $TV_{DD} = PV_{DD} = 3 V$	<u>[4]</u>	-	-	10	μΑ
I_{DVDD}	Digital Supply Current	$DV_{DD} = 3 V$		-	6.5	9	mA
I _{AVDD}	Analog Supply Current	$AV_{DD} = 3 V$, bit $RCVOff = 0$		-	7	10	mA
I _{AVDD,RCVOFF}	Analog Supply Current, receiver switched off	$AV_{DD} = 3 V$, bit $RCVOff = 1$		-	3	5	mA
I _{PVDD}	Pad Supply Current		[2]	-	-	40	mA
I_{TVDD}	Transmitter Supply Current	Continuous Wave	[1][3]	-	60 <u>^[5]</u>	100	mA
I _{SVDD}	MFIN/MFOUT Pad Supply Current		[6]	-	-	4	mA
·	·	·		· ·		· · · · · · · · · · · · · · · · · · ·	

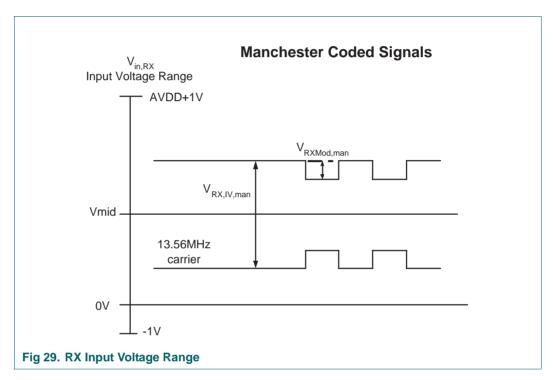
^[1] I_{TVDD} depends on TV_{DD} and the external circuitry connected to Tx1 and Tx2

^[2] I_{PVDD} depends on the overall load at the digital pins.

^[3] During operation with a typical circuitry the overall current is below 100 mA.

^[4] I_{SPD} and I_{HPD} are the total currents over all supplies.

^[5] Typical value using a complementary driver configuration and an antenna matched to 40 Ω between TX1 and TX2 at 13.56 MHz


^[6] I_{SVDD} depends on the load at the MFOUT pin.

23.3 RX Input Voltage Range

Table 169: RX Input Voltage Range

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{RX,MinIV,Man}$	Minimum Input voltage, Manchester Coded	$AV_{DD} = 3 V$	-	100	-	mVpp
V _{RX,MaxIV,Man}	Maximum Input voltage, Manchester Coded	$AV_{DD} = 3 V$	-	4	-	Vpp

Figure 29 outlines the voltage definitions.

23.4 RX Input Sensitivity

Table 170: RX Input Sensitivity

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{RXMod,Man}$	Minimum modulation voltage	$AV_{DD} = 3 V$, RxGain = 7	-	5	-	mV

Figure 29 outlines the voltage definitions.

23.5 Clock Frequency

Table 171: Clock Frequency

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSCIN}	Clock Frequency		-	27.12	-	MHz
d _{FEC}	Duty Cycle of Clock Frequency		40	50	60	%
t _{jitter}	Jitter of Clock Edges		-	-	10	ps, RMS

112132 © NXP B.V. 2007. All rights reserved.

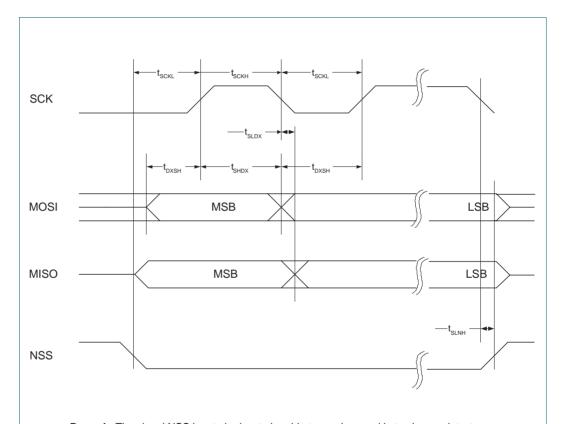
Contactless Reader IC

23.6 XTAL Oscillator

Table 172: XTAL Oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{OH,OSCOUT}$	Output Voltage High XTAL2		-	1.1	-	V
$V_{OL,OSCOUT}$	Output Voltage Low XTAL2		-	0.2	-	V
C _{IN,OSCOUT}	Input capacitance OSCOUT		-	2	-	pF
C _{IN,OSCIN}	Input capacitance OSCIN		-	2	-	pF

23.7 Typical 27.12 MHz Crystal Requirements


Table 173: XTAL Oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{XTAL}	XTAL Frequency Range		-	27.12	-	MHz
ESR	XTAL Equivalent Series resistance		-	-	100	Ω
C _L	XTAL Load capacitance		-	10	-	pF
P _{XTAL}	XTAL Drive Level		-	50	100	W

23.8 Timing for the SPI compatible interface

Table 174: Timing Specification for SPI

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SCKL}	SCK low pulse width		50		-	ns
t _{SCKH}	SCK high pulse width		50		-	ns
t _{SHDX}	SCK high to data changes		25		-	ns
t _{DXSH}	data changes to SCK high		25		-	ns
t _{SLDX}	SCK low to data changes		-		25	ns
t _{SLNH}	SCK low to NSS high		0		-	ns

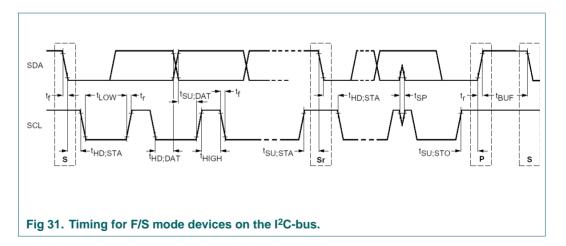
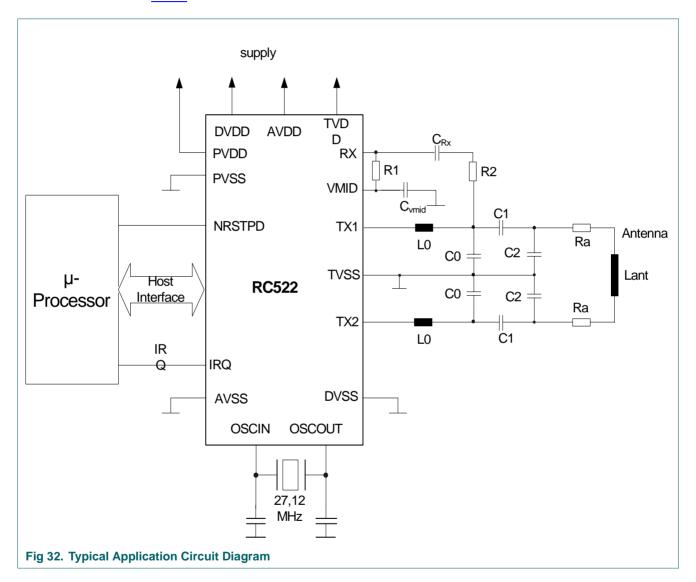

Remark: The signal NSS has to be low to be able to send several bytes in one datastream. To send more than one datastream NSS has to be set to HIGH level in between the data streams.

Fig 30. Timing Diagram for SPI.

23.9 I²C Timing

Table 175. Overview I²C Timing in Fast mode


Symbol	Parameter	Fast	mode	High spe	ed mode	Unit	
		Min	Max	Min	Max		
f _{SCL}	SCL clock frequency	0	400	0	3400	kHz	
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	600	-	160	-	ns	
t _{SU;STA}	Set-up time for a repeated START condition	600	-	160	-	ns	
t _{SU;STO}	Set-up time for STOP condition	600	-	160	-	ns	
t _{LOW}	LOW period of the SCL clock	1300	-	160	-	ns	
t _{HIGH}	HIGH period of the SCL clock	600	-	60	-	ns	
t _{HD;DAT}	Data hold time	0	900	0	70	ns	
t _{SU;DAT}	Data set-up time	100	-	10	-	ns	
t _{rscl}	Rise time SCL signals	20	300	10	40	ns	
t _{fscl}	Fall time SCL signals	20	300	10	40	ns	
t _{rsda}	Rise time of both SDA and SCL signals	20	300	10	80	ns	
t _{fsda}	Fall time of both SDA and SCL signals	20	300	10	80	ns	
t _{BUF}	Bus free time between a STOP and START condition	1.3	-	1.3	-	μS	

24. Application information

The figure below shows a typical circuit diagram, using a complementary antenna connection to the MFRC522.

The antenna tuning and RF part matching is described in the application note $\underline{\text{Ref. 1}}$ and $\underline{\text{Ref. 2}}$.

25. Package outline

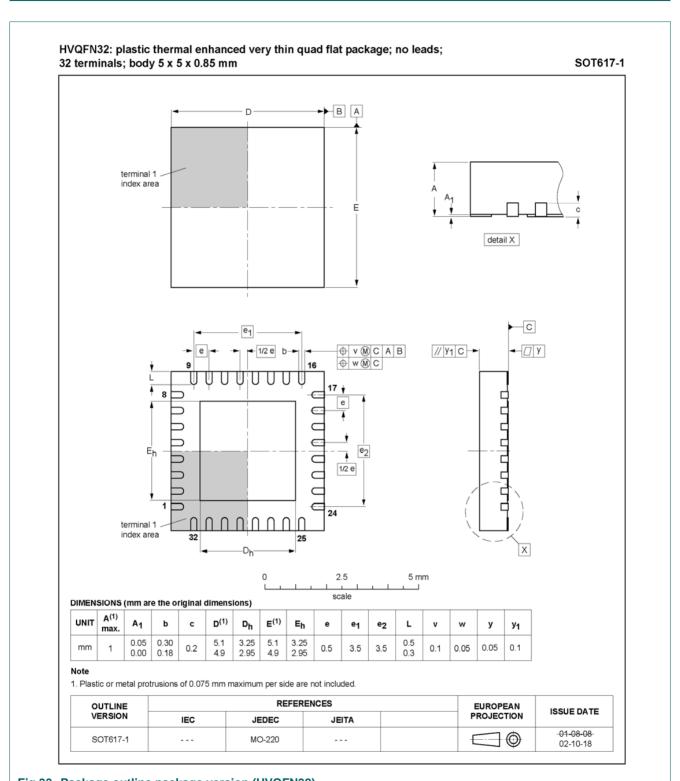
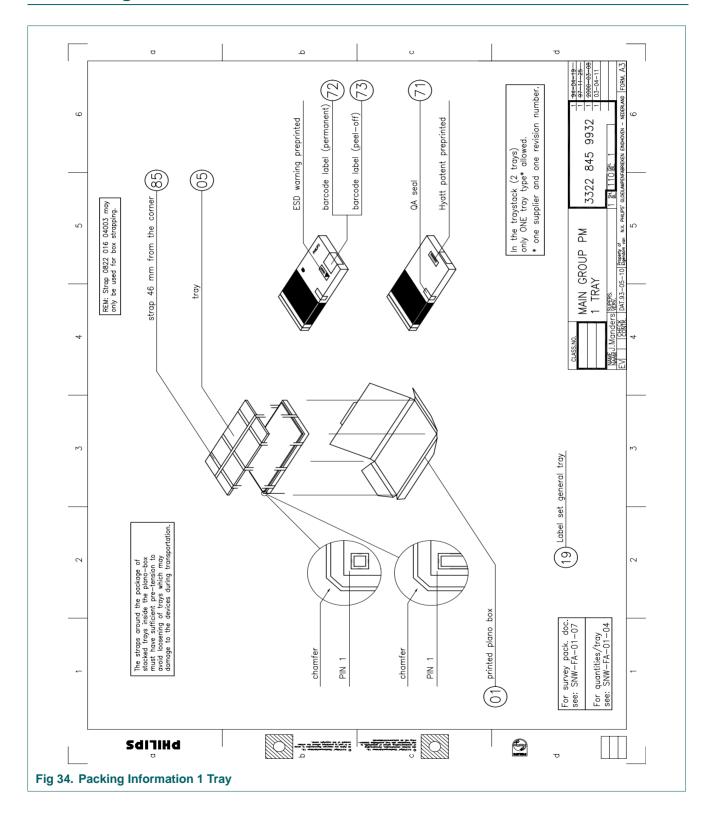
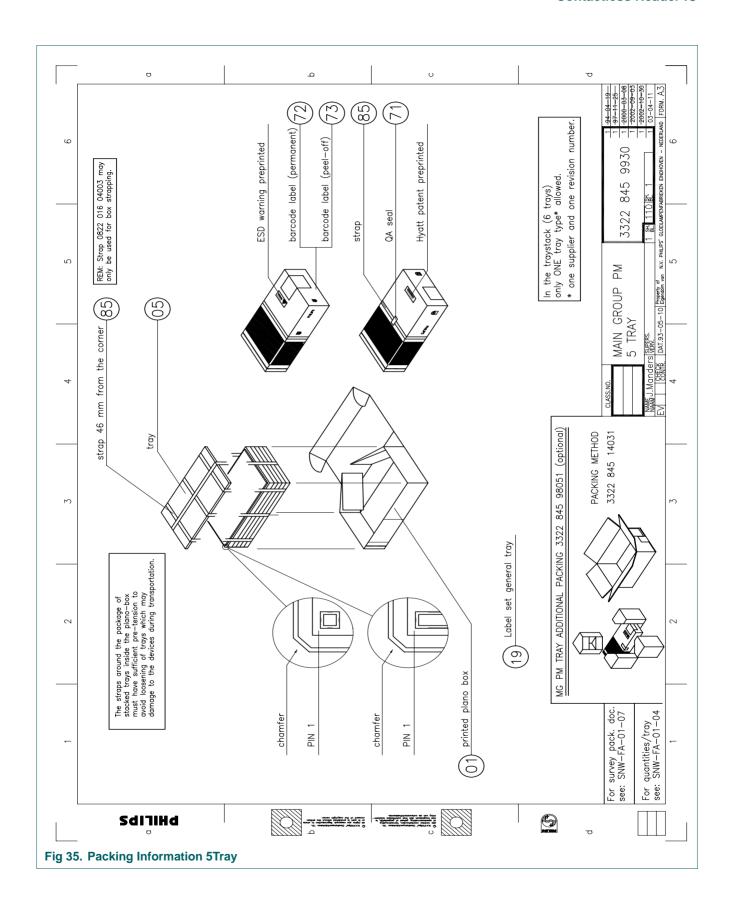


Fig 33. Package outline package version (HVQFN32)

<u>Detailed package information can be found on NXP Internet http://www.nxp.com/package/SOT617-1.html</u>


26. Handling information


Moisture Sensitivity Level (MSL) Evaluation has been performed according to SNW-FQ-225B rev.04/07/07 (JEDEC J-STD-020C). MSL for this package is level 1 which means 260 $^{\circ}$ C convection reflow temperature.

Dry pack is not required.

Unlimited out of pack Floor Life at maximum ambient 30 °C/85%RH.

27. Packing information

28. Abbreviations

Table 176: Abbreviations

Acronym	Description
ASK	Amplitude Shift keying
PCD	Proximity Coupling Device. Definition for a Card reader/writer according to the ISO/IEC 14443 specification.
PICC	Proximity Cards. Definition for a contactless Smart Card according to the ISO/IEC 14443 specification.
PCD Æ PICC	Communication flow between a PCD and a PICC according to the ISO/IEC 14443A/MIFARE®
PICCÆ PCD	Communication flow between a PICC and a PCD according to the ISO/IEC 14443A/MIFARE®.
Modulation Index	The modulation index is defined as the voltage ratio (Vmax - Vmin)/ (Vmax + Vmin).
Loadmodulation Index	The load modulation index is defined as the card's voltage ratio (Vmax - Vmin)/ (Vmax + Vmin) measured at the card's coil.

29. References

- [1] AN MFRC52x Reader IC Family Directly Matched Antenna Design Application note for Mifare MFRC52x Reader IC Antenna Design
- AN Mifare(14443A) 13,56 MHz RFID Proximity Antennas [2] Application note for Mifare Proximity Antenna Design

30. Revision history

Table 177: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes			
112132	Mai 2007	Product datasheet	200705005F		Revision 3.1			
		terface PIN order in <u>Table</u>	135 "Connection So	heme for detecting	the different Interface			
	Types"							
	 correction <u>Table 137</u> removed D0 from <u>Table 150</u>, <u>Table 151</u>, <u>Table 152</u>, <u>Table 153</u> 							
				<u>53</u>				
		2, 424, 848 kbaud from <u>Ta</u>						
		pical application circuit dia						
		answer for version reg. 9	Ih in <u>Section 19.1 "Se</u>	elftest" (see CPCN	•			
112131	September 2006				Revision 3.0			
		new NXP data sheet layo	ut					
		4 "Quick reference data"						
		ation up to 848 kbit/s						
	 Add notes to 	Table 3 "Pin description"						
	 Correction R 	RFU description in Table 6	"Behavior of Registe	er Bits and its Design	gnation"			
	 Correction a value: 00h" 	ccess rights of bits 6-4 an	d 2-0 in <u>Table 33 "Bit</u>	FramingReg regis	ter (address 0Dh); reset			
	 Correction D Types" 	TRQ to Output in Table 1	35 "Connection Sche	eme for detecting t	he different Interface			
	 Combined "A 	Absolute Maximum Rating	s" and "ESD Charac	teristics" in Section	n 20 "Limiting values"			
	 Renamed Ta 	able 161 "Input Pin charac	teristics for pin SDA"	and delete "V _{OL} a	ınd l _{OL} "			
112130	December 2005	Product data sheet			Revision 2.1			
	 Document s 	tatus changed to product	specification					
	 Change Ord 	ering Information Chapter	· <u>5</u>					
	 Add Handlin 	g Information Chapter 26						
	 Add Packing 	Information Chapter 27						
	 Add Test Sign 	nal Examples in Chapter	19.3					
112121	September 2005				Revision 2.0			
	TxSelReg -	bit DriverSel - combination	n 10					
112120	July 2005	Preliminary data shee			Revision 1.0			
		tatus chacnged to prelimin						
		e web-link (chapter 25)	iary opcomoditori					
		information (chapter 5)						
112110	July 2005	Objective data sheet			Revision 0.4			
112110		tatus changed to objective	a specification		TOVISION 0.4			
		various register description	-					
	SVDD Pin (c)	· · · · · · · · · · · · · · · · · · ·	io					
	•	••						
	<u>-</u>	e bit (chapter <u>9.2.1.14</u>)	tor 11 4)					
		MFOUT description (chap	ю <u>11.4</u>)					
110101	<u> </u>	ling corrections			D :: 00			
112104	November 2004				Revision 0.3			

Contactless Reader IC

Table 177: Revision history ...continued

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes	
 temporary remove type ordering information 						
	 changes in r 	egister description				
	 adaptation fi 	gure 22				
112103	October 2004					
	 changes in r 	egister description				

31. Legal information

31.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

31.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

31.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

31.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

MIFARE® — is a registered trademark of NXP B.V.

Contactless Reader IC

32. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: sales.addresses@www.nxp.com

Notes

33. Tables

Table 1.	Quick reference data3	
	Ordering information 4	Table 33: BitFramingReg register (address 0Dh); reset
Table 3:	Pin description	value: 00h
Table 4:	Communication overview for ISO/IEC	Table 34: Description of BitFramingReg bits 23
	14443A/MIFARE® reader/writer9	Table 35: CollReg register (address 0Eh); reset value:
Table 5:	MFRC522 Registers Overview11	XXh
Table 6:	Behavior of Register Bits and its Designation	Table 36: Description of CollReg bits23
	13	Table 37: Reserved register (address 0Fh); reset
Table 7:	Reserved register (address 00h); reset	value: 00h
	value: 00h	Table 38: Description of Reserved register bits 24
	Description of Reserved register bits 13	Table 39: Reserved register (address 10h); reset
Table 9:	CommandReg register (address 01h); reset	value: 00h
	value: 20h	Table 40: Description of Reserved register bits 24
	Description of CommandReg bits 14	Table 41: ModeReg register (address 11h); reset
Table 11	: CommlEnReg register (address 02h); reset	value: 3Fh
T. I. I. 40	value: 80h	Table 42: Description of ModeReg bits 25
	: Description of CommlEnReg bits 14	Table 43: TxModeReg register (address 12h); reset
Table 13	: DivIEnReg register (address 03h); reset	value: 00h
Toblo 14	value: 00h	Table 44: Description of TxModeReg bits 26
		Table 45: RxModeReg register (address 13h); reset
Table 15	: CommlRqReg register (address 04h); reset value: 14h16	value: 00h
Tahla 16	: Description of CommIRqReg bits 16	Table 46: Description of RxModeReg bits 26
	: DivIRqReg register (address 05h); reset	Table 47: TxControlReg register (address 14h); reset
Table 17	value: X0h17	value: 80h
Table 18	Description of DivIRqReg bits	Table 49: TxAutoReg register (address 15h); reset
	: ErrorReg register (address 06h); reset	value: 00h
14510 10	value: 00h	Table 50: Description of TxAutoReg bits 28
Table 20	: Description of ErrorReg bits 18	Table 51: TxSelReg register (address 16h); reset
	: Status1Reg register (address 07h); reset	value: 10h
	value: 21h	Table 52: Description of TxSelReg bits 28
Table 22	: Description of Status1Reg bits 19	Table 53: RxSelReg register (address 17h); reset
Table 23	: Status2Reg register (address 08h); reset	value: 84h
	value: 00h20	Table 54: Description of RxSelReg bits 29
	: Description of Status2Reg bits 20	Table 55: RxThresholdReg register (address 18h);
Table 25	:FIFODataReg register (address 09h); reset	reset value: 84h
	value: XXh	Table 56: Description of RxThresholdReg bits 30
	: Description of FIFOD at a Reg bits 21	Table 57: DemodReg register (address 19h); reset
Table 27	: FIFOLevelReg register (address 0Ah); reset	value: 4Dh
	value: 00h	Table 58: Description of DemodReg bits 30
Table 28	: Description of FIFOLevelReg bits21	Table 59: Reserved register (address 1Ah); reset
Table 29	: WaterLevelReg register (address 0Bh);	value: 00h
T-1-1 00	reset value: 08h	Table 60: Description of Reserved register bits 31
	Description of WaterLevelReg bits 22	Table 61: Reserved register (address 1Bh); reset
Table 31	: ControlReg register (address 0Ch); reset	value: 00h
Table 22	value: 10h	Table 62: Description of Reserved register bits 31
rable 32	: Description of ControlReg bits 22	Table 63: MfTxReg register (address 1Ch); reset value:
		62h

MFRC522

Contactless Reader IC

Table 64: Description of MifNFCReg bits31 Table 65: MfRxReg register (address 1Dh); reset	Table 98: Description of lower TReloadReg bits 38 Table 99: TCounterValReg (Higher bits) register
value: 00h	(address 2Eh); reset value: XXh 39 Table 100:Description of higher TCounterValReg bits.
Table 67: Reserved register (address 1Eh); reset	39
value: 00h	Table 101:TCounterValReg (Lower bits) register
Table 68: Description of Reserved register bits 32	(address 2Fh); reset value: XXh39
Table 69: SerialSpeedReg register (address 1Fh); reset value: EBh32	Table 102:Description of lower TCounterValReg bits . 39
Table 70: Description of SerialSpeedReg bits 32	Table 103:Reserved register (address 30h); reset
Table 71: Reserved register (address 20h); reset	value: 00h
value: 00h33	Table 104:Description of Reserved register bits 39
Table 72: Description of Reserved register bits 33	Table 105:TestSel1Reg register (address 31h); reset
Table 73: CRCResultReg register (address 21h); reset	value: 00h
value: FFh33	Table 106:Description of TestSel1Reg bits 40
Table 74: Description of CRCResultReg higher bits 33 Table 75: CRCResultReg register (address 22h); reset	Table 107: TestSel2Reg register (address 32h); reset value: 00h
value: FFh33	Table 108:Description of TestSel2Reg bits 40
Table 76: Description of CRCResultReg lower bits . 33	Table 109:TestPinEnReg register (address 33h); reset
Table 77: Reserved register (address 23h); reset	value: 80h41
value: 88h34	Table 110:Description of TestPinEnReg bits 41
Table 78: Description of Reserved register bits 34	Table 111: TestPinValueReg register (address 34h);
Table 79: ModWidthReg register (address 24h); reset	reset value: 00h
value: 26h	Table 112:Description of TestPinValueReg bits 41
Table 80: Description of ModWidthReg bits 34	Table 113: TestBusReg register (address 35h); reset
Table 81: Reserved register (address 25h); reset	value: XXh
value: 87h	Table 114:Description of TestBusReg bits42
Table 82: Description of Reserved register bits 34	Table 115: AutoTestReg register (address 36h); reset
Table 83: RFCfgReg register (address 26h); reset	value: 40h
value: 48h	Table 116:Description of AutoTestReg bits 42
Table 84: Description of RFCfgReg bits35	Table 117: VersionReg register (address 37h); reset value: XXh
Table 85: GsNReg register (address 27h); reset value: 88h	Table 118:Description of VersionReg bits 42
Table 86: Description of GsNOnReg bits	Table 119: AnalogTestReg register (address 38h);
Table 87: CWGsPReg register (address 28h); reset	reset value: 00h
value: 20h	Table 120:Description of AnalogTestReg bits 43
Table 88: Description of CWGsPReg bits 36	Table 121: TestDAC1Reg register (address 39h); reset
Table 89: ModGsPReg register (address 29h); reset	value: XXh
value: 20h	Table 122:Description of TestDAC1Reg bits 44
Table 90: Description of ModGsPReg bits 36	Table 123:TestDAC2Reg register (address 3Ah); reset
	value: XXh
Table 91: TModeReg register (address 2Ah); reset value: 00h37	Table 124:Description ofTestDAC2Reg bits 44
Table 92: Description of TModeReg bits 37	Table 125: TestADCReg register (address 3Bh); reset
Table 93: TPrescalerReg register (address 2Bh); reset	value: XXh
value: 00h	Table 126:Description of TestADCReg bits 44
Table 94: Description of TPrescalerReg bits 37	Table 127: Reserved register (address 3Ch); reset
Table 95: TReloadReg (Higher bits) register (address	value: FFh
2Ch); reset value: 00h	Table 128:Description of Reserved register bits 45
Table 96: Description of higher TReloadReg bits 38	Table 129:Reserved register (address 3Dh); reset
Table 97: TReloadReg (Lower bits)register (address	value: 00h
2Dh); reset value: 00h	Table 130:Description of Reserved register bits 45

NXP Semiconductors

MFRC522

Contactless Reader IC

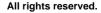
Table 131: Reserved register (address 3Eh); reset	
value: 03h	45
Table 132:Description of Reserved register bits	45
Table 133:Reserved register (address 3Fh); reset	
value: 00h	
Table 134:Description of Reserved register bits	45
Table 135:Connection Scheme for detecting the	
different Interface Types	46
Table 136:Byte Order for MOSI and MISO	47
Table 137:Byte Order for MOSI and MISO	48
Table 138. Address byte 0 register; address MOSI.	48
Table 139:Settings of BR_T0 and BR_T1	49
Table 140:Selectable transfer speeds	
Table 141:UART Framing	
Table 142:Byte Order to Read Data	
Table 143:Byte Order to Write Data	
Table 144.Address byte 0 register; address MOSI.	
Table 145:Settings for TX1	61
Table 146:Settings for TX2	62
Table 147:CRC co-processor parameters	
Table 148:Interrupt Sources	
Table 149:Command overview	
Table 150:TestSel2Reg register (address 07h)	
Table 151:Description of Testsignals	
Table 152:TestSel2Reg register (address 0Dh)	
Table 153:Description of Testsignals	
Table 154:Testsignals description	
Table 155.Limiting values	83
Table 156:Operating conditions	
Table 157:Thermal characteristics	83
Table 158:Input Pin characteristics for pins EA, I2C	
and NRESET	84
Table 159:Input Pin characteristics for MFIN	
Table 160:Input/Output Pin characteristics for pins I	
D2, D3, D4, D5, D6 and D7	
Table 161:Input Pin characteristics for pin SDA	
Table 162:Output Pin characteristics for Pin MFOU	١.
85 Table 163: Output Die abaracteristies for Die IDO	0.E
Table 163: Output Pin characteristics for Pin IRQ	
Table 164: Input Pin characteristics for Pin Rx	
Table 165: Input Pin characteristics for OSCIN	85
Table 166: Output Pin characteristics for Pins AUX	oe I
and AUX2 Table 167: Output Pin characteristics for Pins TX1 a	90
TX2Table 168: Current Consumption	00
Table 166: Current Consumption	
Table 170: RX Input Voltage Range	00 00
Table 170. RX Input Sensitivity	QΩ
Table 171: Clock Frequency	
Table 172. XTAL Oscillator Table 173: XTAL Oscillator	

Table 174: Timing Specification for SPI	90
Table 175. Overview I2C Timing in Fast mode	91
Table 176:Abbreviations	97
Table 177:Revision history	98

Contactless Reader IC

34. Figures

Fig		Simplified MFRC522 Block diagram 5
Fig		MFRC522 Block diagram
Fig	3.	Pinning configuration HVQFN32 (SOT617-1).
Fig		MFRC522 Reader/Writer mode 9
Fig	5.	ISO/IEC 14443A/MIFARE® Reader/Writer
		mode communication diagram9
Fig	6.	Data Coding and framing according to
		ISO/IEC 14443A10
Fig	7.	Connection to host with SPI 47
	8.	Connection to m-Controllers with UART48
		Schematic Diagram to Read Data50
		Schematic Diagram to Write Data 51
Fig	11.	I2C interface52
		Bit transfer on the I2C-bus53
		START and STOP conditions53
		Acknowledge on the I2C- bus 54
Fig	15.	Data transfer on the I2C- bus55
Fig	16.	First byte following the START procedure 56
		Register Read and Write Access57
		I2C HS mode protocol switch 58
		I2C HS mode protocol frame 59
		Serial data switch for TX1 and TX2 63
		Overview MFIN/MFOUT Signal Routing 64
		Ouartz Connection
Fig	23.	Oscillator Startup time
Fig	24.	Output TestDAC 1 on AUX1 and TestDAC 2 on
	0.5	AUX279
Fig	25.	Output Testsignal Corr1 on AUX1 and
	00	MinLevel on AUX2
Fig	26.	Output ADC channel I on AUX 1 and ADC
- : ~:	27	channel Q on AUX 2
Fig	21.	Output RxActive on AUX 1 and TxActive on AUX 281
Fia	28	Output Rx data stream on AUX 1 and AUX 2.
ııg	20.	82
Fia	29	RX Input Voltage Range
Fig	30	Timing Diagram for SPI
Fin	31	Timing for F/S mode devices on the I2C-bus.
1 19	01.	91
Fig	32.	Typical Application Circuit Diagram 92
		Package outline package version (HVQFN32)
		93
Fig	34.	Packing Information 1 Tray 95
Fig	35.	Packing Information 5Tray96


Contactless Reader IC

35. Contents

1	Introduction	. 1	9.2.2.1	0DemodReg	30
2	General description	. 1	9.2.2.1	1Reserved	31
3	Features	. 1	9.2.2.1	2Reserved	31
4	Quick reference data	. 3	9.2.2.1	3MfTxReg	31
5	Ordering information	. 4	9.2.2.1	4MfRxReg	32
6	Block diagram	. 5	9.2.2.1	5Reserved	32
7	Pinning information	. 7	9.2.2.1	6SerialSpeedReg	32
7.1	Pinning	. 7	9.2.3	Page 2: Configuration	33
7.2	Pin description	. 7	9.2.3.1	Reserved	33
8	Functional description	. 9		CRCResultReg	
9	MFRC522 Register SET	11	9.2.3.3	Reserved	34
9.1	MFRC522 Registers Overview	11	9.2.3.4	ModWidthReg	34
9.1.1	Register Bit Behavior	13	9.2.3.5	Reserved	34
9.2	Register Description	13	9.2.3.6	RFCfgReg	35
9.2.1	Page 0: Command and Status	13	9.2.3.7	GsNReg	35
9.2.1.1	Reserved	13	9.2.3.8	CWGsPReg	36
9.2.1.2	CommandReg	13	9.2.3.9	ModGsPReg	36
9.2.1.3	CommlEnReg	14	9.2.3.1	0TMode Register, TPrescaler Register	37
9.2.1.4	DivlEnReg	16	9.2.3.1	1TReloadReg	38
9.2.1.5	CommlRqReg	16	9.2.3.1	2TCounterValReg	
9.2.1.6	DivIRqReg	17	9.2.4	•	
9.2.1.7	ErrorReg	18	9.2.4.1	Reserved	39
9.2.1.8	Status1Reg	19		TestSel1Reg	
9.2.1.9	Status2Reg	20		TestSel2Reg	
9.2.1.1	0FIFODataReg	21		TestPinEnReg	
9.2.1.1	1FIFOLevelReg	21		TestPinValueReg	
9.2.1.1	2WaterLevelReg	21	9.2.4.6	TestBusReg	42
9.2.1.1	3ControlReg	22	9.2.4.7	AutoTestReg	42
	4BitFramingReg			VersionReg	
	5CollReg	23		AnalogTestReg	
9.2.1.1	6Reserved	24		0TestDAC1Reg	
9.2.2	Page 1: Communication			1TestDAC2Reg	
	Reserved			2TestADCReg	
	ModeReg			3Reserved	
9.2.2.3	TxModeReg	25	10	DIGITAL Interfaces	46
9.2.2.4	RxModeReg	26	10.1	Automatic m-Controller Interface Type	
9.2.2.5	TxControlReg	27			46
9.2.2.6	TxASKReg	28	10.2	•	46
9.2.2.7	TxSelReg	28			47
	RxSelReg	29			47
9.2.2.9	RxThresholdReg	30	10.2.3	Write data	48

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by

NXP Semiconductors

MFRC522

Contactless Reader IC

10.2.4	Address byte	48	18.2	General Behavior	72
10.3	UART Interface	48	18.3	MFRC522 Commands Overview	72
10.3.1	Connection to a host	48	18.3.1	MFRC522 Command Description	73
10.3.2	Selection of the transfer speeds	49	18.3.1.	1Idle Command	73
10.3.3	Framing	50	18.3.1.	2Mem Command	73
10.4	I2C Bus Interface	52	18.3.1.	3Generate RandomID Command	73
10.4.1	General	52	18.3.1.	4CalcCRC Command	73
10.4.2	Data validity	53	18.3.1.	5Transmit Command	73
10.4.3	START and STOP conditions	53	18.3.1.	6NoCmdChange Command	73
10.4.4	Byte format	54	18.3.1.	7Receive Command	74
10.4.5	Acknowledge	54	18.3.1.	8Transceive Command	74
10.4.6	7-BIT ADDRESSING	55	18.3.1.	9MFAuthent Command	74
10.4.7	Register Write Access	56	18.3.1.	10SoftReset Command	75
10.4.8	Register Read Access	57	19	Testsignals	
10.4.9	HS mode	58	19.1	Selftest	76
	High Speed Transfer		19.2	Test bus	
10.4.11	Serial Data transfer Format in HS mode	58	19.3	Testsignals at pin AUX	77
10.4.12	2Switching from F/S to HS mode and Vice Ve 60	ersa	19.3.1	Example: Output TestDAC 1 on AUX1 and TestDAC 2 on AUX2	79
10.4.13	BMFRC522 at Lower Speed modes	60	19.3.2	Example: Output Testsignal Corr1 on AUX1	
11	Analog Interface and Contactless UART	61		and MinLevel on AUX2	
11.1	General	61	19.3.3	Example: Output ADC channel I on AUX 1 ar	
11.2	TX Driver	61	4004	ADC channel Q on AUX 2	80
11.3	Serial Data Switch	63	19.3.4	Example: Output RxActive on AUX 1 and TxActive on AUX 2	Ω1
11.4	MFIN/MFOUT interface support	63	1035	Example: Output Rx Data Stream on AUX 1	
11.5	CRC co-processor		19.5.5	and AUX 2	
12	FIFO Buffer		19.4	PRBS (Pseudo-Random Binary Sequence)	
12.1	Overview		20	Limiting values	
12.2	Accessing the FIFO Buffer	65	21	Recommended operating conditions	
12.3	Controlling the FIFO-Buffer		22	Thermal characteristics	
12.4	Status Information about the FIFO-Buffer .		23	Characteristics	
13	Timer Unit	67	23.1	Input Pin Characteristics	
14	Interrupt Request System		23.1.1	Input Pin characteristics for pins EA, I2C and	
15	Oscillator Circuitry	69		NRESET	<u>.</u> 84
16	Power Reduction modes	70	23.1.2	Input Pin characteristics for pin MFIN	
16.1	Hard Power-down		23.1.3	Input/Output Pin characteristics for pins D1,	
16.2	Soft Power-down				84
16.3	Transmitter Power-down		23.1.4	Input Pin characteristics for pin SDA	84
17	Reset and Oscillator Startup Time		23.1.5	Output Pin characteristics for Pin MFOUT	85
17.1	Reset Timing Requirements		23.1.6	Output Pin characteristics for Pin IRQ	85
17.2	Oscillator Startup Time		23.1.7	Input Pin characteristics for Pin Rx	85
18	MFRC522 Command Set		23.1.8	Input Pin characteristics for pin OSCIN	85
18.1	General Description	72			

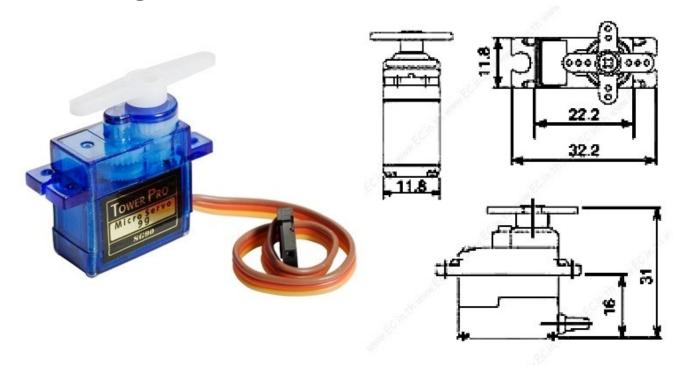
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007. All rights reserved.

Date of release: 22 May 2007 Document identifier: 112132

Contactless Reader IC

23.1.9	Output Pin characteristics for Pins AUX1 ar AUX2	
23.1.10	Output Pin characteristics for Pins TX1 and TX2	86
23.2	Current Consumption	87
23.3	RX Input Voltage Range	88
23.4	RX Input Sensitivity	88
23.5	Clock Frequency	88
23.6	XTAL Oscillator	89
23.7	Typical 27.12 MHz Crystal Requirements.	89
23.8	Timing for the SPI compatible interface	90
23.9	I2C Timing	91
24	Application information	92
25	Package outline	93
26	Handling information	94
27	Packing information	95
28	Abbreviations	97
29	References	97
30	Revision history	98
31	Legal information	00
31.1	Data sheet status 1	00
31.2	Definitions	00
31.3	Disclaimers	00
31.4	Trademarks	00
32	Contact information	01
33	Tables	03
34	Figures	06
35	Contents	07


Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

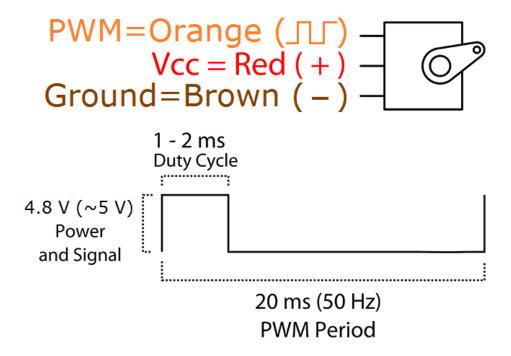
founded by

SG90 9 g Micro Servo

Tiny and lightweight with high output power. Servo can rotate approximately 180 degrees (90 in each direction), and works just like the standard kinds but *smaller*. You can use any servo code, hardware or library to control these servos. Good for beginners who want to make stuff move without building a motor controller with feedback & gear box, especially since it will fit in small places. It comes with a 3 horns (arms) and hardware.

Specifications

• Weight: 9 g


• Dimension: 22.2 x 11.8 x 31 mm approx.

• Stall torque: 1.8 kgf·cm

Operating speed: 0.1 s/60 degree
Operating voltage: 4.8 V (~5V)

• Dead band width: 10 μs

• Temperature range: 0 °C – 55 °C

Position "0" (1.5 ms pulse) is middle, "90" (\sim 2 ms pulse) is all the way to the right, "-90" (\sim 1 ms pulse) is all the way to the left.

Systronix 20x4 LCD Brief Technical Data

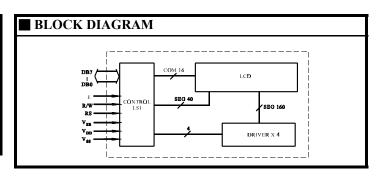
July 31, 2000

Here is brief data for the Systronix 20x4 character LCD. It is a DataVision part and uses the Samsung KS0066 LCD controller. It's a clone of the Hitachi HD44780. We're not aware of any incompatabilities between the two - at least we have never seen any in all the code and custom applications we have done.

This 20x4 LCD is electrically and mechanically interchangeable with 20x4 LCDs from several other vendors. The only differences we've seen among different 20x4 LCDs are:

- 1) LED backlight brightness, voltage and current vary widely, as does the quality of the display
- 2) There is a resistor "Rf" which sets the speed of the LCD interface by controlling the internal oscillator frequency. Several displays we have evaluated have a low resistor value. This makes the display too slow. Looking at the Hitachi data sheet page 56, it appears that perhaps the "incorrect" resistor is really intended for 3V use of the displays.

At 5V the resistor Rf should be 91 Kohms. At 3V it should be 75 Kohms. Using a 3V display at 5V is acceptable from a voltage standpoint (the display can operate on 3-5V) but the oscillator will then be running too slowly. One fix is to always check the busy flag and not use a fixed time delay in your code, then it will work regardless of the LCD speed. The other option is to always allow enough delay for the slower display.


All Systronix 20x4 LCDs have the 91 Kohm resistor and are intended for 5V operation.

Thank you for purchasing Systronix embedded control products and accessories. If you have any other questions please email to support@systronix.com or phone +1-801-534-1017, fax +1-801-534-1019.

ABSOLUTE MAXIMUM RATINGS											
		Sta									
Item	Symbol	Min.	Тур.	Max.	Unit						
Supply Voltage for Logic	V_{DD}	0	_	7.0	V						
Supply Voltage for LCD Driver	V_{DD} - V_{EE}	l	_	13.5	V						
Input Voltage	V_{I}	V_{ss}	_	V_{DD}	V						
Operature Temp.	Topr	0	_	50	°C						
Storage Temp.	Tstg	-20	_	70	°C						

■ ELECTRICAL CHARACTERISTICS (REFLECTIVE TYPE)											
		Test	Sta	andard V	'alue						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit					
Input "High" Voltage	V_{IH}	-	2.2	ı	V_{EE}	V					
Input "Low" Voltage	$V_{\rm IL}$	-	1	ı	0.6	V					
Output "High" Voltage	V _{OH}	I_{OH} =0.2mA	2.2		_	V					
Output "Low" Voltage	V_{OL}	I_{OL} =1.2mA	_		0.4	V					
Supply Current	I_{DD}	$V_{DD}=5.0A$	I	2.5	4.0	mA					

■ PIN FUNCTIONS											
No	Symbol	Function	No	Symbol	Function						
1	V_{SS}	GND, 0V	10	DB3	Data Bus						
2	V_{DD}	+5V	11	DB4	-						
3	V_{EE}	for LCD Drive	12	DB5	-						
4	RS	Function Select	13	DB6	-						
5	R/W	Read/Write	14	DB7	-						
6	Е	Enable Signal	15	LEDA	LED Bower Cumply						
7-9	DB0-DB2	Data Bus Line	16	LEDA	LED Power Supply						

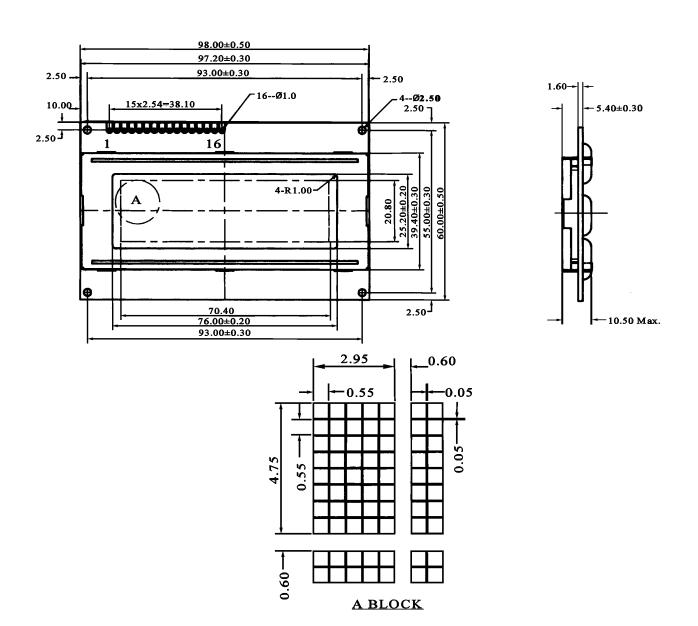


Table 4 Correspondence between Character Codes and Character Patterns (ROM Code: A00)

Lower Bits 4 Bits		0001	0010				0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)						*•	F				*****	-9	<u>.</u>		
xxxx0001	(2)		i	1			-==	-=-			13	ŗ	# -	Ľ.	-==	
xxxx0010	(3)		11	2				F "-			i"	-1	ij	;:: '		
xxxx0011	(4)		#	.3	i		!	≝.			.4	7	Ţ	モ	₩.	::::
xxxx0100	(5)		#	4				ŧ.			•	II.	ŀ.	# .	 	===
xxxx0101	(6)		*:				₩	11			-	7	;	.: <u>1</u>		
xxxx0110	(7)		8			Ļ	₩.	i,,i			7	#				===
xxxx0111	(8)		7	","		lul	-	ijj			77	#	37			Ħ
xxxx1000	(1)		€.			×	ŀ	×			ď	-::	:	ļ.	.,!"	≋
xxxx1001	(2))		I	4	i	'i			÷	-"]	J	ij	[<u>.</u>
xxxx1010	(3)		:#:	ä	L.T	<u></u>	i	=			<u>.T.</u>	!	ı i	į.·		===
xxxx1011	(4)			:	K		k	ť			才	#	!		**] =
xxxx1100	(5)		:		L		I.				†?	=;		","	4.	FF
xxxx1101	(6)						i"i	}			.1.	ズ	·*•		ŧ	
xxxx1110	(7)					"	l"i	-#-			=			•••	F"1	
xxxx1111	(8)						====	-			111	•!	₩.			

Note: The user can specify any pattern for character-generator RAM.

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to Figures 25 and 26 for the procedures on 8-bit and 4-bit initializations, respectively.

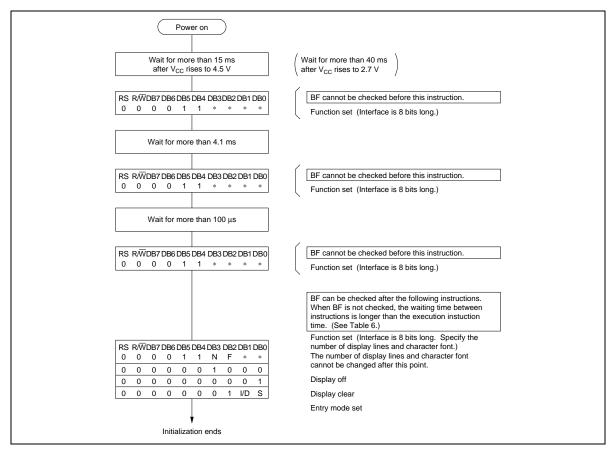


Figure 25 8-Bit Interface

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD44780U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 10 ms after V_{cc} rises to 4.5 V.

- 1. Display clear
- 2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

F = 0; 5×8 dot character font

- 3. Display on/off control:
 - D = 0; Display off
 - C = 0; Cursor off
 - B = 0; Blinking off
- 4. Entry mode set:

I/D = 1; Increment by 1

S = 0; No shift

Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD44780U. For such a case, initial-ization must be performed by the MPU as explained in the section, Initializing by Instruction.

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD44780U can be controlled by the MPU. Before starting the internal operation of the HD44780U, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD44780U is determined by signals sent from the MPU. These signals, which include register selection signal (RS), read/

write signal (R/\overline{W}) , and the data bus (DB0 to DB7), make up the HD44780U instructions (Table 6). There are four categories of instructions that:

- Designate HD44780U functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However, auto-incrementation by 1 (or auto-decrementation by 1) of internal HD44780U RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (Table 11) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD44780U is not in the busy state (BF = 0) before sending an instruction from the MPU to the HD44780U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Table 6 for the list of each instruction execution time.

Table 6 Instructions

Code							Execution Time (max) (when f _{cp} or					
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 270 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	
Return home	0	0	0	0	0	0	0	0	1	_	Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.52 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 μs
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	37 μs
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	_	_	Moves cursor and shifts display without changing DDRAM contents.	37 μs
Function set	0	0	0	0	1	DL	N	F	_	_	Sets interface data length (DL), number of display lines (N), and character font (F).	37 μs
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	37 μs
Set DDRAM address	0	0	1	ADD	ADD	ADD	ADD	ADD	ADD	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	37 μs
Read busy flag & address	0	1	BF	AC	AC	AC	AC	AC	AC	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 µs

 Table 6
 Instructions (cont)

	Code									Execution Time (max) (when f_{cp} or f_{csc} is 270 kHz)		
Instruction	RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 De						Descripti	on				
Write data to CG or DDRAM	1	0	Write	data						Writes da CGRAM.	ta into DDRAM or	37 μs $t_{ADD} = 4 \ \mu s^*$
Read data from CG or DDRAM	1	1	Read	l data						Reads da CGRAM.	ta from DDRAM or	37 μs t _{ADD} = 4 μs*
	S/C R/L R/L DL N F BF BF	= 1: = 0: = 1: = 0: = 1:	Displ Curso Shift Shift 8 bits 2 line 5 × 1 Interr Instru	ement mpan ay shi or mo to the to the s, DL = ss, N = 0 dots nally o	ies disift ve right left = 0: 4 = 0: 1 s, F = peratiss acce	line 0: 5×	8 dots	6		ACG: ADD: (corr addi AC: Add both	Display data RAM Character generator RAM CGRAM address DDRAM address responds to cursor ress) ress counter used for DD and CGRAM resses	Execution time changes when frequency changes Example: When f_{cp} or f_{OSC} is 250 kHz, $37 \mu s \times \frac{270}{250} = 40 \mu s$

Note: — indicates no effect.

* After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In Figure 10, t_{ADD} is the time elapsed after the busy flag turns off until the address counter is updated.

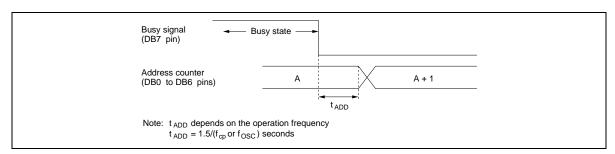


Figure 10 Address Counter Update