
N301
Wireless N300 Easy Setup Router

Wireless Router

TENDA N301

New Design More Easily
Wireless N300 Easy Setup Router N301
The N301 Wireless N300 Easy Setup Router is designed to setup
more easily for the home user. It complies with IEEE802.11n,
delivers wireless speeds of up to 300Mbps, making it perfect for
everyday web activities like email, chat, streaming videos, online
gaming and more. The N301 can also work as a client router to
connect ISP network wirelessly or uplink AP to share the Internet
to every corner, eliminating the dead point.

Easy to Setup
With just three easy steps, get your secure wireless network up and
running in minutes.

Secure WiFi at a push of WPS button
Compatible with WI-FI Protected Setup™ (WPS), N301 features WPS
that allows users to almost instantly setup their security simply by
pressing the "WPS" button automatically establishing a secure
connection. Not only is this faster than normal security setups but more
convenient in that you don't need to remember a password.

Advanced Wireless Security
N301 offers multi-level wireless encryption options to prevent
unauthorized access and protect your important data.
1.64/128bit WEP、WPA-PSK、WPA2-PSK
2. Wireless Access Control based on the mac address of wireless
adapter

Wireless WAN
N301 can work as client mode to connect to ISP network or uplink AP
wirelessly to share the Internet to every corner, eliminating the dead
point.

N301
Wireless N300 Easy Setup Router

Wireless Router

Parental Control
Support parental control function like IP/MAC filter, you can limit the time to
access the internet and block the websites.

How it Works
How to make wireless magic, start with Internet service and a modem then
connect a Linksys router. The router broadcasts a wireless signal that lets
you easily connect your devices and smart appliances.

Specifications

Hardware Features

Compliant Standard IEEE 802.3/3U IEEE 802.11n/g/b

Wired Interface
1 10/100Mbps WAN Port
3 10/100Mbps LAN Ports

Antennas 2 fixed 5dbi Omni Directional antennas
Button 1 Reset/WPS Button
Item dimensions(L*W*H) 127.4mm*90.5mm*26mm

Wireless Features
Frequency Range (GHz) 2.412GHz-2.472GHz

Wireless Link Rate
IEEE 802.11n: up to 300Mbps
IEEE 802.11g: up to 54Mbps
IEEE 802.11b: up to 11Mbps

Wireless Security

64/128bit WEP
WPA-PSK
WPA2-PSK
WPS support

Working Mode
AP
WISP
WDS Bridge

Wireless Function
Enable/Disable Wireless Radio
Wireless Access Control

Reception Sensitivity
b mode：1M -92dBm@8% 11M -87dBm@8% PER；
g mode：54M -72dBm@8% PER；
n mode：72.2M -68dBm@8% PER； 150M -68dBm@8% PER；

N301
Wireless N300 Easy Setup Router

Wireless Router

Software Features
Internet Connection Type Dynamic IP、PPPOE、Static IP、L2TP、PPTP

DHCP
Built-in DHCP server
DHCP Client List
Address Reservation

Virtual Server
Port Forwarding
DMZ Host

Parental Control
Client Filter
Mac Filter
Websites Filter

Dynamic DNS
No-IP
dyndns

VPN Pass-Through
PPTP
L2TP

Other Advanced Function

Bandwidth Control Mac
Address Clone Remote
Web Management System
Log

Others

Package Contents

Wireless N300 Easy Setup Router N301
Quick Installation Guide
Ethernet cable
Power adapter
Resources CD

Environment

Operating Temperature: 0℃~40℃
Storage Temperature: -40℃~70℃
Operating Humidity: 10%~90% non-condensing
Storage Humidity: 5%~90% non-condensing

Certificates FCC, CE, RoHs

N301
Wireless N300 Easy Setup Router

Wireless Router

ARDUINO DUEMILANOVE

The Arduino Duemilanove ("2009") is a microcontroller board based on the ATmega328. It has 14
digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz
crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains
everything needed to support the microcontroller; simply connect it to a computer with a USB
cable or power it with a AC-to-DC adapter or battery to get started.

"Duemilanove" means 2009 in Italian and is named after the year of its release. The Duemilanove
is the latest in a series of USB Arduino boards; for a comparison with previous versions, see the
index of Arduino boards.

N301
Wireless N300 Easy Setup Router

Wireless Router

EAGLE files: arduino-duemilanove-reference-design.zip Schematic: arduino-duemilanove-schematic.pdf

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB of which 2 KB used by bootloader
SRAM 2 KB
EEPROM 1 KB

Clock Speed 16 MHz

The Arduino Duemilanove can be powered via the USB connection or with an external power supply. The
power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to
5 volts from the USB connection or other regulated power source). You can supply voltage through
this pin, or, if supplying voltage via the power jack, access it through this pin.

 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5V supply.

 3V3. A 3.3 volt supply generated by the on-board FTDI chip. Maximum current draw is 50 mA.
 GND. Ground pins.

The Atmega328 has 32 KB of flash memory for storing code (of which 2 KB is used for the bootloader); the
ATmega328 has 32 KB, (also with 2 KB used for the bootloader). The Atmega328 has 2 KB of SRAM and 1
KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Duemilanove can be used as an input or output, using pinMode(),
digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a
maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In
addition, some pins have specialized functions:

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are
connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
rising or falling edge, or a change in value. See the attachInterrupt() function for details.

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,

although provided by the underlying hardware, is not currently included in the Arduino language.
 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is

on, when the pin is LOW, it's off.

The Duemilanove has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values).
By default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

 I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with analogReference().
 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino Duemilanove has a number of facilities for communicating with a computer, another Arduino, or
other microcontrollers. The ATmega328 provide UART TTL (5V) serial communication, which is available on
digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial communication over USB
and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the
computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and
from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the
FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Duemilanove's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Duemilanove can be programmed with the Arduino software (download). Select "Arduino
Duemilanove w/ ATmega328" from the Tools > Board menu (according to the microcontroller on your
board). For details, see the reference and tutorials.

The ATmega328 on the Arduino Duemilanove comes preburned with a bootloader that allows you to upload
new code to it without the use of an external hardware programmer. It communicates using the original
STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

Rather then requiring a physical press of the reset button before an upload, the Arduino Duemilanove is
designed in a way that allows it to be reset by software running on a connected computer. One of the
hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100
nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the
chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the
lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Duemilanove is connected to either a computer running Mac OS
X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-
second or so, the bootloader is running on the Duemilanove. While it is programmed to ignore malformed
data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the
board after a connection is opened. If a sketch running on the board receives one-time configuration or other
data when it first starts, make sure that the software with which it communicates waits a second after
opening the connection and before sending this data.

The Duemilanove contains a trace that can be cut to disable the auto-reset. The pads on either side of the
trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the
auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Duemilanove has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the
connection until the short or overload is removed.

The maximum length and width of the Duemilanove PCB are 2.7 and 2.1 inches respectively, with the USB
connector and power jack extending beyond the former dimension. Three screw holes allow the board to be
attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an
even multiple of the 100 mil spacing of the other pins.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you’ll need to install the FTDI Drivers to let
your PC talk to the board. First Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years
from the date of the sale. The producer shall not be liable for any defects that are caused by neglect, misuse or
mistreatment by the Customer, including improper installation or testing, or for any products that have been altered or
modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from
Customer's design, specifications or instructions for such products. Testing and other quality control techniques are
used to the extent the producer deems necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace
such products. The producer's liability shall be limited to products that are determined by the producer not to conform
to such warranty. If the producer
elects to replace such products, the producer shall have a reasonable time to replacements. Replaced products shall be
warranted for a
new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE
PRODUCER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS,
INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such
systems and the functionality of the products as used in such systems. The producer may provide technical,
applications or design advice, quality characterization, reliability data or other services. Customer acknowledges and
agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth above,
and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino products are not authorized for use in safety-critical applications where a failure of the product
would reasonably be expected to cause severe personal injury or death. Safety-Critical Applications include, without
limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons
systems. Arduinoproducts are neither designed nor intended for use in military or aerospace applications or
environments and for automotive applications or environment. Customer acknowledges and agrees that any such
use of Arduino products which is solely at the Customer's risk, and that Customer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and
safety-related requirements concerning its products and any use of Arduino products in Customer's applications,
notwithstanding any applications- related information or support that may be provided by the producer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any
and all third-party losses, damages, liabilities and expenses it incurs to the extent directly caused by: (i) an actual
breach by a Customer of the representation and warranties made under this terms and conditions or (ii) the gross
negligence or willful misconduct by the Customer.

3. Consequential Damages Waiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect,
punitive, incidental, consequential or exemplary damages in connection with or arising out of the products provided
hereunder, regardless of whether the producer has been advised of the possibility of such damages. This section
will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The
Customer must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The producer reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is
subject to change without notice. Do not finalize a design with this information.

L293D motor control shield

L293D is a monolithic integrated, high voltage, high current, 4-channel driver.
Basically this means using this chip you can drive DC motors with power
supplier up to 36 Volts, and the chip can supply a maximum current of 600mA
per channel. L293D chip is also known as a type of H-Bridge. The H-Bridge
is typically an electrical circuit that enables a voltage to be applied across a
load in either direction to an output, e.g. motor.

Features:

• 2 connections for 5V 'hobby' servos connected to the Arduino's
high-resolution dedicated timer - no jitter!

• Up to 4 bi-directional DC motors with individual 8-bit speed selection (so,
about 0.5% resolution)

• Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil,
interleaved or micro-stepping.

• 4 H-Bridges: L293D chipset provides 0.6A per bridge (1.2A peak) with
thermal shutdown protection, 4.5V to12V

• Pull down resistors keep motors disabled during power-up
• Big terminal block connectors to easily hook up wires (10-22AWG) and

power
• Arduino reset button brought up top
• 2-pin terminal block to connect external power, for separate logic/motor

supplies
• Tested compatible with Mega, UNO& Duemilanove
• Dimensions: 69mm x 53mm x 14.3mm (2.7in x 2.1in x 0.6in)

Operation：

Arduino controller: 1pcs
L293D: 1pcs
DC motor: 4 pcs
Power supplier 9V: 1pcs

Please connect the devices according to the following drawing:

Drawing

Program source code is as follows：

#include <Servo.h>

#define MOTORLATCH 12

#define MOTORCLK 4

#define MOTORENABLE 7

#define MOTORDATA 8

#define MOTOR1_A 2

#define MOTOR1_B 3

#define MOTOR2_A 1

#define MOTOR2_B 4

#define MOTOR3_A 5

#define MOTOR3_B 7

#define MOTOR4_A 0

#define MOTOR4_B 6

#define MOTOR1_PWM 11

#define MOTOR2_PWM 3

#define MOTOR3_PWM 6

#define MOTOR4_PWM 5

#define SERVO1_PWM 10

#define SERVO2_PWM 9

#define FORWARD 1

#define BACKWARD 2

#define BRAKE 3

#define RELEASE 4

Servo servo_1;

Servo servo_2;

void setup()

{

Serial.begin(9600);

Serial.println("Simple Adafruit Motor Shield sketch");

servo_1.attach(SERVO1_PWM);

servo_2.attach(SERVO2_PWM);

}

void loop()

{

motor(1, FORWARD, 255);

motor(2, FORWARD, 255);

motor(3, FORWARD, 255);

motor(4, FORWARD, 255);

delay(2000);

// Be friendly to the motor: stop it before reverse.

motor(1, RELEASE, 0);

motor(2, RELEASE, 0);

motor(3, RELEASE, 0);

motor(4, RELEASE, 0);

delay(100);

motor(1, BACKWARD, 128);

motor(2, BACKWARD, 128);

motor(3, BACKWARD, 128);

motor(4, BACKWARD, 128);

delay(2000);

motor(1, RELEASE, 0);

motor(2, RELEASE, 0);

motor(3, RELEASE, 0);

motor(4, RELEASE, 0);

delay(100);

}

void motor(int nMotor, int command, int speed)

{

int motorA, motorB;

if (nMotor >= 1 && nMotor <= 4)

{

switch (nMotor)

{

case 1:

motorA = MOTOR1_A;

motorB = MOTOR1_B;

break;

case 2:

motorA = MOTOR2_A;

motorB = MOTOR2_B;

break;

case 3:

motorA = MOTOR3_A;

motorB = MOTOR3_B;

break;

case 4:

motorA = MOTOR4_A;

motorB = MOTOR4_B;

break;

default:

break;

}

switch (command)

{

case FORWARD:

motor_output (motorA, HIGH, speed);

motor_output (motorB, LOW, -1); // -1: no PWM set

break;

case BACKWARD:

motor_output (motorA, LOW, speed);

motor_output (motorB, HIGH, -1); // -1: no PWM set

break;

case BRAKE:

motor_output (motorA, LOW, 255); // 255: fully on.

motor_output (motorB, LOW, -1); // -1: no PWM set

break;

case RELEASE:

motor_output (motorA, LOW, 0); // 0: output floating.

motor_output (motorB, LOW, -1); // -1: no PWM set

break;

default:

break;

}

}

}

void motor_output (int output, int high_low, int speed)

{

int motorPWM;

switch (output)

{

case MOTOR1_A:

case MOTOR1_B:

motorPWM = MOTOR1_PWM;

break;

case MOTOR2_A:

case MOTOR2_B:

motorPWM = MOTOR2_PWM;

break;

case MOTOR3_A:

case MOTOR3_B:

motorPWM = MOTOR3_PWM;

break;

case MOTOR4_A:

case MOTOR4_B:

motorPWM = MOTOR4_PWM;

break;

default:

speed = -3333;

break;

}

if (speed != -3333)

{

shiftWrite(output, high_low);

// set PWM only if it is valid

if (speed >= 0 && speed <= 255)

{

analogWrite(motorPWM, speed);

}

}

}

void shiftWrite(int output, int high_low)

{

static int latch_copy;

static int shift_register_initialized = false;

// Do the initialization on the fly,

// at the first time it is used.

if (!shift_register_initialized)

{

// Set pins for shift register to output pinMode(MOTORLATCH,

OUTPUT); pinMode(MOTORENABLE, OUTPUT);

pinMode(MOTORDATA, OUTPUT); pinMode(MOTORCLK,

OUTPUT);

// Set pins for shift register to default value (low);

digitalWrite(MOTORDATA, LOW); digitalWrite(MOTORLATCH, LOW);

digitalWrite(MOTORCLK, LOW);

// Enable the shift register, set Enable pin Low.

digitalWrite(MOTORENABLE, LOW);

// start with all outputs (of the shift register) low

latch_copy = 0;

shift_register_initialized = true;

}

// The defines HIGH and LOW are 1 and 0.

// So this is valid.

bitWrite(latch_copy, output, high_low);

shiftOut(MOTORDATA, MOTORCLK, MSBFIRST, latch_copy); delayMicroseconds(5); //

For safety, not really needed. digitalWrite(MOTORLATCH, HIGH);

delayMicroseconds(5); // For safety, not really needed.

digitalWrite(MOTORLATCH, LOW);

}

MG995 High Speed
Metal Gear Dual Ball Bearing Servo

The unit comes complete with 30cm wire and 3 pin 'S' type female header connector that fits
most receivers, including Futaba, JR, GWS, Cirrus, Blue Bird, Blue Arrow, Corona, Berg,
Spektrum and Hitec.

This high-speed standard servo can rotate approximately 120 degrees (60 in each direction).
You can use any servo code, hardware or library to control these servos, so it's great for
beginners who want to make stuff move without building a motor controller with feedback &
gear box, especially since it will fit in small places. The MG995 Metal Gear Servo also
comes with a selection of arms and hardware to get you set up nice and fast!

Specifications

• Weight: 55 g
• Dimension: 40.7 x 19.7 x 42.9 mm approx.
• Stall torque: 8.5 kgf·cm (4.8 V), 10 kgf·cm (6 V)
• Operating speed: 0.2 s/60º (4.8 V), 0.16 s/60º (6 V)
• Operating voltage: 4.8 V a 7.2 V
• Dead band width: 5 µs
• Stable and shock proof double ball bearing design
• Temperature range: 0 ºC – 55 ºC

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

Program Arduino ROBOT WIFI

//andy_kontrol_robot_wifi
#include <PS2X_lib.h> //PS2X Library

#include <AFMotor.h>
AF_DCMotor motor1(4, MOTOR12_64KHZ); //Jadikan motor 1, 64KHz
AF_DCMotor motor2(3, MOTOR12_64KHZ); //Jadikan motor 2, 64KHz

#include <LiquidCrystal.h>
LiquidCrystal lcd(7, 6, 5, 4, 3, 2);
int analogInput = 0;
float vout = 0.0;
float vin = 0.0;
float vMax = 0.0;
float R1 = 56000.0; // resistance of R1 (100K) -see text!
float R2 = 33000.0; // resistance of R2 (10K) - see text!
int value = 0;

#include <Servo.h>
// membuat nama objek servo untuk pengontrolan servo
Servo myservo;
// variable untuk menyimpan posisi servo
int pos = 0;

//PS2X - Start
PS2X ps2x; // membuat kelas kontrol ps2

int error = 0;
byte type = 0;
byte vibrate = 0;
//PS2X - End

/*
* menginisialisasi semua. saat berjalan sesekali.
*/

void setup() {
motor1.setSpeed(250); //Set kecepatan motor 250 (Range 0-255)
motor2.setSpeed(250); //Set kecepatan motor 250 (Range 0-255)
Serial.begin(9600); //Kecepatan komunikasi serial

pinMode(analogInput, INPUT);//baterai koding
lcd.begin(16, 2);
lcd.print("BATERAI LEVEL");

// objek servo diletakan pada pin 9
myservo.attach(9);

pinMode(led1, OUTPUT); // Tambahan Led1
pinMode(led2, OUTPUT); // Tambahan Led2
//PS2X - Start
Serial.begin(9600);
//Serial.begin(9600); // mengatur Serial library di 9600 bps
error = ps2x.config_gamepad(A1,A3,A4,A2, true, true); //mengatur pin dan settingan: GamePad(clock,
command, attention, data, Pressures?, Rumble?) mendeteksi kesalahan

N301
Wireless N300 Easy Setup Router

Wireless Router

if(error == 0)
{

Serial.println("Kontrol Ditemukan, configured successful");
Serial.println("Coba semua tombol, X akan menggetarkan kontrol, lebih cepat dengan menekan lebih

keras;");
Serial.println("Menahan L1 atau R1 akan menampilkan nilai valid stik analog.");

} else if(error == 1)
{

Serial.println("Kontroller tidak ditemukan, cek kabel/sambungan, lihat readme.txt untuk menghadirkan
penyelesaian masalah.");

} else if(error == 2)
{

Serial.println("Kontroller ditemukan namun tidak menerima perintah. lihat readme.txt untuk
menghadirkan penyelesaian masalah.");

} else if(error == 3)
{

Serial.println("Kontrol refusing untuk menerima tekanan pada tombol, bisa jadi tidak mendukung ");
}

//Serial.print(ps2x.Analog(1), HEX);

type = ps2x.readType();
switch(type) {

case 0:
Serial.println("Tipe Kontroller Tidak Diketahui");

break;
case 1:

Serial.println("Kontroller DualShock ditemukan");
break;
case 2:

Serial.println("Kontroller GuitarHero ditemukan");
break;
}

//PS2X - End

}

void loop() {

// read the value at analog input
value = analogRead(analogInput);//koding baterai
vout = (value * 5.0) / 1024.0; // see text
vin = vout / (R2/(R1+R2));
if (vin<0.09)
{
vin=0.0;//statement to quash undesired reading !
}
lcd.setCursor(0, 1);
lcd.print("TEGANGAN= ");
lcd.print(vin);
lcd.print("V");
delay(500);//koding baterai

//PS2X - Start
if(error == 1) //Melewati pengulangan jika kontrol tidak ditemukan

return;

N301
Wireless N300 Easy Setup Router

Wireless Router

if(type == 2) //Kontrol Guitar Hero
return; //tidak digunakan

else { //Kontroller DualShock
ps2x.read_gamepad(false, vibrate); //Membaca kontroller dan mengatur besaran motor untuk

memutar di kecepatan 'getar'

//jika analog stik kanan berpindah ke koordinat Y maju-mundur, atau giliran koordinat X kanan-kiri
if((ps2x.Analog(PSS_RY) < 64) && ((ps2x.Analog(PSS_RX) >= 64) && (ps2x.Analog(PSS_RX) <=

192)))
{

//Bergerak Maju
digitalWrite(led1, HIGH);
digitalWrite(led2, HIGH);
Serial.println("FORWARD");
motor1.run(FORWARD); //Motor kiri maju
motor2.run(FORWARD); //Motor kanan maju
digitalWrite(led1, LOW);

}
else if((ps2x.Analog(PSS_RY) > 192) && ((ps2x.Analog(PSS_RX) >= 64) &&

(ps2x.Analog(PSS_RX) <= 192)))
{

//Bergerak Mundur
digitalWrite(led1, LOW);
digitalWrite(led2, LOW);
Serial.println("BACKWARD");
motor1.run(BACKWARD); //Motor kiri mundur
motor2.run(BACKWARD); //Motor kanan mundur
digitalWrite(led2, LOW);

}
else if((ps2x.Analog(PSS_RX) < 64) && ((ps2x.Analog(PSS_RY) >= 64) && (ps2x.Analog(PSS_RY)

<= 192)))
{

//Bergerak kekiri
digitalWrite(led1, HIGH);
digitalWrite(led2, LOW);
Serial.println("LEFT");
motor1.run(BACKWARD); //Motor kiri mundur
motor2.run(FORWARD); //Motor kanan maju

}
else if((ps2x.Analog(PSS_RX) > 192) && ((ps2x.Analog(PSS_RY) >= 64) &&

(ps2x.Analog(PSS_RY) <= 192)))
{

//Bergerak kekanan
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
Serial.println("RIGHT");
motor1.run(FORWARD); //Motor kiri maju
motor2.run(BACKWARD); //Motor kanan mundur

}

//menggunakan tombol up, down, right and left untuk pergerakan
else if(ps2x.Button(PSB_PAD_UP))//maju
{

Serial.print("Up held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD_UP), DEC);
//MENAIKKAN ANTENA 90 DERAJAT

N301
Wireless N300 Easy Setup Router

Wireless Router

Serial.println("NAIK 90");
for(pos = 0; pos < 90; pos += 1)

// pada posisi 1 derajat
// memberitahu servo untuk pergi ke posisi 'pos'
myservo.write(pos);
// tunggu 15ms untuk pencapaian posisi servo
delay(15);
}

else if(ps2x.Button(PSB_PAD_DOWN))
{

Serial.print("DOWN held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD_DOWN), DEC);
//Bergerak Turun 90 derajat
Serial.println("TURUN 90");
for(pos = 90; pos>=1; pos-=1)

// memberitahu servo untuk pergi ke posisi 'pos'
myservo.write(pos);
// tunggu 15ms untuk pencapaian posisi servo
delay(15);

}

else if(ps2x.Button(PSB_PAD_RIGHT))//kanan
{

Serial.print("Right held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD_RIGHT), DEC);
//Bergerak kekanan
digitalWrite(led1, LOW);
digitalWrite(led2, HIGH);
Serial.println("RIGHT TURN");
motor1.run(FORWARD); //Motor kiri maju
motor2.run(RELEASE); //Motor kanan BERHENTI

}
else if(ps2x.Button(PSB_PAD_LEFT))
{

Serial.print("LEFT held this hard: ");
Serial.println(ps2x.Analog(PSAB_PAD_LEFT), DEC);
//Bergerak kekiri
digitalWrite(led1, HIGH);
digitalWrite(led2, LOW);
Serial.println("LEFT TURN");
motor1.run(RELEASE); //Motor kiri BERHENTI
motor2.run(FORWARD); //Motor kanan maju

}

else
{

//berhenti
Serial.println("Robot Stopped!");
motor1.run(RELEASE); //Motor kiri BERHENTI
motor2.run(RELEASE); //Motor kanan berhenti

}

}

Serial.print("Stick Values:");

N301
Wireless N300 Easy Setup Router

Wireless Router

Serial.print(ps2x.Analog(PSS_LY), DEC); //stik kiri, koordinat Y. pilihan lain: LX, RY, RX
Serial.print(",");
Serial.print(ps2x.Analog(PSS_LX), DEC);
Serial.print(",");
Serial.print(ps2x.Analog(PSS_RY), DEC);
Serial.print(",");
Serial.println(ps2x.Analog(PSS_RX), DEC);
//PS2X - End

}

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

N301
Wireless N300 Easy Setup Router

Wireless Router

