BAB II TINJAUAN PUSTAKA

2.1 Definisi Robot

Istilah robot berasal dari bahasa Cekoslowakia. Kata robot berasal dari kosakata "Robota" yang berarti "kerja cepat". Istilah ini muncul pada tahun 1921 oleh seorang pengarang sandiwara bernama Karel Capec. Karyanya pada saat itu berjudul "Rossum's Universal Robots" yang artinya Robot Dunia milik Rossum.

Robotik adalah ilmu yang mematerikan kecerdasan atau itelegensia terhadap nergi, artinya pengendalian secara cerdas terhadap gerakan yang terkoordinasi secara nyata. Kata Robotics juga berasal dari novel fiksi sains "Runaround" yang ditulis oleh Isaac Asimov pada tahun 1942. Sedangkan pengertian robot secara tepat adalah sistem atau alat yang dapat berperilaku atau meniru perilaku manusia dengan tujuan untuk menggantikan dan mempermudah kerja/aktifitas manusia. Untuk dapat diklasifikasikan sebagai robot, mesin harus memiliki dua macam kemampuan yaitu bisa mendapatkan informasi dari sekelilingnya dan bisa melakukan sesuatu secara fisik seperti bergerak atau memanipulasi objek (Christian, 2009).

- Menurut Japanese Industrial Robot Association (JIRA) robot diklasifikasikan menjadi 5 (lima) bagian (Suwito, 2009) yaitu :
 - 1. Play-back Robot, adalah robot yang menjalankan fungsi-fungsi berulang yang telah direkamkan kepadanya, biasanya memiliki sistem kontrol open loop.
 - 2. Robots controlled by sensors, adalah robot yang memiliki loopback yang diakibatkan oleh gerakan dan membuat keputusan berdasarkan data yang diperoleh dari sensor.
 - 3. Robot Vision adalah robot yang informasi diproleh dari sistem vision, dimana robot dapat memanipulasi objek yang ditangkap.
 - 4. Robot controlled adaptably adalah robot yang dapat secara otomatis memprogram aksinya sendiri berdasarkan data yang diperoleh dari sensor.

 Intelligent Robot, yaitu robot yang menggunakan teknik artificial intelligence untuk membuat keputusan dan mampu memecahkan permasalahannya sendiri.

2.2 Android

Android merupakan sebuah sistem operasi yang berbasis Linux untuk perangkat portabel seperti *smartphone* dan komputer tablet. Android menyediakan platform (*Open Sorce*) bagi programer untuk mengembangkan aplikasi sendiri pada berbagai perangkat dengan sistem android. Simbol android dapat dilihat pada gambar berikut ini :

Gambar 2.1 Logo Android

Dimana pada awalnya GoogleInc. Membeli Android Inc., pendatang baru yang membuat peranti lunak untuk ponsel. Kemudian untuk mengembangkan Android, dibentuklah Open Handset Alliance, Konsorsium dari 34 perusahaan peranti keras, peranti lunak, dan telekomunikasi, termasuk Google, HTC, Intel, Motorola, Qualcomm, T-Mobile, dan Nvidia.

Pada saat perilisan perdana Android pada tanggal 5 November 2007, Android bersama Open Handset Alliance menyatakan mendukung pengembangan standar terbuka pada perangkat seluler. Di lain pihak, Google merilis kode-kode Android dibawah lisensi Apche, sebuah lisensi perangkat lunajk dan standar terbuka perangkat selular. Terdapat dua jenis distributor sistem operasi Android. Pertama yang dapat didukungan penuh dari Google atau Google Mail Service

Sumber : http://www.vaccines.mil/image/VHC/Logo_Andropid.jpg

(GMS) dan kedua adalah yang benar-benar bebas distribusinya tanpa dukungan langsung dari Google atau dikenal sebagai Open Handset Distribution (DHD).

Berikut ini adalah macam-macam Versi Android yang dapat mendukung kerja alat yaitu :

- a. Android Versi 1.5 (Cupcake)
- b. Android Versi 1.6 (Donut)
- c. Android Versi 2.1 (Eclair)
- d. Android Versi 2.2 (Froyo: Frozen Yogurt)
- e. Android Versi 2.3 (Gingerbread)
- f. Android Versi 3.0 (Honeycomb)
- g. Android Versi 4.0 (Ice Cream Sandwich)
- h. Android Versi 4.1 (Jelly Bean)

2.3 Android Software Development Kit (SDK)

Android SDK merupakan sebuah tool dan alat bantu API (*Aplication Programming Interface*) yang diperlukan untuk mengembangkan aplikasi berbasis Android yang menggunakan bahasa Java. SDK juga sering disebut sebagai Software emulator yang berguna untuk mensimulasikan OS Android Pada PC baik itu untuk OS windows, Linux maupun Mac. SDK Android berisi Deugger, Library, emulator, dokumentasi, contoh kode program dan tutorial. SDK Android adalah mesin utama untuk melakukan efesiensi penginstallan. Bahkan tidak perlu melakukan penempatan folder penginstallan dari masing-masing file yang diperlukan dalam mengembangkan Android. (Sumber : Akbarul, Arif. 2012. 24 Jam Pintar Pemograman Android. Yogyakarta : C.V Andi Offset) Berikut ini merupakan gambar tampilan SDK Manager :

ackages Tools				
DK Path: C:\Users\RIO\Documents\Downloads\Compresse Packages	d\android-sd	k_r14-wir	ndows\android-sdk-windows\	
🐐 Name	API	Rev.	Status	
A Tools				
Android SDK Tools		14	anstalled	
🔽 🙀 Android SDK Platform-tools			Not installed	
> [] (a) Android 4.0 (API 14)				
Image: Marcel Marcel Marcel (API 13)				
> = Android 3.1 (API 12)				
Im (a) Android 3.0 (API 11)				
Em (a) Android 2.3.3 (API 10)				
Image: Marcel Android 2.2 (API8)				
Image: Marcel Marcel (API 7)				
E (a) Android 1.6 (API 4)				
Image: Marcel 1.5 (API 3)				
a 📝 🧰 Extras			1991	
📝 🚱 Android Support package			Not installed	
19 BB Google Admoh Adr Sdk narkane			A Not installed	
how: Vpdates/New VInstalled Obsolete Sele	ct New/Upda	tes	Install 7 pa	ckages
art hur @ API level @ Renositony Dec	alact All		Delete par	kaner
of by Artiever O Repository	elect All		Delete pac	kages

Gambar 2.2 Tampilan SDK Manager

(Sumber : Akbarul, Arif. 2012. 24 Jam Pintar Pemograman Android. Yogyakarta : C.V Andi Offset)

Pada Aplikasi Android SDK Manager kita dapat memiliki platform mana yang akan diinstal pada computer kita. Perlu diketahui bahwa proses instalasi platform android membutuhkan koneksi jaringan internet. Untuk memulai menjalankan proses simulasi android OS pada komputer dapat memilih Tool kemudian Manage AVDs. Sehingga muncul tampilan seperti pada gambar berikut:

Tools					
ist of existing And	droid Virtual Devices located a	t C:\Users\heyang\.and	roid\avd		
AVD Name	Target Name	Platform	API Level	CPU/ABI	New
✓ MyAVD	Android 4.0.3	4.0.3	15	ARM (armeabi-v7a)	Edit
					Delete.
					Repair
					Details
					Start.
					Refres

Gambar 2.3 Android Virtual Device Manager (Sumber : Akbarul, Arif. 2012. 24 Jam Pintar Pemograman Android. Yogyakarta : C.V Andi Offset)

Gambar 2.4 merupakan proses menjalankan emulator android untuk dijalankan di komputer. Emulator yang digunakan saat ini adalah emulator 5554, emulator 5554 tidak dapat mengakses perangkat keras seperti wifi, *Bluetooth*, keyboard maupun sound. Untuk lebih jelas perhatikan gambar emulator 5554 dibawah ini :

Gambar 2.4 Antarmuka Android Emulator

(Sumber : Akbarul, Arif. 2012. 24 Jam Pintar Pemograman Android. Yogyakarta : C.V Andi Offset)

2.4 Sejarah *Bluetooth*

Bluetooth adalah spesifikasi industri untuk jaringan kawasan pribadi (personal area networks atau PAN) tanpa kabel. Bluetooth menghubungkan dan dapat dipakai untuk melakukan tukar-menukar informasi di antara peralatan-peralan. Spesifikasi dari peralatan Bluetooth ini dikembangkan dan didistribusikan oleh kelompok Bluetooth Special interest Group. Bluetooth beroperasi tranceiver yang mampu menyediakan layanan komunikasi data dan suara secara real time antara host-host Bluetooth dengan jarak terbatas. Kelemahan teknologi ini adalah jangkauannya yang pendek dan kemampuan transfer data yang rendah.

Nama "*Bluetooth*" berasal dari nama raja akhir abad sepuluh, Harald Blatand (Abad 10) yang di Inggris juga dijuluki Harald Bluetooth *Bluetooth* kemungkinan karena memang giginya bewarna gelap. Ia adalah raja Denmark yang telah berhasil menyatukan suku-suku yang sebelumnya berperang, termasuk suku dari wilayah sekarang bernama Norwegia dan Swedia. Bahkan wilayah Scania di Swedia, tempat teknologi *bluetooth* ini ditemukan juga termasuk daerah kekuasaannya. Kemampuan raja itu sebagai pemersatu juga mirip dengan teknologi *bluetooth* sekarang yang bisa menghubungkan berbagai peralatan seperti komputer personal dan telepon genggam. Sedangkan logo *bluetooth* berasal dari penyatuan dua huruf Jerman yang analog dengan huruf H dan B (singkatan dari Harald Bluetooth), yaitu (Hagall) dan (Balatand) yang kemudian digabungkan. Berikut ini adalah gambar dari logo *Bluetooth* :

Gambar 2.5 Logo *Bluetooth* (Sumber : Agung wahyu, 2012)

Awal mula dari *Bluetooth* adalah sebagai teknologi komunikasi wireless (tanpa kabel) yang beroperasi dalam pita frekuensi 2,4 GHz unclicensed ISM (Indrustrial, Scientific and Medical) dengan menggunakan sebuah frequency hopping tranceiveir yang mampu menyediakan layanan komunikasi data dan suara secara real-time antara host-host *bluetooth* dengan jarak jangkauan layanan yang terbatas (sekitar 10 meter). *Bluetooth* berupa card yang menggunkan frekuensi radio standar IEEE 802.11 dengan jarak layanan yang terbatas dan kemampuan data transfer lebih rendah dari card untuk Wireless Local Area Network (WLAN).

Pembentukan *bluetooth* dipromotori oleh 5 perusahaan besar Ericsson, IBM, Intel, Nokia dan Toshiba membentuk sebuah Special Interest Grouo (SIG) yang meluncurkan proyek ini. Pada bulan Juli 1999 dokumen spesifikasi bluetooth versi 1.0 mulai diluncurkan. Pada bulan Desember 1999 dimulai lagi pembuatan spesifikasi *Bluetooth versi* 2.0 dengan tambahan 4 promotor baru yaitu 153Com, Lucent Technologies, Microsoft dan Motorola. Saat ini, lebih dari 1800 perusahaan di berbagai bidang bergabung dalam sebuah konsorsium sebagai adopter teknologi *Bluetooth*. Walaupun standart *Bluetooth* SIG saat ini 'dimiliki'' oleh grup promotor tetapi ia diharapkan akan menjadi sebuah standar IEEE (802.15).

- Kelebihan yang dimiliki oleh sistem *Bluetooth* :

- 1. *Bluetooth* dapat menembus dinding, kotak, dan berbagai rintangan lain walaupun jarak transmisinya hanya sekitar 30 kaki atau 10 meter.
- 2. Bluetooth tidak memerlukan kabel ataupun kawat.
- 3. Bluetooth dapat mensinkronisasi data base dari handphone ke komputer.
- 4. Dapat digunakan sebagai perantara modem.

- Kekurangan dari sistem *Bluetooth* adalah :

- 1. Sistem ini menggunakan frekuensi yang sama dengan gelombang LAN standar
- 2. Apabila dalam suatu ruangan terlalu banyak koneksi *Bluetooth* yang digunakan, akan menyulitkan pengguna untuk menemukan penerima yang diharapkan.
- 3. Banyak mekanisme keamanan *Bluetooth* yang harus diperhatikan untuk mencegah kegagalan pengiriman atau penerimaan informasi.
- 4. Di Indonesia, sudah banyak beredar virus-virus yang disebarkan melalui bluetooth dari handphone.

(Sumber : http://id.wikipedia.org/wiki/Bluetooth)

2.5 Modul *Bluetooth* HC-05

Modul *Bluetooth* to Serial HC-05 adalah Modul *Bluetooth* yang dapat di set sebagai Master ataupun sebagai Slave, HC-05 adalah Master/Slave *Bluetooth* Module. *Bluetooth* to Serial HC-05 adalah versi pengembangan dari Modul *Bluetooth* to Serial HC-06. Modul *Bluetooth* to Serial HC-05 ini dapat di set sebagai Master ataupun di Set sebagai Slave, berbeda dengan Modul HC-06 yang hanya dapat di gunakan sebagai Slave.

Modul *Bluetooth* HC dengan nomer seri ganjil, misalkan HC-05, kondisi default biasanya diset sebagai slave mode, tetapi pengguna bisa mengubahnya menjadi mode Master dengan AT Command tertentu.

Untuk Pemakaian modul *Bluetooth* HC-05 memiliki kemampuan lebih yaitu bisa diubah mode kerjanya menjadi Master atau Slave serta diakses dengan lebih banyak AT Command, modul ini sangat direkomendasikan, terutama dengan flexibilitasnya dalam pemilihan mode kerjanya.

Penggunaan utama dari modul *Bluetooth* ini adalah menggantikan komunikasi serial via kabel, sebagai contoh :

- Jika akan menghubungkan dua sistem mikrokontroler agar bisa berkomunikasi via serial port maka dipasang sebuah modul *Bluetooth* Master pada satu sistem dan modul *Bluetooth* Slave pada sistem lainnya. Komunikasi dapat langsung dilakukan setelah kedua modul melakukan pairing. Koneksi via bluetooth ini menyerupai komunikasi serial biasa, yaitu adanya pin TXD dan RXD.
- 2. Jika sistem mikrokontroller dipasangi modul *Bluetooth* Slave maka ia dapat berkomunikasi dengan perangkat lain semisal PC yang dilengkapi adapter BT ataupun dengan perangkat ponsel, smartphone dan lain-lain.
- 3. Saat ini banyak perangkat seperti printer, GPS modul dan lain-lain yang bekerja menggunakan media bluetooth, tentunya sistem mikrokontroller yang dilengkapi dengan *Bluetooth* Master dapat bekerja mengakses device-device tersebut.

Gambar 2.6 Modul *Bluetooth* HC-05 (Sumber : Angga Priya Utama, 2014)

2.6 Mikrokontroller ATMega 8535

Mikrokontroler merupakan keseluruhan sistem komputer yang dikemas menjadi sebuah chip didalamnya sudah terdapat mikroprosesor, I/O pendukung, memori bahkan ADC yang mempunyai satu atau beberapa tugas yang spesifik, berbeda dengan mikroprosesor yang berfungsi sebagai pemproses data.

Mikrokontroler dapat disebut sebagai "one chip solution" karena terdiri dari :

- 1. CPU (Central Processing Unit)
- 2. Ram (Random Access Memory)
- 3. EPROM/PROM/ROM (Erasable Programmable Read Only Memory)
- 4. I/O (Input/Output) serial dan parallel
- 5. Timer
- 6. Interupt Controller

Mikrokontroller AVR (*Alf and Vegard's Risc Processor*) memiliki arsitektur 8 bit dimana sesuai instruksi dikemas dalam kode 16-bit (16-bits word) dan sebagian besar instruksi dieksekusi dalam 1 (satu) siklus clock atau dikenal dengan teknologi RISC (*Reduced Instruction Set Computing*), berbeda dengan instruksi MCS51 yang membutuhkan 12 siklus clock atau dikenal dengan teknologi CISC (*Complex Instruction Set Computing*).

Secara umum, AVR dapat dikelompokkan ke dalam 4 kelas, yaitu keluarga Attinya , keluarga AT90sxx, keluarga Atmega dan AT86RFxx. Pada dasarnya yang membedakan masing-masing adalah kelas memori, peripheral dan fungsinya. Dari segi arsitektur dan instruksi yang digunakan, mereka bisa

dikatakan hampir sama. (Sumber : Heryanto, dkk,2008:1). Dari segi arsitektur dan instruksi yang digunakan, mereka bisa dikatakan hampir sama. Berikut ini gambar Mikrokontroler ATMega8535.

Gambar 2.7 Mikrokontroler ATMega8535

(Sumber : Heryanto, dkk,2008:1)

2.6.1 Fitur ATMega 8535

Kapabilitas detail dari Atmega 8535 adalah sebagai berikut :

- Sistem mikroprosesor 8 bit berbasis RISC dengan kecepatan maksimal 16 MHz.
- 2. Kapabilitas memori flash 8 KB.
- 3. SRAM sebesar 512 byte.
- 4. EEPROM (Electrically EPROM) sebesar 512 byte.
- 5. ADC internal 10 bit sebanyak 8 channel.
- 6. Portal komunikasi serial (USART) dengan kecepatan maksimal 2,5 Mbps.
- 7. 6 buah mode sleep/power saving yang dapat dipilih software.

2.6.2 Konstruksi ATMega 8535

Mikrokontroller ATmega 8535 memiliki 3 jenis memori, yaitu memori program, memori data dan memori EEPROM. Ketiganya memiliki ruang sendiri dan terpisah.

a. Memori program

ATmega 8535 memiliki kapasitas memori program sebesar 8 Kbyte yang terpetakan dari alamat 0000h – 0fffh dimana masing-masing alamat memiliki lebar dari 16 bit. Memori program ini terbagi menjadi 2 bagian yaitu bagian program boot dan bagian program aplikasi.

b. Memori data

ATmega 8535 memiliki kapasitas memori data sebesar 608 byte yang terbagi menjadi 3 bagian yaitu register serba guna, register I/O dan SRAM. Atmega 8535 memiliki 32 byte register serba guna, 64 byte register I/O yang dapat diakses sebagai bagian dari memori RAM (menggunakan instruksi LD atau ST) atau dapat juga diakses sebagai I/O (menggunakan instruksi IN atau OUT), dan 512 byte digunakan untuk memori data SRAM.

c. Memori EEPROM

ATmega 8535 memiliki EEPROM sebesar 512 byte yang terpisah dari memori program maupun memori data. Memori EEPROM ini hanya dapat diakses dengan menggunakan register-register I/O yaitu register EEPROM Address, register EEPROM Data, dan register EEPROM Control. Untuk mengakses memori EEPROM ini diperlakukan seperti mengakses data eksternal, sehingga waktu eksekusinya relatif lebih lama bila dibandingkan dengan mengakses dari SRAM.

Mikrokontroller Atmega 8535 merupakan tipe AVR yang telah dilengkapi dengan 8 saluran ADC internal dengan fidelitas 10 bit. Dalam mode operasinya, ADC ATMega 8535 dapat dikonfigurasi, baik secara single ended input mauput differential input. Selain itu, ADC Atmega 8535 memiliki konfigurasi pewaktuan, tegangan referensi, mode operasi, dan kemampuan filter derau yang amat fleksibel, sehingga dengan mudah disesuaikan dengan kebutuhan ADC itu sendiri. Atmega 8535 memiliki 3 modul timer yang terdiri dari 2 buah timer/counter 8 bit dan 1 buah timer/counter 16 bit. Ketiga modul timer/counter ini dapat diatur dalam mode yang berbeda secara individu dan tidak saling mempengaruhi satu sama lain. Selain itu, semua timer/counter juga dapat difungsikan sebagai sumber interupsi. Masing-masing timer/counter ini memiliki register tertentu yang digunakan untuk mengatur mode dan cara kerjanya.

Serial Peripheral (SPI) merupakan salah satu mode komunikasi serial syncronous kecepatan tinggi yang dimiliki oleh Atmega 8535. Universal Synchronous and Asyncronous Serial Receiver and Transmitter (USART) juga merupakan komunikasi yang memiliki fleksibilitas tinggi, yang dapat digunakan untuk melakukan transfer data baik antar mikrokontroller maupun dengan modulmodul eksternal termasuk PC yang memiliki fitur USART.

USART memungkinkan transmisi data baik secara Synchronous and Asyncronous, sehingga dengan memiliki USART pasti kompatibel dengan USART. Pada Atmega 8535, secara umum pengaturan mode Synchronous and Asyncronous adalah sama. Perbedaannya hanyalah terletak pada sumber clock saja. Jika pada mode Asyncronous masing-masing peripheral memiliki sumber clock sendiri, maka pada mode Synchronous hanya ada satu sumber clock yang digunakan secara bersama-sama. Dengan demikian, secara hardware untuk mode Asyncronous hanya membutuhkan 2 pin yaitu TXD dan RXD, sedangkan untuk mode Synchronous harus 3 pin yaitu TXD, RXD dan XCK

2.6.3 Arsitektur ATMega 8535

Gambar 2.8 Blok Diagram Fungsional ATMega 8535

(Sumber : sumardi, 2013 : 8)

Dari gambar blok diagram pada Gambar 2.2 dpat dilihat bahwa Atmega 8535 memiliki bagian sebagai berikut :

- 1. Saluran I/O sebanyak 32 buah, yaitu Port A, Port B, Port C dan Port D.
- 2. ADC 8 channel 10 bit
- 3. Tiga buah timer/counter dengan kemampuan pembanding
- 4. CPU yang terdiri atas 32 buah register
- 5. Watchdog timer dengan osilator internal
- 6. SRAM sebesar 512 byte.
- 7. Memori flash sebesar 512 byte yang dapat diprogram saat operasi
- 8. Antarmuka komparator analog
- 9. Port USART untuk komunikasi serial.

2.6.4 Konfigurasi PIN Atmega 8535

1. VCC

merupakan pin yang berfungsi sebagai pin masukkan catu daya 5 V.

2. GND

merupakan pin ground yang berfungsi untuk menetralukan arus.

3. Port A (PA.0...PA.7)

merupakan pin I/O 8 bit bidirectional dan pin input analog ke ADC. Pin pada Port A dapat menyediakan resistor pull-up internal (dipilih untuk seperti bit)

4. Port B (PB.0...PB.7)

merupakan pin I/O merupakan pin I/O 8 bit bidirectional dengan resistor pull-up internal (dipilih untuk setiap bit) dan pin fungsi khusus, yaitu Timer/Counter, Komparator Analog, dan SPI

5. Port C (PC.0...PC.7)

merupakan pin I/O merupakan pin I/O 8 bit bidirectional dengan resistor pull-up internal (dipilih untuk setiap bit) dan pin fungsi khusus, yaitu Komparator Analog dan *Timer Oscilator*

6. Port D (PD.0...PD.7)

merupakan pin I/O merupakan pin I/O 8 bit bidirectional dengan resistor pull-up internal (dipilih untuk setiap bit) dan pin fungsi khusus, yaitu Komparator Analog, Interupsi Eksternal dan komunikasi serial USART

7. Reset

merupakan pin yang digunakan untuk mereset mikrokontroler

8. XTAL1 dan XTAL2

merupakan pin masukkan clock eksternal (osilator menggunakan kristal, biasanya dengan frekuensi 11,0592 MHz)

9. AVCC

Merupakan pin masukkan untuk tegangan ADC

10.AREF

Merupakan pin masukkan tegangan referensi ADC

Gambar 2.9 Konfigurasi PIN ATMega8535

(Sumber : sumardi, 2013 : 9)

2.7 Bahasa Pemograman

2.7.1 Pengertian

Bahasa pemograman, atau sering diistilahkan dengan bahasa komputer, adalah teknik komando/instruksi untuk memerintah komputer. Bahasa pemograman ini merupakan suatu himpunan dari aturan sintaks dan semantik yang dipakai untuk mendefinisikan program komputer. Bahasa ini memungkinkan seorang programmer dapat menentukan secara persis data mana yang akan diolah oleh komputer, bagaimana data ini akan disimpan atau diteruskan, dan jenis langkah apa secara persis yang akan diambil berbagai situasi. (http://id.wikipedia.org/wiki/Bahasa_pemrograman)

2.7.2 Macam-macam pemograman

1. Basic

Basic, adalah singkatan dari Beginners 'All-purpose Symbolic Instruction Code' adalah sebuah kelompok bahasa pemrograman tingkat tinggi. Secara harfiah, BASIC memiliki arti "kode instruction simbolis semua tujuan yang dapat digunakan oleh para pemula". Memang, istilah "Bahasa Basic" disini juga bisa diartikan menjadi bahasa untuk pemula, atau dengan kata lain, disebut sebagai bahasa dasar, tapi hal tersebut dirasa kurang tepat, mengingat BASIC dapat juga digunakan oleh para pemrogram ahli.

BASIC pertama kali dikembangkan pada tahun 1963 oleh John George Kemeny dan Thomas Eugene Kurtz yang berasal dari Dartmouth Collage, untuk mengizinkan akses terhadap komputer bagi para mahasiswa jurusan selain jurusan ilmu eksakta. Berikut ini adalah contoh program yang ditulis dalam bahasa Visual BASIC :

```
Dim total As Integer
total = 0 ' awal dari jumlah kredit total
If (CheckBox1.Checked = True) Then 'boleh memilih semua checkbox
       total += 3
    End If
    If (CheckBox2.Checked = True) Then
       total = total + 3
    End If
    If (CheckBox3.Checked = True) Then
       total = total + 3
    End If
If (ComboBox1.SelectedIndex = 0) Then 'hanya bisa memilih satu
       total = total + 3
    ElseIf (ComboBox1.SelectedIndex = 1) Then
       total = total + 3
    ElseIf (ComboBox1.SelectedIndex = 2) Then
       total = total + 3
    End If
```

2. Bahasa C

Bahasa pemograman C merupakan salah satu bahsa pemograman komputer. Dibuat pada tahun 1972 oleh Dennis Ritchie untuk Sistem Operasi Unix di Bell Telephone Laboratories. C juga banyak dipakai oleh berbagai jenis platform sistem operasi dan arsitektur komputer, bahkan terdapat beberapa compiler yang sangat populer telah tersedia. C secara luar biasa mempengaruhi bahasa populer lainnya, terutama C++ yang merupakan extensi dari C.

Berikut ini adalah contoh program sederhana yang akan mencetak kalimat "Hello, World!" dengan menggunakan pustaka stdio.h (ANSI C):

```
#include <stdio.h>
#include <conio.h>
int main(void) {
printf("Hello, World!\n");
return 0;
}
```

(http://id.wikipedia.org/wiki/C_%28bahasa_pemograman%29)

2.7.3 Bahasa Pemograman Pada Mikrokontroler

Pemograman mikrokontroler AVR (Atmega8535) menggunakan bahasa program seperti bahasa Basic, C, atau Assembler. Untuk bahasa basic kita gunakan Software bascom AVR sedangkan bahasa C dan Assembler kita gunakan WinAVR. File heksa inilah yang akan kita tuliskan ke memori flash mikrokontroler AVR melalui sebuah alat yang disebut Downloader.

2.7.3.1 Basic Complair (BASCOM) AVR

BASCOM-AVR merupakan basic compiler AVR. BASCOM-AVR termasuk dalam program mikrokontroler buatan MCS *Electronics* yang mengadaptasi bahasa tingkat tinggi yang sering digunakan (Bahasa Basic). BASCOM-AVR (Basic Compiler) merupakan software compailer dengan menggunakan bahasa basic yang dibuat untuk mel;akukan pemograman chip-chip mikrokontroler tertentu, salah satunya Atmega8535 BASCOMAVR adalah program Basic Compiler berbasis windows untuk mikrokontroller keluarga AVR seperti Atmega8535, Atmega8515 dan yang lainnya.

BASCOM AVR merupakan pemrograman dengan bahasa tingkat tinggi . BASIC yang dikembangkan dan dikeluarkan oleh AVR Electronic. Program ini digunakan dalam pengisian mikrokontroller. Kompiler ini cukup lengkap karena dilengkapi simulator untuk LED, LCD dan monitor untuk komunikasi serial. Selain itu bahasa BASIC jauh lebih mudah dipahami dibandingkan bahasa pemrograman lainnya.

Dengan menggunakan bahasa pemrograman tingkat tinggi, maka pemrograman mendapatkan banyak kemudahan dalam mengatur sistem kerja dari mikrokontroler, dapat dilihat pada Gambar 2.10 Halaman Editor BASCOM_AVR

(Sumber : Fahmizal, 2011)

2.7.3.1.1 Pengenalan Fungsi Tools pada BASCOM_AVR :

Pada halaman editor BASCOM_AVR terdapapatbeberapa menu fungsi tools yang harus kita ketahui yaitu :

1. Bar pada file

🥂 Eile	Edit	Program	Tools	Options	Window	Help		
DIC			X		律律	24	3 5 6 5 1 - 0	1

- New, digunakan untuk membuat project baru atau membuat file program baru.
- **Open**, digunakan untuk membuka project atau file program yang pernah dibuat.
- Save, digunakan untuk menyimapan project atau menyimpan file program.
- Save As..., digunakan digunakan untuk menyimpan project tau menyimpan file dengan nama yang berbeda dari sebelumnya.
- **Print Preview**, digunakan untuk melihat hasil cetakan print out dari sintsks penulisan program.
- **Print**, digunakan untuk mencetak file program.
- **Exit**, digunakan untuk keluar dari BASCOM AVR

1	Elle	Edit	Program	Tools	Options	Window	Help	
]		New					Ctrl+N	S S S S S S S S S S S S S S S S S S S
SL	0	Open					Ctrl+O	-
-	1	⊆lose						
		Save					Ctrl+S	
		Save (<u>4</u> 5					Db5 = Porte 5 Db6 = Porte 6
	D.	Print P	review					
	5	Print					Ctrl+P	1
		Exit						1

Gambar 2.11 Tampilan pada Menu Bar pada File

(Sumber : Fahmizal, 2011)

2. Bar pada edit

- a. Undo, digunakan untuk kembali ke langkah sebelumnya.
- b. **Redo,** kebalikan dari undo.
- c. Cut, digunakan untuk mengkopy dan menghapus teks sekaligus
- d. Copy, digunakan untk mengkopy teks.
- e. **Paste**, digunakan untuk menyalin bagian yang telah dikopi.
- f. Find, digunakan untuk mencari teks yang diiginkan.
- g. Find next, sama halnya dengan find hanya saja berikutnya

Gambar 2.12 Tampilan pada Menu Bar pada Edit

(Sumber : Fahmizal, 2011)

3. Bar pada Program

- a. **compile**, digunakan untuk mengkompile program. Proses ini akan menghsilkan file berektension *.hex
- b. **syntax check**, digunakan untuk memerikasa apakah terjadi kesalahan pada penulisan program atau tidak.
- c. **Show result**, digunakan untuk melihat hasil report dan error dari penulisan program.
- d. Simulate, digunakan untuk mensimulasikan program.
- e. **Send to chip**, digunakan untuk mengirim file *.hex ke dalam chip mikrokontroler (mendownload program mikrokontroler).

M Elk	e <u>E</u> dit	Prog	aram <u>T</u> ools	Options Wi	ndow <u>H</u> e	di				
		*	⊆ompile	F7	律		1 1		2	
Sub	\$regfi	N N	Syntax chec <u>k</u> Show <u>r</u> esult	Ctrl+F7 Ctrl+W		Label			•	
	\$cryst	*	Simulate	F2	1					
	Config	1	Send to chip	F4	Porte	4 , Db5	= Porte	5 , Db6 •	Porte 6	5 , I

Gambar 2.13 Tampilan pada Menu Bar pada Program

(Sumber : Fahmizal, 2011)

4. Bar pada Tools

- a. **Terminal emulator**, digunakan untuk simulasi komunikasi serial dengan komputer (RS232) hampir sama dengan Hypert Terminal yang dimiliki oleh Windows.
- b. Lcd designer, digunakan untuk mendesain karakter LCD yang diinginkan.
- Libray Manager, digunakan untuk library yang terdapat pada BASCOM AVR
- d. **Export to RTF**, digunakan untuk mengkonversi penulisan program pada RTF (Rich Text Format).
- e. **Graphic Converter**, digunakan untuk menkonversi gambar ke LCD yang menujang RGB (high kualitas LCD).
- f. Stack Analyser, digunakan untuk menganalisa stack program.
- g. PlugIn Manager, digunakan untuk mengatur plugin yang ada.

File Edit Program	ools Options Windo	w <u>H</u> elp			
	LCD designer	Ctrl+L	2 🗡 🔝 🖤 💻		
Scrystal = 81 Sregfile = "1 m	LIB Manager Export to RTF	Ctrl+I			
Config Ledpir Config Led =	Graphic Converter Stack Analyser		Db5 = Porta	5 , Db6 = Po	rta.6 , Db7
Config Kbd = Config Portb = Portb = 255	🕈 🛛 BlugIn Manager				

Gambar 2.14 Tampilan pada Menu Bar pada Tools

5. Bar pada Options

- a. **Compiler**, digunakan untuk mensetting chip, output, communication, IC dan LCD.
- b. **Communication**, digunakan untuk mensetting komunikasi mikrokontroler.
- c. Simulator, digunakan untuk mensetting simulasi pada BASCOM AVR.
- d. **Programmmer**, digunakan untuk mensetting downloader programmer yang akan digunakan.
- e. Monitor, untuk mensetting tampilan.
- f. Printer, digunakan untuk mensetting printer yang digunakan.

Gambar 2.15 Tampilan pada menu Bar pada Options

(Sumber : Fahmizal, 2011)

Chip	2313def.dat	•	FlashROM	2 KB	Co
XRAM	None		SRAM	128	1
HW Stack	32		EEPROM	128	
Soft Stack	< 8		SRAM wa	aitstate	
Framesize	16		🗌 External A	ocess Enable	

Gambar 2.16 Tampilan pada Menu Options

(Sumber : Fahmizal, 2011)

2.7.3.2 Dasar Pemograman Basic

1. Tipe data

Setiap variable dalam BASCOM memiliki tipe data yang menunjukan daya tampung variabel tersebut, hal ini berhubungan dengan penggunaan memori dari mikrokontroller.

Tipe Data`	Ukuran (byte)	Jangkauan Data (range)
Bit	1/8	-
Byte	1	0-25
Integer	2	-32,768-32,767
Word	2	0-65536
Long	4	-2147483648 - 2147483647
Single	4	-
String	Hingga 254 byte	-

 Tabel 2.1 Tipe data BASCOM (Didin Wahyudin, 2007 :44)

2. Variabel

Variabel dalam sebuah pemograman berfungsi sebagai tempat penyimpanan data atau penampung data sementara, misalnya menampung hasil perhitungan, menampung data hasil pembacaan register dan lain-lain. Variabel merupakan yang menunjuk pada alamat memori fisik di mikrokontroller.

Dalam BASCOM ada beberapa aturan dalam penamaan sebuah variabel yaitu sebagai berikut :

- Nama variabel maksimum terdiri atas 32 karakter
- Karakter biasa berupa angka atau huruf
- Nama variabel harus berupa angka atau huruf
- Nama variabel harus dimulai dengan huruf
- Variabel tidak boleh menggunakan kata-kata yang digunakan oleh BASCOM sebagai perintah, penyataan, internal register dan nama operator.

Sebelum variabel itu digunakan dalam BASCOM ada beberapa cara untuk mendeklarasikan sebuah variabel. Yang pertama dengan menggunakan penyataan. **"DIM"** diikuti nama dan tipe dataya, contoh pendeklarasian menggunakan **DIM** sebagai berikut :

Dim nama as byte Dim tombol1 as integer Dim tombol2 as word Dim tombol3 as word Dim tombol4 as word

3. Alias

Dengan menggunakan **ALIAS** sebuah variabel yang lama dapat diberikan nama yang lain, tujuannya untuk mempermudah proses pemograman. Biasanya **ALIAS** digunakan untuk mengganti nama variabel yang telah baku seperti port mikrokontroller.

Contoh :

LED_1 alias PORTC.C´ nama lain dari PORTC.C adalah LED SW_1 alias PINC.1´ nama lain dari PINC.1 adalah SW_1

4. Konstanta

Dalam BASCOM selain variabel dikenal juga konstanta, konstanta ini juga merupakan variabel. Perbedaannya dengan variabel biasa adalah nilai yang dikandungnya tetap. Dengan konstanta, kode program yang kita buatkan lebih mudah dibac dan dapat mencegah kesalahan penulisan pada program kita. Berikut adalah cara pendeklarasian sebuah konstanta :

Dim nama_konstanta As Const 5 nilai konstanta

Const nama_konstanta = nilai_konstanta

Contoh :

Dim pembagi as const 23

Const pembagi = 23

5. Array

Dengan **Array** kita bisa menggunakan sekumpulan variabel dengan nama dan tipe yang sama untuk mengakses variabel tertentu dalam **Array** tersebut kita harus menggunakan indeks. Indeks ini harus berupa angka dengan tipe data byte, integer atau word, hal ini berarti nilai maksimum sebuah indeks adalah sebesar 65535. Proses pendeklarasian sebuah array hampir sama dengan variabel namun perbedaannya kita juga mengikutkan jumlah elemennya. Cara pendeklarasian sebuah array sebagai berikut :

Dim daku (8) as byte ' variabel daku dengan tipe data byte dengan 8 anggota

Contoh :

Daku (1) = 25 ´ anggota variabel pertama daku isinya 23 PORTC = daku (1) 'PORTC = nilai anggota pertama variabel daku. (Mulia Utari,2013 :23)

Dalam mempelajari dasar program BASCOM kita juga perlu mengetahui operasi-operasi yang dipakai. Pada bagian ini membahas tentang bagaimana cara menggabungkan, memodifikasi, membandingkan atau mendapatkan informasi tentang sebuah pertanyataan dengan menggunakan operator-operator yang tersedia di BASCOM. Bagian ini juga menjelaskan bagaimana sebuah pernyataan terbentuk dan dihasilkan dari operator-operator berikut :

- Operator Aritmatika

Digunakan dalam perhitungan, yang termasuk operator aritmatika ialah + (tambah), - (kurang), / (bagi) dan * (kali).

- Operator Relasi

Digunakan untuk membandingkan nilai sebuah angka, hasilnya dapat digunakan untuk membuat keputusan sesuai dengan program yag kita buat. Yang termasuk operator relasi adalah dapat dilihat pada tabel berikut ini :

Operator	Relasi	Pernyataan
=	Sama dengan	X=Y
<>	Tidak sama dengan	X<>Y
<	Lebih kecil dari	X <y< td=""></y<>
>	Lebih besar dari	X>Y
<=	Lebih kecil atau sama dengan	X<=Y
>=	Lebih besar atau sama dengan	X>=Y

Tabel 2.2 Keterangan Operator Relasi

- Operator Logika

Digunakan untuk menguji sebuah kondisi atau untuk memanipulasi bit dan operasi bolean. Dalam BASCOM ada empat buah operator logika yaitu **AND, OR, NOT** dan **XOR.**

- Operator Fungsi

Digunakan untuk melengkapi operator yang sederhana.

2.7.3.3 Kontrol Program

a. If - Then

Merupakan pernyataan untuk menguji apakah kondisi bernilai benar atau salah untuk melakukan sebuah instruksi. *Syntax* penulisannya sebagai berikut :

If <kondisi> Then <perintah> (1 baris perintah)

If <kondisi> Then (lebih dari 1 perintah)

<Perintah 1>

<Perintah 2>

End If

b. If – Then – Else

Untuk keadaan dimana kedua kondisi (benar maupun salah) tetap dikenai perintah. *Syntax* penulisannya sebagai berikut :

 $If <\!\! kondisi > Then$

<Perintah 1>

Else

<Perintah 2>

End If

c. If – Then – Elseif

Kita gunakan ketika terdapat lebih dari satu pengujian kondisi. *Syntax* penulisannya sebagai berikut :

If <kondisi 1> Then

<Perintah 1>

Elseif <kondisi 2> Then

<Perintah 2>

Elseif <kondisi 3> Then

<perintah 3>

End If

d. Select – Case

Untuk menangani pengujian kondisi yang banyak, maka akan lebih sederhana menggunakan Select – Case. Cara penulisannya :

Select case <variabel>

Case 1 : <perintah 1> Case 2 : <perintah 2> End Select

2.7.3.4 Struktur Perulangan

a. FOR – NEXT

Perintah ini kita gunakan untuk melaksanakan perintah secara berulang sesuai dengan jumlah dan tingkat perulangannya. *Syntax* penulisannya adalah :

For <variabel = nilai awal> To <nilai_akhir> <step penambahan>

<pernyataan> Next

b. Do-Loop

Pernyataan ini untuk melakukan perulangan selama kondisi terpenuhi. *Syntax* penulisannya adalah :

DO

<pernyataan>

Loop

Jika perulangan yang dilakukan terbatas, sesuai kondisi yang diinginkan, maka caranya sebagai berikut :

DO

<Pernyataan>

Loop Until

<Kondisi>

c. While – Wend

Bentuk perulangan ini akan melakukan perulangan jika sebuah syarat kondisi terpenuhi. *Syntax* penulisannya adalah :

While <kondisi> <perintah>

Wend

2.7.3.5 Struktur Lompatan

a. Gosub

Perintah ini akan melakukan lombatan ke label yang ditunjuk, biasanya untuk mengerjakan sebuah rutin perintah, kemudian kembali lagi setelah rutin perintah tersebut selesai dikerjakan. Rutin yang dibuat harus dituliskan perintah Return pada akhir pernyataan.

b. Goto

Perintah ini digunakan untuk melakukan percabangan, perbedaannya dengan *gosub* ialah perintah *goto* tidak memerlukan perintah *Return* sehingga programnya tidak akan kembali lagi ketitik dimana perintah *goto* itu berada.

c. Exit

Untuk keluar secara langsung dari perulangan Do-Loop, for next, While-Wend. Penulisannya sebagai berikut :

EXIT FOR (untuk perulangan For – Next) EXIT DO (perulangan Do-Loop) EXIT WHILE (perulangan While-Wend) EXIT SUB (Perulangan Sub – Endsub) EXIT FUNCTION

(Agfianto Eko Putra, 2010 : 17-19)

2.7.4 Cara Mendownload Program Ke Mikrokontroler ATMega8535

Downloader adalah sebuah rangkaian elektronika, untuk mengunduh/ memasukkan sebuah program dari software didalam PC ke dalam sebuah IC mikrokontroler sebagai sebuah pengatur dalam sebuah rangkaian. Rangkaian mikrokontroler ini memiliki *Header* ISP dimana bila ingin mendownload suatu program yang sudah dibuat pada komputer ke dalam mikrokontroler suatu program yang sudah dibuat pada komputer ke dalam mikrokontroler, maka kita dapat mendownload dari komputer dengan mikrokontroler menggunakan kabel downloader yang mana dipasang pada komputer di Port paralel an mikrokontroler pada pin *Header* ISP. Pada gambar 2.17 dibawah ini memberikan keterangan mengenai rangkaian yang digunakan chip mikrokontroler ATMega8535 dan sebagai kabel penghubung terhadap computer menggunakan kabel DB-25. Pada gambar 2.18 merupakan gambar *downloader* sebagai rangkaian yang perantara untuk memasukkan list program dari software Computer ke dalam Chip ATMega8535, agar dapat difungsikan sebagai mana mestinya.

Gambar 2.17 Download/Flash Program dari PC ke IC ATMega

(Sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

Gambar 2.18 Chip Downloader

(Sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

Keterangan pin :

- 1. Pin 6 : MOSI (Master Out Slave In) jalur data serial dari PC ke chip
- 2. Pin 7 : MISO (Master in Slave Out) jalur data serial dari chip ke PC
- 3. Pin 8 : SCK (Serial Clock) detak yang mengatur aliran data
- 4. Pin 9 : Reset

- Dalam pengisian program kita memerlukan beberapa alat yaitu :

Computer	1 unit
Downloader	1 unit
Power supply 5 volt	1 unit

Setelah semua tersedia kita buat koneksi antara komputer dengan downloader yang telah diberi supply tegangan 5 volt. Setelah semua terpasang baru lakukan proses pengisian data pada mikrokontroller dengan menggunakan software.

Dalam pengisian program kita dapat mengikuti cara dibawah ini :

- Membuat program menulis listing program/instruksi terlebih dahulu pada sebuah editor. Karena bahasa yang digunakan adalah bahasa Basic maka program di Bascom AVR
- 2. Kemudian simpan dalam format (nama file). Tampilan lihat gambar 2.19.

(sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

3. Tahap selanjutnya ubah format nama file yang di compile terlebih dahulu, dan kemudian buka ISP Flash Programer pilih Reload File yang berguna agar mikrokontroller benar-benar kosong dari file sebelumnta. Tampilannya pada gambar berikut

Read	Yerify	8535 _
Ygite	Write LBs	Lock Bits
Open File	Signature	□ Lock Bit-1
	[management]	Lock Bit-2
9 TAB 1 10	[Herolag Frie]	Lock Bit-3
Disp Buffer	Ab out	ELOS Bytes
Buffer CheckSum	1FE000	
Device Signature	00 00 00	
Calibration Bytes	00 00 00 00	

Gambar 2.20 Pemilihan Reload File pada ISP Flash Programmer

(sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

4. Kemudian pilih signature sebagai apakah mikrokontroller itu benar-benar merespon dari PC, gambarnya diperlihatkan pada gambar berikut :

Read	Verify	8535
Write	VVrite LBs	Lock Bits
Oron File	[Dispature]	Lock Bit-1
Dienvie	[gignatore]	Lock Bit-2
Save File	Reload File	🗂 Lock Bil-3
Disp <u>B</u> uffer	About	Eilco Bytos
Butter CheckSum	1FE000	
Device Signature	00 00 00	
Calibration Bytes	00 00 00 00	

Gambar 2.21 Pemilihan Signature pada ISP Flash Programmer

(sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

5. Kemudian pilih open file yaitu memilih program yang kita inginkan download ke mikrokontrolle, yang diperlihatkan pada gambar berikut :

Read	⊻erify	8535 _
Write	Write LBs	Lock Bits
Open File	Signature	Lock Dit-1
G <u>a</u> ve File	Reloa <u>d</u> File	LOCK BIT-2
Disp <u>D</u> uffer	About	Euse Bytes
Buffer ChaokSup	155000	
Device Signature	00 00 00	
Calibration Bytee	00 00 00 00	

Gambar 2.22 Pemilihan Open file ISP Flash Programmer

(sumber : Sumardi. 2013. Mikrokontroler Belajar AVR Mulai dari Nol. Yogyakarta : Graha Ilmu)

 Setelah itu pilih write untuk mendownload program yang telah dipilih dan tunggu beberapa saat sampai muncul tulisan transfer complete dan proses mendownload pun selesai.

2.7.5 Flowchart

"Flowchart" merupakan langkah awal pembuatan program dan gambaran hasil pemikiran dalam menganalisa suatu masalah dengan komputer"(Tosin, Rijanto: 1994, 14). Sehingga *flowchart* yang dihasilkan dapat bervariasi antara satu pemograman dengan pemograman lainnya. Dengan adanya program *flowchart* maka urutan proses do program menjadi lebih jelas. Dalam pembuatan *flowchart* tidak ada rumus atau patokan yang bersifat mutlak.

Tujuan utama dari penggunaan *flowchart* adalah untuk menggambarkan suatu tahapan penyelesaian masalah secara sederhana, terurut, rapi dan jelas dengan menggunakan simbol-simbol yang standar. Tahap masalah yang disajikan harus jelas, sederhana, efektif dan tepat. Dalam penulisan *flowchart* dikenal dua metode yaitu sistem *flowchart* dan program *flowchart*.

2.7.5.1 Sistem *Flowchart*

Sistem *flowchart* merupakan diagram alir yang menggambarkan suatu sistem peralatan yang digunakan dalam proses pengolahan data serta hubungan peralatan komputer yang digunakan dalam proses pengolahan data serta hubungan antar peralatan tersebut.

Sistem *flowchart* ini tidak digunakan untuk menggambarkan urutan langkah untuk memecah masalah, tetapi hanya untuk menggambarkan prosedur dalam sistem yang dibentuk.

Dalam menggambarkan *flowchart* biasanya digunakan simbol-simbol yang standar, tetapi pemograman juga dapat membuat simbol-simbol yang telah tersedia dirasa masih kurang. Dalam kasus ini pemograman harus melengkapi gambar *flowchart* tersebut dengan kamus simbol untuk menjelaskan arti dari masing-masing simbol yang digunakan agar pemograman lain dapat mengetahui maksud dari simbol-simbol tersebut. (Sumber : Tosin, Rijanto. 1994. *Flowchart Untuk Siswa dan Mahasiwa* : Jakarta. Dinastindo)

Simbol	Nama	Fungsi
	Terminator	Permulaan/akhir program
	Garis alir (Flow	Arah aliran program
	Line)	
\bigcirc	Preparation	Proses inisalisasi/pemberian harga awal
	Proses	Proses perhitungan/proses pengolahan data
	Input / Output	Proses input/output data, parameter,
		informasi
	Predefined	Permulaan sub program / proses sub
	Process	program
	(Sub Program)	
$\langle \rangle$	Decision	Perbandingan pernyataan, penyeleksian data
		yang memberikan pilihan untuk langkah
		sebelumnya
	On Page	Penghubung bagian flowchart yang berada
	Connector	pada satu halaman
	Off Page	Penghubung bagian-bagian flowchart yang
	Connector	berada pada halaman berbeda.

Tabel 2.3 Simbol-simbol pada *Flowchart* Program

2.7.5.2 Program Flowchart

Program *flowchart* adalah bagan yang memperlihatkan urutan dan hubungan proses dalam suatu program. Didalam buku ini pembahasan dititik beratkan pada program *flowchart*. Dan pada pembahasan selanjutnya digunakan istilah flowchart saja.

Flowchart ini merupakan langkah awal pembuatan program. Dengan adanya program *flowchart* maka urutan proses di program menjadi lebih jelas. Jika ada penambahan proses, maka dapat dilakukan lebih mudah. Dibawah ini terlampir contoh *flowchart* suatu program.

Gambar 2.23 Contoh Program Flowchart

(Sumber : Tosin, Rijanto. 1994. Flowchart Untuk Siswa dan Mahasiwa : Jakarta. Dinastindo)

2.7.6 Basic4Android

Basic4android adalah development tool sederhana yang dapat digunakan untuk membangun aplikasi Android. Bahasa Basic4android mirip dengan Visual Basic dengan tambahan dukungan untuk objek. Banyak cara untuk membangunaplikasi berbasis Android contohnya seperti Java, Eclypse, atau membuat program langsung melalui situs ibuildapp.com, dan kini bisa juga dengan bahasa BASIC yang khusus dikembangkan untuk OS Android, yaitu Basic4Android. Bahasa Basic untuk Android ini agak mirip dengan bahasa Visual Basic yang sudah lebih dulu dikenal di kalangan pengguna komputer berbasis Ms Windows. Bahkan, karena bekerja di lingkungan Ms Windows, Basic4Android juga menggunakan tampilan yang menggunakan WYSIWYG berbentuk IDE tools, menggunakan *library* Java, dan tentu saja berbagai tools yang diperlukan untuk merancang design agar berjalan seperti yang diinginkan.

Gambar 2.24 Logo Basic4Android (Sumber : http://www.basic4ppc.com/)

Basic4Android menyediakan berbagai *libraries* yang cukup lengkap, sehingga mampu membuat aplikasi yang dapat dijalankan pada berbagai versi Android, mulai dari 1.6 hingga 4.0. Aplikasi ini juga dapat memanfaatkan semua fungsi yang ada di ponsel atau tablet Android, mulai dari koneksi wi-fi dan *bluetooth*, kamera, GPS, hingga NFC. (Sumber : Alpha Immanuel:2008)

Gambar 2.25 Tampilan Layar Kerja Pada *Basic4Android* yang Menggunakan IDE tools

(Sumber : http://www.basic4ppc.com/)