

LAMPIRAN

Coding Pada Arduino Uno R3

/*

 Teleduino328EthernetClientProxy.ino - Teleduino328EthernetClientProxy example

 Version 328-0.6.9

 Nathan Kennedy 2009 - 2014

 http://www.teleduino.org

 This sketch is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

*/

#include <EEPROM.h>

#include <Servo.h>

#include <Wire.h>

#include <Teleduino328.h>

#include <SPI.h>

#include <Ethernet.h>

// User configurable variables

byteuseDhcp = true;

byteuseDns = true;

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddressdeviceIp(192, 168, 1, 100); // Only if useDhcp is false

IPAddressgatewayIp(192, 168, 1, 1); // Only if useDhcp is false

IPAddressdnsIp(192, 168, 1, 1); // Only if useDhcp is false

IPAddresssubnet(255, 255, 255, 0); // Only if useDhcp is false

IPAddressserverIp(173, 230, 152, 173); // Only if useDns is false

charserverName[] = "us01.proxy.teleduino.org"; // Only if useDns is true

unsignedintserverPort = 5353; // Can be set to either 53 or 5353

bytestatusLedPin = 8;

// User configurable key, this is used to authenticate with the proxy server

// This is checked against the EEPROM on boot and written if necessary

// The proxy server retreives the key from the EEPROM

byte key[] = { 0xC6, 0xBD, 0x91, 0x3B,

 0x56, 0x57, 0xE9, 0x35,

 0x55, 0x41, 0xEE, 0xBE,

 0x8C, 0xC2, 0xA3, 0x90 };

// Other required variables

byte data[257];

bytedataLength;

bytehexStage;

unsigned long lastInstruction = 0;

unsigned long lastRefresh = 0;

byte stage = 0;

// Declare client object

EthernetClient Client;

void setup()

{

 // Load presets

Teleduino328.loadPresets();

 // Set status LED pin

Teleduino328.setStatusLedPin(statusLedPin);

Teleduino328.setStatusLed(1); // Initialisation

 // Check the EEPROM header and check to see if the key is correct

 // This is to ensure the key is not cleared from the EEPROM

if(EEPROM.read(0) != '#')

 {

EEPROM.write(0, '#');

 }

if(EEPROM.read(1) != 0)

 {

EEPROM.write(1, 0);

 }

if(EEPROM.read(2) != '#')

 {

EEPROM.write(2, '#');

 }

if(EEPROM.read(160) != '#')

 {

EEPROM.write(160, '#');

 }

for(byte i = 0; i < 16; i++)

 {

if(EEPROM.read(161 + i) != key[i])

 {

EEPROM.write(161 + i, key[i]);

 }

 }

if(EEPROM.read(177) != '#')

 {

EEPROM.write(177, '#');

 }

 // Start network and attempt to connect to proxy server

Teleduino328.setStatusLed(2); // Network configuration

if(useDhcp)

 {

if(!Ethernet.begin(mac))

 {

Teleduino328.setStatusLed(2, false, 10000);

Teleduino328.reset();

 }

 }

else

 {

Ethernet.begin(mac, deviceIp, dnsIp, gatewayIp, subnet);

 }

delay(1000);

Teleduino328.setStatusLed(3); // Connect to server

if((useDns&& !Client.connect(serverName, serverPort)) || (!useDns&& !Client.connect(serverIp,

serverPort)))

 {

Teleduino328.setStatusLed(3, false, 10000);

Teleduino328.reset();

 }

lastInstruction = millis();

}

void loop()

{

if(Client.connected())

 {

 // What we need to do depends on which 'stage' we are at

switch(stage)

 {

case 0: // Wait for start byte

if(Client.available())

 {

char c = Client.read();

if(c == '?')

 {

stage++;

 }

 }

break;

case 1: // Reset variables

dataLength = 0;

hexStage = 0;

stage++;

break;

case 2: // Instruction byte

if(Client.available())

 {

char c = Client.read();

if(c == '?')

 {

stage = 1;

break;

 }

else if(c == '\r' || c == '\n' || c == '.')

 {

stage = 0;

break;

 }

if(!hexStage)

 {

data[0] = Teleduino328.hexDecode(c) * 16;

 }

else

 {

data[0] += Teleduino328.hexDecode(c);

 }

hexStage = !hexStage;

if(!hexStage)

 {

stage++;

 }

 }

break;

case 3: // Data length byte

if(Client.available())

 {

char c = Client.read();

if(c == '?')

 {

stage = 1;

break;

 }

else if(c == '\r' || c == '\n' || c == '.')

 {

stage = 0;

break;

 }

if(!hexStage)

 {

data[1] = Teleduino328.hexDecode(c) * 16;

 }

else

 {

data[1] += Teleduino328.hexDecode(c);

 }

hexStage = !hexStage;

if(!hexStage)

 {

stage++;

 }

 }

break;

case 4: // Data

if(Client.available())

 {

char c = Client.read();

if(c == '?')

 {

stage = 1;

break;

 }

else if(c == '\r' || c == '\n' || c == '.')

 {

if(dataLength == data[1])

 {

stage++;

break;

 }

else

 {

stage = 0;

break;

 }

 }

if(!hexStage)

 {

data[2 + dataLength] = Teleduino328.hexDecode(c) * 16;

 }

else

 {

data[2 + dataLength] += Teleduino328.hexDecode(c);

 }

hexStage = !hexStage;

if(!hexStage)

 {

dataLength++;

 }

 }

break;

case 5: // Execute instruction and return result

Teleduino328.instruction(data);

Client.write('!');

for(int i = 0; i < data[1] + 2; i++)

 {

Client.write(Teleduino328.hexEncode(data[i] / 16));

Client.write(Teleduino328.hexEncode(data[i] % 16));

 }

Client.write('\n');

lastInstruction = millis();

stage = 0;

break;

 }

 }

else

 {

Teleduino328.setStatusLed(10);

Teleduino328.reset();

 }

 // Has the instruction timeout been reached?

if(millis() - lastInstruction> 30000)

 {

Client.flush();

Client.stop();

Teleduino328.setStatusLed(9);

Teleduino328.reset();

 }

 // Process refreshes every 50ms

if(millis() - lastRefresh>= 50)

 {

Teleduino328.pinTimers();

Teleduino328.shiftRegisterTimers();

Teleduino328.shiftRegisters();

lastRefresh = millis();

 }

 // Check to see if reset has been requested

Teleduino328.checkReset();

}

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a
USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI
USB-to-serialdriverchip.Instead,itfeaturestheAtmega8U2programmedasaUSB-to-serialconverter.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version
1.0 will be the reference versions of Arduno, moving forward. The Uno is the latest in a series of USB
Arduinoboards,andthereferencemodelfortheArduinoplatform;foracomparisonwithpreviousversions, see the
index of Arduinoboards.

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://arduino.cc/en/Main/Boards

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Microcontroller ATmega328

OperatingVoltage 5V

Input Voltage (recommended) 7-12V

InputVoltage(limits) 6-20V

DigitalI/OPins 14 (of which 6 provide PWMoutput)

AnalogInputPins 6

DC Current perI/OPin 40 mA

DC Current for3.3VPin 50 mA

FlashMemory
32 KB of which 0.5 KBusedby
bootloader

SRAM 2KB

EEPROM 1KB

ClockSpeed 16MHz

The Arduino Uno can be powered via the USB connection or with an external power supply. The power
source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to

5 volts from the USB connection or other regulated power source). You can supply voltage through
thispin,or,ifsupplyingvoltageviathepowerjack,accessitthroughthispin.

 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5Vsupply.

 3V3.A3.3voltsupplygeneratedbytheon-boardregulator.Maximumcurrentdrawis50mA.

 GND. Groundpins.

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It
has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and
has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have
specialized functions:

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are

connectedtothecorrespondingpinsoftheATmega8U2USB-to-TTLSerialchip.

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
risingorfallingedge,orachangeinvalue.SeetheattachInterrupt()functionfordetails.

 PWM:3,5,6,9,10,and11. Provide8-bitPWMoutputwiththeanalogWrite()function.

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,
althoughprovidedbytheunderlyinghardware,isnotcurrentlyincludedintheArduinolanguage.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is

on, when the pin is LOW, it'soff.

http://www.arduino.cc/en/Reference/EEPROM
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/AnalogWrite

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By
default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

 I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wirelibrary.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used withanalogReference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to
shields which block the one on theboard.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other
microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on
digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over USB
and appears as a virtual com port to software on the computer. The '8U2 firmware uses the standard USB
COM drivers, and no external driver is needed. However, on Windows, an *.inf file is required..

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the
Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-
serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentationfor details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/
ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details,
see the referenceandtutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloaderthat allows you to upload new code
to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available . The ATmega8U2 is loaded with a DFU bootloader,
which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and
then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac
OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer
(overwriting the DFUbootloader).

http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Hacking/PinMapping168
http://www.arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Tutorial/Bootloader
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
http://dev.arduino.cc/wiki/uno/Hacking/Programmer
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
http://dfu-programmer.sourceforge.net/

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a
way that allows it to be reset by software running on a connected computer. One of the hardware flow control
lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad
capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The
Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the
Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR
can be well-coordinated with the start of theupload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or
Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or
so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything
besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending thisdata.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
ofprotection.Ifmorethan500mAisappliedtotheUSBport,thefusewillautomaticallybreaktheconnection until the
short or overload isremoved.

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its

surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is

programmed using the Arduino programming language(based on Wiring) and the Arduino development

environment (based on Processing). Arduino projects can be stand-alone or they can communicate with

software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal OS.

Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your

first program on the arduino board. To

select “blink led”, the physical translation of

the well known programming “hello world”,

select

File>Sketchbook> Arduino-

0017>Examples>

Digital>Blink

Once you have your skecth you’ll see

something very close to the screenshot

on the right.

In Tools>Board select

Now you have to go to

Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

http://arduino.cc/en/Reference/HomePage
http://wiring.org.co/
http://www.processing.org/
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage

 1
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The producer
shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing,
orforanyproductsthathavebeenalteredormodifiedinanywaybyaCustomer.Moreover,Theproducershallnotbeliableforanydefectsthatresultfrom Customer's design,
specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability
shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the
producershallhaveareasonabletimetoreplacements.Replacedproductsshallbewarrantedforanewfullwarrantyperiod.

1.3 EXCEPTASSETFORTHABOVE,PRODUCTSAREPROVIDED"ASIS"AND"WITHALLFAULTS."THEPRODUCERDISCLAIMS ALLOTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITYORFITNESSFORAPARTICULARPURPOSE

1.4 Customeragreesthatpriortousinganysystemsthatincludetheproducerproducts,Customerwilltestsuchsystemsandthefunctionalityofthe products as
used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other services.
Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth
above,andnoadditionalobligationsorliabilitiesshallarisefromtheproducerprovidingsuchservices.

1.5 The Arduinoproducts are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause
severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the

operation of nuclear facilities and weapons systems. Arduinoproducts are neither designed nor intended for use in military or aerospace applications or

environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduinoproducts which is solely
attheCustomer'srisk,andthatCustomerissolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse.

1.6 Customeracknowledgesandagreesthatitissolelyresponsibleforcompliancewithalllegal,regulatoryandsafety-relatedrequirementsconcerningits products and

any use of Arduinoproducts in Customer's applications, notwithstanding any applications-related information or support that may be provided by
theproducer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages,

liabilitiesandexpensesitincurstotheextentdirectlycausedby:(i)anactualbreachbyaCustomeroftherepresentationandwarrantiesmadeund erthis

termsandconditionsor(ii)thegrossnegligenceorwillfulmisconductbytheCustomer.

3. Consequential DamagesWaiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, cons equential or exemplary damages in

connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the possibility of such damages. This section will

survive the termination of the warranty period.

4. Changes tospecifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or characteristics of any

features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no responsibility whatsoever for conflicts or

incompatibilities arising from future changes to them. The product information on the Web Site or Materials is subject to change without notice. Do not finalize a design

with this information.

The producer of Arduinohas joined the Impatto Zero®
policy of LifeGate.it. For each Arduino board produced is
created / looked after half squared Km of Costa Rica’s
forest’s.

mailto:support@iteadstudio.com

 2
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

mailto:support@iteadstudio.com

 3
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

W5100 Ethernet Shield

-A high performance Ethernet shield for Arduino

Overview

W5100 Ethernet shield is a WIZnet W5100 breakout board with POE and Micro-SD designed

for Arduino platform. 5V/3.3V compatible operation voltage level makes it compatible with

Arduino boards, leafmaple, and other Arduino compatible board.

Features

 With Micro SDinterface

 5V/3.3V double operational voltagelevel

 10Mb/100Mb Ethernet socket withPOE

 All electronic brick interface are brokenout

 Operation temperature: -40℃ ~+85℃

mailto:support@iteadstudio.com

 4
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

Specifications

PCB size 55.88mm X 68.58mm X 1.6mm

Indicators TX,RX,COL,FEX,SPD,LNK

Power supply 5V

Communication Protocol SPI

RoHS Yes

Electrical Characteristics

Specification Min Type Max Unit

Power Voltage 3V - 5.5 VDC

Input Voltage VH: 3 - 5.5 V

Input Voltage VL: -0.3 0 0.5 V

Current - - 100 mA

mailto:support@iteadstudio.com

 5
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

Hardware

Figure 1 Top Map

Arduino

PIN
Description

D0 Rx/Breakout

D1 TX/Breakout

D2 Breakout

D3 Breakout

D4 SD_CS

D5 Breakout

D6 Breakout

D7 Breakout

D8 Breakout

D9 W5100_Reset

D10 W5100_CS

D11 MOSI

D12 MISO

D13 SCK

mailto:support@iteadstudio.com

 6
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

A0 Breakout

A1 Breakout

A2 Breakout

A3 Breakout

A4 IIC_SDA/Breakout

A5 IIC_SCL/Breakout

Installation

When install W5100 Ethernet shield to Iteaduino, please check the operation voltage level of

development board. If the voltage is 3.3V (IFLAT32,Leafmaple), set the Operation Level

Setting switch to3.3V. Ifthevoltageis5V(Arduino),settheOperationLevelSettingswitchto 5V.

IteaduinocommunicateswithboththeW5100andSDcardusingthe SPI bus. This is on digital pins

11, 12, and 13 on the UNO/Duemilanove and pins 50, 51, and 52 on the Mega. On both

boards,pin10isusedtoselecttheW5100andpin4fortheSDcard.

ThesepinscannotbeusedforgeneralI/O.OntheMega,thehardware

SSpin,53,isnotusedtoselecteithertheW5100ortheSDcard,but it must be kept as anoutput.

NotethatbecausetheW5100andSDcardsharetheSPIbus,onlyone can be active at a time. If you

are using both peripherals in your program, this should be taken care of by the

correspondinglibraries. If you're not using one of the peripherals in your program, however,

you'llneedtoexplicitlydeselectit.TodothiswiththeSDcard,setpin4asanoutputandwriteahightoit.Fort

heW5100,setdigitalpin10 as a highoutput.

Inductor LED

The shield contains a number of informational LEDs:

 LNK: indicates the presence of a network link and flashes when the shield

transmits or receivesdata

 FEX: indicates that the network connection is fullduplex

mailto:support@iteadstudio.com

 7
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

 SPD: indicates the presence of a 100 Mb/s network connection

(as opposed to 10Mb/s)

 RX: flashes when the shield receivesdata

 TX: flashes when the shield sendsdata

 COL: flashes when network collisions aredetected

RevisionHistory

Rev. Description Release date

v1.0 Initial version 2012-09-14

mailto:support@iteadstudio.com

 8
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

mailto:support@iteadstudio.com

 9
Tech Support: support@iteadstudio.com

W5100 Ethernet shield iteadstudio.com 2012-09-14

mailto:support@iteadstudio.com

	Tools>SerialPort
	and select the right serial port, the one arduino is attached to.

	Overview
	Features
	Specifications
	Installation
	Inductor LED
	RevisionHistory

