
BAB II TINJAUAN PUSTAKA

2.1 Gambaran Umum

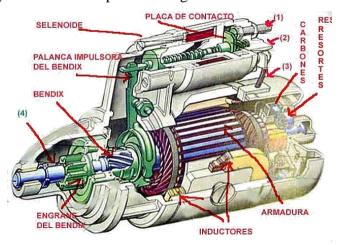
Dalam kehidupan sehari – hari kita sering menjumpai mesin pemarut yang ada di pasar. Mesin pemarut digunakan untuk memarut kelapa dan sebagainya. Mesin pemarut adalah suatu alat yang digunakan untuk membantu dan mempermudah pekerjaan manusia dalam hal pemarutan. Dimana mesin pemarut ini menggunakan tenaga listrik sebagai sumber energinya. Mesin pemarut yang kami rancang ini memiliki kapasitas kecil yang diperuntukkan untuk keperluan rumah tangga dan usaha kecil. Sumber tenaga mesin pemarut ini yaitu berupa tenaga motor listrik, dimana motor listrik yang digunakan adalah pemanfaatan barang bekas berupa motor mesin cuci kapasitas 7 kg yang sudah tidak terpakai lagi.

Gambar 2.1 Mesin Pemarut Serbaguna

2.1.1 Prinsip Kerja

Seperti yang sudah diterangkan diatas bahwa mesin pemarut serbaguna adalah suatu alat yang digunakan untuk membantu dan mempermudahkan pekerjaan manusia. Sumber tenaga utama yaitu dari tenaga motor listrik berupa pemanfaatan barang bekas yang tidak terpakai yaitu motor mesin cuci 7 Kg. Dimana putaran motor listrik akan diteruskan ke poros yang akan memutar *pulley* pemarut dan memarut bahan yang telah dimasukkan pada tempat pemarutan. Kemudian hasil pemarutan akan langsung jatuh ke penampung pada bagian bawah.

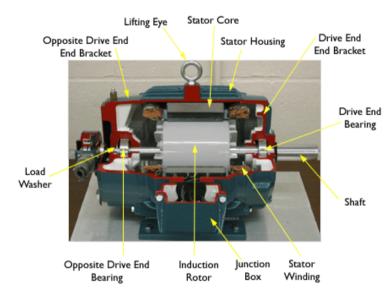
2.1.2 Komponen – Komponen Mesin Pemarut


Adapun komponen yang terdapat pada mesin pemarut serbaguna ini adalah sebagai berikut:

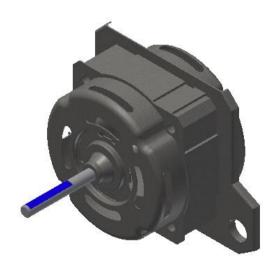
1. Motor Listrik

Motor listrik adalah alat untuk mengubah energi listrik menjadi energi mekanik. Motor listrik dapat ditemukan pada peralatan rumah tangga seperti kipas angin, mesin cuci, pompa air dan penyedot debu. Berdasarkan sumber tegangan kerjanya motor listrik dapat dibedakan menjadi dua jenis yaitu :

a. Motor Listrik Arus Bolak – Balik / AC (*Alternating Current*)


Motor listrik arus bolak balik (AC) adalah jenis motor listrik yang beroperasi dengan menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu.

Gambar 2.2 Motor Listrik AC


b. Motor Listrik Arus Searah / DC (Direct Current)

Motor listrik arus searah (DC) adalah motor listrik yang digunakan pada penggunaan khusus dimana diperlukan penyalaan *torque* yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas.

Gambar 2.3 Motor Listrik DC

Adapun motor listrik yang kami gunakan untuk pembuatan mesin pemarut serbaguna adalah jenis motor listrik arus bolak balik (AC) berupa motor listrik mesin cuci Panasonic dengan kapasitas 7 kg.

Gambar 2.4 Motor Listrik Mesin Cuci Panasonic 7 kg

2. Poros

Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Poros digunakan untuk transmisi daya. Hampir setiap mesin menggunakan poros untuk meneruskan tenaga bersama - sama dengan putaran (Sularso, 1991:1).

a. Kalsifikasi poros menurut pembebanannya

1) Poros Transmisi

Poros macam ini mendapat beban puntir murni atau puntir dan lentur. Daya ditransmisikan kepada poros ini melalui kopling, roda gigi, puli, sabuk, rantai, dan lain - lain.

2) Poros Spindel

Poros transmisi yang relatif pendek, seperti poros utama mesin perkakas, dimana beban utamanya berupa puntiran disebut spindel. Syarat yang harus dipenuhi poros ini adalah depormasinya kecil dan bentuk serta ukurannya harus teliti.

3) Gandar

Poros seperti ini dipasang diantara roda – roda kereta barang, dimana tidak mendapat beban puntir, bahkan kadang – kadang tidak boleh berputar disebut gandar. Gandar ini hanya mendapat beban lentur, kecuali jika digerakkan oleh penggerak mula dimana akan mengalami beban puntir saja.

 Selain klasifikasi poros diatas, untuk merencanakan sebuah poros hal-hal yang perlu diperhatikan yaitu:

1) Kekuatan Poros

Sebuah poros harus direncanakan sehingga kuat untuk menahan beban – beban pada poros, seperti beban poros transmisi yang meliputi beban puntir, lentur, gabungan puntir dan lentur, beban tarikan atau tekan. Selain itu juga poros yang direncanakan mampu untuk menahan kelelahan, tumbukan, konsentrasi tegangan seperti pada poros bertingkat dan beralur pasak.

2) Kekakuan Poros

Meskipun sebuah poros mempunyai kekuatan yang cukup tetapi jika lenturan atau defleksi puntirnya terlalu besar akan mengakibatkan ketidak-telitian (pada mesin perkakas) atau getaran dan suara (misalnya pada turbin dan kotak roda gigi). Karena itu disamping kekuatan poros, kekakuannya juga harus diperhatikan dan disesuaikan dengan macam mesin yang akan dilayani poros tersebut.

3) Putaran Kritis

Sebuah poros harus direncanakan sehingga putaran kerja lebih kecil dari putaran kritisnya. Putaran kritis adalah getaran luar biasa yang ditimbulkan oleh dinaikkannya putaran pada suatu mesin.

4) Korosi

Perlindungan terhadap korosi untuk kekuatan dan daya tahan terhadap beban.

5) Bahan Poros

Bahan poros harus disesuaikan dengan kondisi operasi. Seperti: baja konstruksi mesin, baja paduan dengan pengerasan kulit tahan terhadap keausan, baja krom, nikel, baja krom molibden, dan lain – lain. Selain itu, standar diameter poros transmisi 25 s/d 60 mm dengan kenaikan 5 mm, 60 s/d 110 mm dengan kenaikan 10 mm, 110 s/d 140 mm dengan kenaikan 15 mm, dan 140 s/d 500 mm dengan kenaikan 20 mm.

Tabel 2.1 Baja Karbon Untuk Konstruksi Mesin dan Baja Batang yang Difinishing Dingin Untuk Poros

Standar dan macam	Lambang	Perlakuan Panas	Kekuatan tarik (Kg/mm2)	Keterangan
	S30C		48	
Baja Karbon	S35C		52	
konstruksi	S40C	Penormalan	55	
mesin (JIS G	S45C		58	
4501)	S50C		62	
	S55C		66	
Batang Baja	S35C-D	-	53	Ditarik
yang difinis	S45C-D	-	60	dingin,
dingin	S55C-D	-	72	digerinda,
				dibubut atau
				gabungan
				antara hal –
				hal tersebut.

Sumber : Sularso (1991)

Tabel 2.2 Baja Perpaduan Untuk Poros

			Kekuatan
Standar dan macam	Lambang	Perlakuan panas	tarik
			(Kg/mm ²)
	SNC 2		85
Baja Khrom nikel (JIS G	SNC 3	Danganasan Kulit	95
4102)	SNC 21	Pengerasan Kulit	80
	SNC 22		100
	SNCM 1		85
	SNCM 2		95
D-1- 1/1	SNCM 7		100
Baja Khrom nikel	SNCM 8	Pengerasan Kulit	105
molibden (JIS G 4103)	SNCM22		90
	SNCM23		100
	SNCM25		120
	SCr 3		90
	SCr 4		95
Baja Khrom (JIS G 4104)	SCr 5	Pengerasan Kulit	100
	SCr21		80
	SCr22		85
	SCM 2		85
	SCM 3		95
Daio Whaam Malihdan (HC	SCM 4		100
Baja Khrom Molibden (JIS	SCM 5	Pengerasan Kulit	105
G 4105)	SCM21		85
	SCM22		95
Sumbar : Sularga (1001)	SCM23		100

Sumber: Sularso (1991)

3. *Pulley* Pemarut

Pulley pemarut adalah suatu elemen mesin yang berfungsi sebagai media pemarutan dimana dibagian permukaan bidangnya dibuat tatal-tatal tajam yang berfungsi untuk memarut.

Gambar 2.5 Pulley Pemarut

4. Baut dan Mur

Baut dan mur merupakan alat pengikat yang berfungsi untuk menyambungkan elemen mesin yang satu dengan yang lainnya dalam konstruksi. Pemilihan baut dan mur harus dilakukan dengan teliti untuk mendapatkan ukuran yang sesuai, untuk menentukan baut dan mur faktor yang harus diperhatikan adalah sifat gaya yang bekerja pada baut, cara kerja, kekuatan bahan, dan sebagainya.

Adapun tipe – tipe baut adalah sebagai berikut:

a. Baut Kepala Heksagonal

Baut kepala heksagonal adalah tipe baut yang paling umum. Beberapa diantaranya memiliki *flange* dan *washer* dibawah kepala baut.

Gambar 2.6 Baut Kepala Heksagonal

1) Tipe *Flange*

Gambar 2.7 Baut Kepala Heksagonal Tipe Flange

Bagian kepala baut yang mengalami kontak dengan part memiliki permukaan yang lebar untuk meredam tekanan kontak yang digunakan kembali oleh kepala baut pada part. Oleh karena itu, ia lebih efektif dalam meminimalkan kemungkinan merusak part.

2) Tipe Washer

Gambar 2.8 Baut Kepala Heksagonal Tipe Washer

Keefektifannya serupa dengan tipe *flange*. Ia juga efektif saat digunakan untuk mengencangkan part yang memiliki lubang dengan diameter yang lebih lebar daripada kepala baut. Tipe ini menggunakan *washer* pegas diantara kepala baut dan *washer* untuk meminimalkan pengendoran baut.

b. Baut U

Gambar 2.9 Baut U

Baut – baut ini digunakan untuk menyambungkan pegas – pegas daun pada *axle*. Mereka disebut "Baut U" karena bentuknya menyerupai huruf U".

c. Baut Tanam

Gambar 2.10 Baut Tanam

Baut – baut ini digunakan untuk mencari part pada part lain atau untuk memudahkan prakitannya.

d. Baut Plastic Region

Gambar 2.11 Baut Plastic Region

Baut *plastic* region yang menawarkan stabilitas dan tegangan axial yang tinggi, digunakan sebagai baut kepala slinder dan baut – baut tutup bantalan pada beberapa mesin. Kepala baut memiliki dan luar dodecagon (dalam dan luar).

e. Mur Heksagonal

Gambar 2.12 Mur Heksagonal

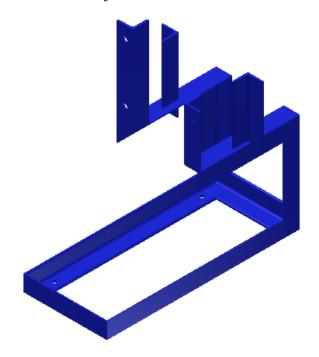
Mur tipe ini adalah yang paling umum digunakan. Beberapa diantaranya memiliki *flange* dibawah mur.

f. Mur Tertutup

Gambar 2.13 Mur Tertutup

Mur ini digunakan sebagai mur – mur hub roda aluminium dan memiliki tutup yang menutup alur – alurnya. Mur ini digunakan untuk mencegah agar ujung – ujung baut tidak berkarat atau untuk tujuan estetika.

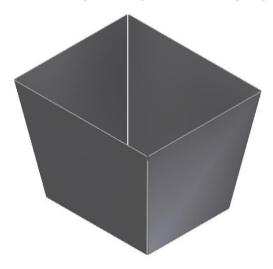
g. Castle Nut (Mur Bergalur)



Gambar 2.14 *Castle Nut* (Mur Bergalur)

Mur ini memiliki galur slinder bergalur yang berfungsi untuk mencegah agar mur tidak berputar dan menjadi kendor, sebuah cotter pin dimasukkan ke dalam galur. Mur ini digunakan pada berbagai macam persambungan, seperti pada sistem kemudi.

5. Kerangka


Kerangka berfungsi untuk menahan berat beban keseluruhan dari komponen yang terdapat pada alat ini. Bahan yang digunakan pada kerangka adalah Besi siku jenis ISO 657-1 L25x25x3.

Gambar 2.15 Kerangka

6. Wadah Hasil Parutan

Wadah Hasil Parutan berfungsi sebagai penampung hasil pemarutan dan pengarah hasil pemarutan. Wadah hasil pemarutan dibuat dari pelat yang dibentuk sedemikian rupa dan menggunakan bahan pelat stanless steel agar hasil pemarutan tetap higeinis.

Gambar 2.16 Wadah Hasil Parutan

7. *Body* Pemarut

Body pemarut dibuat dari pelat stainless steel yang dibuat sedemikian rupa dan diikat dengan baut pada rangka. Body pemarut digunakan untuk menahan dan mengarahkan hasil parutan agar tidak menyebar atau berserakan ke mana-mana.

Gambar 2.17 Body Pemarut

8. Tutup Motor

Tutup Motor dibuat dari pelat ST 37 yang diikat dengan baut pada motor mesin cuci dan berfungsi untuk melindungi kabel – kabel dari percikan air maupun hasil parutan pada saat proses pemarutan terjadi, serta tutup motor ini berfungsi sebagai estetika.

Gambar 2.18 Tutup Motor

2.2 Jenis – Jenis Pengerjaan Yang Terjadi

Berdasarkan proses pengerjaannya, rancang bangun yang digunakan pada alat ini, yaitu:

2.2.1 Cutting

Cutting adalah suatu proses pengerjaaan yang dilakukan dengan cara menghilangkan sebagian material atau pemotongan menjadi bentuk yang sesuai dengan keinginan. Adapun jenis – jenis mesin potong yaitu:

1. Gunting Tuas

Gunting tuas terdiri dari:

a. Gunting Tuas Bangku

Gunting ini dapat memotong pelat setebal 3,25 mm sepanjang lebih kurang 20 cm dan biasanya dipasang diatas meja. Gunting ini dibuat dari baja karbon yang dikeraskan.

Gambar 2.19 Gunting Tuas Bangku

 Gunting Tuas Kombinasi
 Gunting ini dapat digunakan untuk memotong besi beton sampai diameter 9 mm, baja pelat sampai ketebalan 6 mm, baja setrip, dan baja siku.

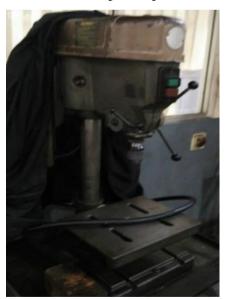
2. Mesin Potong Guillotine

Gunting ini terdiri dari dua macam yaitu:

a. Mesin Potong Guillotine Pedal
 Gunting ini digunakan untuk memotong pelat sepanjang 1,05 mm
 dengan ketebalan pelat 1,5 mm.

Gambar 2.20 Mesin Potong Guillotine Pedal

b. Mesin Potong Guillotine Tenaga (*Power*)


Gunting ini mempunyai kapasitas pemotongan bermacam – macam mulai dari 3,25 mm – 13 mm bahkan lebih.

Gambar 2.21 Mesin Potong Guillotine Tenaga (Power)

2.2.2 Drilling

Drilling merupakan proses yang digunakan untuk membuat suatu lubang pada benda kerja yang solid. Drilling juga terjadi pada pembuatan kerangka mesin, dudukan motor, dan penutup motor.

Gambar 2.22 Mesin Bor

2.2.3 Bending

Bending merupakan proses penekukan atau pembengkokan dengan sudut tertentu menggunakan alat bending manual maupun menggunakan menggunakan mesin bending dengan cara memberi tekanan pada bagian tertentu sehingga terjadi deformasi plastis pada bagian yang diberi tekanan.

Gambar 2.23 Mesin Bending

Proses bending yang terjadi pada proses pembuatan mesin pemarut serbaguna yaitu kerangka mesin, tutup motor, dan wadah hasil parutan.

2.2.4 Pengelasan

Pengelesan merupakan salah salah satu teknik penyambungan logam dengan cara mencairkan sebagian logam induk dan logam pengisi dengan atau tanpa tekanan dan dengan atau tanpa logam penambah dan menghasilkan sambungan yang kontinyu. Pegelasan yang terjadi pada rancang bangun ini yaitu:

1. Las Listrik

Las listrik adalah salah satu cara menyambung logam dengan jalan menggunakan nyala busur listrik yang diarahkan ke permukaan logam yang akan disambung. Pada bagian yang terkena busur listrik tersebut akan mencair, demikian juga elektroda yang menghasilkan busur listrik akan mencair pada ujungnya dan merambat terus sampai habis. Logam cair dari elektroda dari sebagian benda yang akan disambung tercampur dan mengisi celah dari kedua logam yang akan disambung, kemudian membeku dan tersambunglah kedua logam tersebut.

Adapun hal – hal yang perlu diperhatikan pada las listrik adalah sebagai berikut:

a. Elektroda Las

Elektroda yang digunakan dapat lebih baik membentuk busur listrik dan kampuh las. Elektroda juga digolongkan dalam beberapa jenis elektroda tergantung maksud dan tujuannya, misalnya: menyambung, memotong, membentuk kembali dan memperkuat permukaan.

b. Pembalut Elektroda

Elektroda las listrik untuk pengelasan harus dilindungi dengan pembalut elektroda, untuk hal ini maka pembalut elektroda seharusnya mampu memenuhi syarat sebagai berikut:

- 1) Mampu untuk pengelasan semua posisi,
- 2) Dengan praktis membentuk kampuh las,
- 3) Terak mudah dibuang dan dibersihkan,
- 4) Titik lebur yang tinggi,
- 5) Sifat sifat mekanik yang tinggi pada kampuh las.

c. Besar Arus Listrik

Tabel 2.3 Besar Arus dalam Ampere dan Diameter (mm)

Diameter	Tipe Elektroda dan Besarnya Arus dalam Ampere					
Elektroda	E 6010	E 6014	E 7018	E 7024	E 7027	E 7028
dalam						
(mm)						
2,5		80-125	70-100	100-145		
3,2	80-120	110-160	115-165	140-190	125-185	140-190
4	120-160	150-210	160-220	180-260	180-240	180-250
5	160-200	200-275	200-275	230-305	210-300	230-305
5,5		260-340	260-340	275-285	250-350	275-365
6,3		330-415	315-400	335-430	300-420	335-430
8		390-500	375-470			

Sumber: Fenoria Putri (2014)

d. Busur Las Listrik

Sebuah busur listrik dihasilkan dalam celah, antara dua buah elektroda dalam bentuk batang logam pengisi dan benda kerja. Selain itu, suhu busur listrik tergantung pada tempat titik pengukurannya. Misalnya pada ujung elektroda bersuhu 3400°C, tetapi pada benda kerja mencapai suhu 4000°C. Busur listrik arus searah menghasilkan suhu pada kutub (+) positif 4000°C - 6000°C lebih tinggi dari pada kutub (-) negatif.hal itulah yang menjadi alasan mengapa kutub positif dipasang pada benda kerja. Dengan arus bolak – balik, temperatur busur listrik pada benda kerja juga lebih tinggi daripada ujung elektrodanya.

e. Mesin Las Listrik

Gambar 2.24 Mesin Las Listrik

Persyaratan dari proses SMAW adalah persediaan yang kontinyu pada arus listrik dengan jumlah ampere dan voltage yang cukup baik kestabilan api las (Arc) akan tetap terjaga. Jenis arus yang dikeluarkan terdapat 3 jenis mesin yaitu:

1) Mesin Arus Searah (DC)

Pada mesin arus searah (DC) dilengkapi dengan komponen yang merubah sifat arus bolak balik (AC) menjadi arus searah (DC) yaitu generator, karena arus listrik yang dipakai disini bukan berasal dari baterai melainkan daru generator listrik.

2) Mesin Arus Bolak Balik (AC)

Mesin arus bolak balik (AC) tidak perlu dilengkapi dengan generator, tetapi cukup dengan transformator. Karakteristik effisiensi listriknya yaitu 80 - 85%.

3) Mesin Kombinasi Arus

Mesin kombinasi arus adalah gabungan mesin antara arus searah (DC) dan arus bolak balik (AC). Untuk mesin kombinasi arus mempunyai fungsi untuk meratakan arus.

2. Las Titik

Las titik adalah jenis las resistansi listrik yang dikembangkan setelah energi listrik dapat dipergunakan dengan mudah, yang merupakan suatu teknik penyambungan yang ekonomis dan efisien khususnya untuk pengerjaan logam plat. Pada las titik, benda kerja plat (logam) yang akan di sambungkan di jepit dengan kawat las dari paduan tembaga dan kemudian dalam waktu singkat dialirkan arus listrik yang besar. Karena aliran listrik antara kedua kawat las tersebut harus melalui (logam) plat yang di jepit, maka timbul panas pada tempat jepitan yang menyebabkan logam di tempat tersebut mencair dan tersambung. Pada tempat kontak antara kawat las dan plat logam juga terjadi panas karena tahanan listrik, tetapi tidak sampai mencairkan logam karena ujung-ujung kawat las didinginkan.

Gambar 2.25 Mesin Las Titik

2.3 Dasar – Dasar Perhitungan

Dalam rancang bangun mesin pemarut serbaguna ini dibutuhkan dasar – dasar perhitungan yang menggunakan rumus – rumus sebagai berikut :

2.3.1 Perhitungan Daya Motor

Untuk menghitung daya pada motor perlu diketahui torsi. Menurut (Sani, 2014:):

 $T = Fr \times 1$(Almadora Anwar Sani, 2014:2)

Keterangan:

T = Torsi (kg.mm)

Fr = Gaya (kg)

L = Panjang Gesekan (mm)

Setelah didapatkan torsi, untuk menghitung daya motor menggunakan rumus sebagai berikut:

$$P = \frac{(T/1000)(2\pi n/60)}{102}$$
....(Sularso, 1991:7)

Keterangan:

T = Torsi yang dipakai pada slinder parut (kg)

P = Daya yang diperlukan (KW)

n = Putaran poros parut direncanakan (rpm)

Jika faktor koreksi adalah f_c , maka daya yang direncanakan adalah:

$$P_d = P. f_c$$
....(Sularso, 1991:7)

Keterangan:

 P_d = Daya rencana (KW)

 f_c = Faktor Koreksi (fakor koreksi ditentukan berdasarkan Tabel 3.)

Tabel 2.4 Faktor – Faktor Koreksi Daya yang akan Ditransmisikan

Daya Yang Dibutuhkan	F_{C}
Daya rata – rata yang diperlukan	1,2-2,0
Daya maksimum yang diperlukan	0,8 – 1,2
Daya normal	1,0 – 1,5

Sumber: Sularso (1991)

2.3.2 Perhitungan Diameter Poros

Untuk menghitung diameter poros, perlu diketahui tegangan geser (τ) yang terjadi yaitu:

$$\tau = \frac{T}{(\pi ds^3/16)} = \frac{5.1T}{ds^3}$$
 (Sularso, 1991:7)

Keterangan:

 $\tau = \text{Tegangan Geser (kg/mm}^2)$

ds = Diameter Poros (mm)

Setelah mendapatkan tegangan geser yang dibutuhkan selanjutnya mencari tegangan geser yang diijinkan (τ_a) . Maka besar (τ_a) dapat dihitung :

$$\tau_a = \sigma_b / (Sf_1 \times Sf_2)$$
(Sularso, 1991:8)

Keterangan:

 $\tau_a = Tegangan Ijin (kg/mm^2)$

 Sf_1 = Faktor Koreksi Satu

(untuk bahan SF maka $Sf_1=5.6$ sedangkan untuk bahan S-C maka $Sf_1=6.0$)

 Sf_2 = Faktor Koreksi Dua

(harga Sf_2 sebesar 1,3 sampai 3,0)

Dari hal diatas, maka rumus untuk menghitung diameter poros sebagai berikut:

$$d_s = \left[\frac{5.1}{\tau_a} K_t C_b T\right]^{1/3}$$
....(Sularso, 1991:8)

Keterangan:

 d_s = Diameter Poros (mm)

K_t = Faktor Koreksi

- Jika beban dikenakan halus, $K_t = 1.0$
- Jika terjadi sedikit kejutan atau tumbukan, $K_t = 1.0 1.5$
- Jika terjadi kejutan atau tumbukan, $K_t = 1.5 3$,

 C_b = Faktor Lentur

(harga C_b sebesar 1,2 sampai 2,3. Jika diperkirakan tidak tejadi beban lentur makan C_b sebesar 1,0)

2.3.3 Kekuatan Baut

Pada bab ini perhitungan kekuatan baut terbagi menjadi dua yaitu: kekuatan baut pada dudukan motor dan kekuatan baut pada slinder pemarut.

1. Kekuatan Baut Pada Dudukan Motor

Untuk mengikat dudukan motor digunakan 4 buah baut yaitu baut M6 dari bahan ST 37 yang memiliki kekuatan tarik 37 kg/mm², faktor keamanan yang diambil adalah V=4 rumus yang digunakan yaitu :

$$\overline{\tau}_g = \frac{0.5 \text{ st}}{v}....(Sularso, 1991:297)$$

Keterangan:

 $\bar{\tau}_g$ = Tegangan Geser Ijin (kg/mm²)

v = Faktor keamanan

Dengan geser baut yang terjadi yaitu

$$\tau_g = \frac{W}{\pi d_1 kpz}....(Sularso, 1991:297)$$

Keterangan:

 $\tau_g = \text{Tegangan Geser Baut (kg/mm}^2)$

W = Beban Motor (kg)

 $d_1 = Diameter Dalam (mm)$

k = Konstanta Ulir Metrik (Konstanta yang digunakan yaitu 0,84)

p = Jarak Bagi (mm)

z = Jumlah Ulir

2. Kekuatan Baut Pada *Pulley* Pemarut

Untuk mengikat *pulley* pemarut digunakan 1 buah baut M4 dari bahan ST 37 yang memiliki kekuatan tarik 37 Kg/mm², faktor keamanan yang diambil adalah V=4 rumus yang digunakan yaitu :

$$\tau_g = \frac{0.5 \text{ st}}{v}$$
....(Sularso, 1991:297)

Keterangan:

 $\tau_g = Tegangan \; Geser \; Ijin \; (kg/mm^2)$

V = Faktor keamanan

Dengan geser baut yang terjadi yaitu

$$\overline{\tau}_g = \frac{W}{\pi d_1 kpz}.$$
 (Sularso, 1991:297)

Keterangan:

 $\overline{\tau}_g = Tegangan \; Geser \; Baut \; (kg/mm^2)$

W = Beban Motor (kg)

 $d_1 = Diameter Dalam (mm)$

k = Konstanta Ulir Metrik (Konstanta yang digunakan yaitu 0,84)

p = Jarak Bagi (mm)

z = Jumlah Ulir

2.4 Perhitungan Waktu Permesinan

Dalam mendesain satu unit mesin pemarut serbaguna ini, maka perhitungan waktu permesinan yang digunakan adalah sebagai berikut :

2.4.1 Perhitungan Waktu Pada Mesin Bor

Untuk menghitung waktu permesinan pada mesin bor, adapun rumus yang digunakan antara lain sebagai berikut:

1. Kecepatan putaran mesin bor :

$$n = \frac{1000.vc}{\pi.d}$$
 (Fenoria Putri, 2014:83)

2. Kedalaman Pemakanan

$$L = l + 0.3$$
. d(Fenoria Putri, 2014:83)

3. Waktu Permesinan:

$$Tm = \frac{L}{Sr \times n}$$
 (Fenoria Putri, 2014:83)

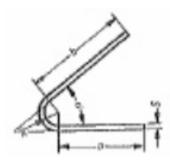
Keterangan

Vc = Kecepatan Potong (m/menit)

d = Diameter Pisau (mm)

n = Putaran Mesin (rpm)

Tm = Waktu Permesinan (min)


L = Panjang Kedalaman Pemakanan (mm)

l = Panjang Pemakanan (mm)

Sr = Kecepatan Pemakanan (mm/putaran)

2.4.2 Perhitungan Pada Proses Bending

Untuk menghitung proses *bending*, adapun rumus yang digunakan antara lain sebagai berikut:

Gambar 2.26 Bending

 $L = a + (R + q \times s/2) \frac{\pi \alpha}{180}$(Hermann Jutz dan Eduard Scharkus :118)

Keterangan

L = Panjang Pelat/ Flat Blank Length (mm)

a, b = Panjang Pelat Yang Tidak Di*bending* (mm)

R = Radius Bending (mm)

q = Faktor Koreksi

s = Tebal Pelat (mm)

 α = Sudut *Bending*

2.4.3 Perhitungan Waktu Pada Proses Pengelasan

Untuk menghitung proses pengelesan, adapun rumus yang digunakan antara lain sebagai berikut:

Tm Total = Banyak Elektroda x Waktu Pengelasan