
The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a
USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI
USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version
1.0 will be the reference versions of Arduno, moving forward. The Uno is the latest in a series of USB
Arduino boards, and the reference model for the Arduino platform; for a comparison with previous versions,
see the index of Arduino boards.

http://arduino.cc/en/Main/Boards
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by
bootloader

SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz

The Arduino Uno can be powered via the USB connection or with an external power supply. The power
source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to
5 volts from the USB connection or other regulated power source). You can supply voltage through
this pin, or, if supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It
has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and
has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have
specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
rising or falling edge, or a change in value. See the attachInterrupt() function for details.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,

although provided by the underlying hardware, is not currently included in the Arduino language.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is
on, when the pin is LOW, it's off.

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://www.arduino.cc/en/Reference/EEPROM

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By
default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

• I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other
microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on
digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over USB
and appears as a virtual com port to software on the computer. The '8U2 firmware uses the standard USB
COM drivers, and no external driver is needed. However, on Windows, an *.inf file is required..

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the
Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-
serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/
ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details,
see the reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new code
to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available . The ATmega8U2 is loaded with a DFU bootloader,
which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and
then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac
OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer
(overwriting the DFU bootloader).

http://dfu-programmer.sourceforge.net/
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
http://dev.arduino.cc/wiki/uno/Hacking/Programmer
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://arduino.cc/en/Tutorial/Bootloader
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/Wire
http://www.arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Hacking/PinMapping168
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReference

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a
way that allows it to be reset by software running on a connected computer. One of the hardware flow control
lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad
capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The
Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the
Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR
can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or
Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or
so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything
besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1213719666/all

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

http://arduino.cc/en/Guide/HomePage
http://www.processing.org/
http://wiring.org.co/
http://arduino.cc/en/Reference/HomePage

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The
producer shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing,
or for any products that have been altered or modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from
Customer's design, specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems
necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability
shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the
producer shall have a reasonable time to replacements. Replaced products shall be warranted for a new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE PRODUCER DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such systems and the functionality of the
products as used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other
services. Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth
above, and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino products are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause
severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Arduino products are neither designed nor intended for use in military or aerospace applications or
environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduino products which is solely
at the Customer's risk, and that Customer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products and any use of Arduino products in Customer's applications, notwithstanding any applications-related information or support that may be
provided by the producer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages,
liabilities and expenses it incurs to the extent directly caused by: (i) an actual breach by a Customer of the representation and warranties made under this
terms and conditions or (ii) the gross negligence or willful misconduct by the Customer.

3. Consequential Damages Waiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, consequential or
exemplary damages in connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the
possibility of such damages. This section will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is
subject to change without notice. Do not finalize a design with this information.

The producer of Arduino has joined the Impatto Zero®
policy of LifeGate.it. For each Arduino board produced is
created / looked after half squared Km of Costa Rica’s
forest’s.

HC-05 Bluetooth module iteadstudio.com 06.18.2010

1
 Tech Support: info@iteadstudio.com

HC-05

-Bluetooth to Serial Port Module

Overview

HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for

transparent wireless serial connection setup.

Serial port Bluetooth module is fully qualified Bluetooth V2.0+EDR (Enhanced Data Rate) 3Mbps

Modulation with complete 2.4GHz radio transceiver and baseband. It uses CSR Bluecore

04-External single chip Bluetooth system with CMOS technology and with AFH(Adaptive

Frequency Hopping Feature). It has the footprint as small as 12.7mmx27mm. Hope it will simplify

your overall design/development cycle.

Specifications

Hardware features

 Typical -80dBm sensitivity

 Up to +4dBm RF transmit power

 Low Power 1.8V Operation ,1.8 to 3.6V I/O

 PIO control

 UART interface with programmable baud rate

 With integrated antenna

 With edge connector

HC-05 Bluetooth module iteadstudio.com 06.18.2010

2
 Tech Support: info@iteadstudio.com

Software features

 Default Baud rate: 38400, Data bits:8, Stop bit:1,Parity:No parity, Data control: has.

Supported baud rate: 9600,19200,38400,57600,115200,230400,460800.

 Given a rising pulse in PIO0, device will be disconnected.

 Status instruction port PIO1: low-disconnected, high-connected;

 PIO10 and PIO11 can be connected to red and blue led separately. When master and slave

are paired, red and blue led blinks 1time/2s in interval, while disconnected only blue led

blinks 2times/s.

 Auto-connect to the last device on power as default.

 Permit pairing device to connect as default.

 Auto-pairing PINCODE:”0000” as default

 Auto-reconnect in 30 min when disconnected as a result of beyond the range of connection.

Hardware

HC-05 Bluetooth module iteadstudio.com 06.18.2010

3
 Tech Support: info@iteadstudio.com

HC-05 Bluetooth module iteadstudio.com 06.18.2010

4
 Tech Support: info@iteadstudio.com

HC-05 Bluetooth module iteadstudio.com 06.18.2010

5
 Tech Support: info@iteadstudio.com

AT command Default:

 How to set the mode to server (master):

1. Connect PIO11 to high level.

2. Power on, module into command state.

3. Using baud rate 38400, sent the “AT+ROLE=1\r\n” to module, with “OK\r\n”

means setting successes.

4. Connect the PIO11 to low level, repower the module, the module work as server

(master).

AT commands: (all end with \r\n)

1. Test command:

Command Respond Parameter

AT OK -

2. Reset

Command Respond Parameter

AT+RESET OK -

3. Get firmware version

Command Respond Parameter

AT+VERSION? +VERSION:<Param>

OK

Param : firmware version

Example:

AT+VERSION?\r\n

+VERSION:2.0-20100601

OK

HC-05 Bluetooth module iteadstudio.com 06.18.2010

6
 Tech Support: info@iteadstudio.com

4. Restore default

Command Respond Parameter

AT+ORGL OK -

Default state:

Slave mode, pin code :1234, device name: H-C-2010-06-01 ,Baud 38400bits/s.

5. Get module address

Command Respond Parameter

AT+ADDR? +ADDR:<Param>

OK

Param: address of Bluetooth

module

Bluetooth address: NAP: UAP : LAP

Example:

AT+ADDR?\r\n

+ADDR:1234:56:abcdef

OK

6. Set/Check module name:

Command Respond Parameter

AT+NAME=<Param> OK Param: Bluetooth module

name

(Default :HC-05)

AT+NAME? +NAME:<Param>

OK (/FAIL)

Example:

AT+NAME=HC-05\r\n set the module name to “HC-05”

OK

AT+NAME=ITeadStudio\r\n

OK

AT+NAME?\r\n

+NAME: ITeadStudio

OK

7. Get the Bluetooth device name:

Command Respond Parameter

AT+RNAME?<Param1> 1. +NAME:<Param2>

 OK

2. FAIL

Param1,Param 2 : the address

of Bluetooth device

Example: (Device address 00:02:72:od:22:24，name：ITead)

AT+RNAME? 0002，72，od2224\r\n

+RNAME:ITead

OK

8. Set/Check module mode:

Command Respond Parameter

AT+ROLE=<Param> OK Param:

0- Slave AT+ ROLE? +ROLE:<Param>

HC-05 Bluetooth module iteadstudio.com 06.18.2010

7
 Tech Support: info@iteadstudio.com

OK 1-Master

2-Slave-Loop

9. Set/Check device class

Command Respond Parameter

AT+CLASS=<Param> OK Param: Device Class

AT+ CLASS? 1. +CLASS:<Param>

OK

2. FAIL

10. Set/Check GIAC (General Inquire Access Code)

Command Respond Parameter

AT+IAC=<Param> 1.OK

2. FAIL

Param: GIAC

(Default : 9e8b33)

AT+IAC +IAC:<Param>

OK

Example:

AT+IAC=9e8b3f\r\n

OK

AT+IAC?\r\n

+IAC: 9e8b3f

OK

11. Set/Check -- Query access patterns

Command Respond Parameter

AT+INQM=<Param>,<Param2>,

<Param3>

1.OK

2. FAIL

Param:

0——inquiry_mode_standard

1——inquiry_mode_rssi

Param2: Maximum number of

Bluetooth devices to respond

to

Param3:

Timeout (1-48 : 1.28s to

61.44s)

AT+ INQM? +INQM： <Param>,<Param2>,

<Param3>

OK

Example:

AT+INQM=1,9,48\r\n

OK

AT+INQM\r\n

+INQM:1, 9, 48

OK

HC-05 Bluetooth module iteadstudio.com 06.18.2010

8
 Tech Support: info@iteadstudio.com

12. Set/Check PIN code:

Command Respond Parameter

AT+PSWD=<Param> OK Param: PIN code

(Default 1234)

AT+ PSWD? + PSWD ：<Param>

OK

13. Set/Check serial parameter:

Command Respond Parameter

AT+UART=<Param>,<Param2>,<

Param3>

OK Param1: Baud

Param2: Stop bit

Param3: Parity

AT+ UART? +UART=<Param>,<Param2>,

<Param3>

OK

Example:

AT+UART=115200，1,2,\r\n

OK

AT+UART?

+UART:115200,1,2

OK

14. Set/Check connect mode:

Command Respond Parameter

AT+CMODE=<Param> OK Param:

0 - connect fixed address

1 - connect any address

2 - slave-Loop

AT+ CMODE? + CMODE:<Param>

OK

15. Set/Check fixed address:

Command Respond Parameter

AT+BIND=<Param> OK Param: Fixed address

(Default

00:00:00:00:00:00)

AT+ BIND? + BIND:<Param>

OK

Example:

AT+BIND=1234，56，abcdef\r\n

OK

AT+BIND?\r\n

+BIND:1234:56:abcdef

OK

16. Set/Check LED I/O

Command Respond Parameter

AT+POLAR=<Param1,<Param2> OK Param1:

0- PIO8 low drive LED

1- PIO8 high drive LED

AT+ POLAR? + POLAR=<Param1>,<Param2>

OK

HC-05 Bluetooth module iteadstudio.com 06.18.2010

9
 Tech Support: info@iteadstudio.com

Param2:

0- PIO9 low drive LED

1- PIO9 high drive LED

17. Set PIO output

Command Respond Parameter

AT+PIO=<Param1>,<Param2> OK Param1: PIO number

Param2: PIO level

 0- low

 1- high

Example:

1. PIO10 output high level

AT+PI0=10，1\r\n

OK

18. Set/Check – scan parameter

Command Respond Parameter

AT+IPSCAN=<Param1>,<Param2

>,<Param3>,<Param4>

OK Param1: Query time

interval

Param2：Query duration

Param3：Paging interval

Param4：Call duration

AT+IPSCAN? +IPSCAN:<Param1>,<Param2>,<P

aram3>,<Param4>

OK

Example:

AT+IPSCAN =1234,500,1200,250\r\n

OK

AT+IPSCAN?

+IPSCAN:1234,500,1200,250

19. Set/Check – SHIFF parameter

Command Respond Parameter

AT+SNIFF=<Param1>,<Param2>,

<Param3>,<Param4>

OK Param1: Max time

Param2: Min time

Param3: Retry time

Param4: Time out

AT+ SNIFF? +SNIFF:<Param1>,<Param2>,<Par

am3>,<Param4>

OK

20. Set/Check security mode

Command Respond Parameter

AT+SENM=<Param1>,<Param2> 1. OK

2. FAIL

Param1:

0——sec_mode0+off

1——sec_mode1+non_seAT+ SENM? + SENM:<Param1>,<Param2>

HC-05 Bluetooth module iteadstudio.com 06.18.2010

10
 Tech Support: info@iteadstudio.com

OK cure

2——sec_mode2_service

3——sec_mode3_link

4——sec_mode_unknow

n

Param2:

0——hci_enc_mode_off

1——hci_enc_mode_pt_t

o_pt

2——hci_enc_mode_pt_t

o_pt_and_bcast

21. Delete Authenticated Device

Command Respond Parameter

AT+PMSAD=<Param> OK Param:

Authenticated Device

Address

Example:

AT+PMSAD =1234,56,abcdef\r\n

OK

22. Delete All Authenticated Device

Command Respond Parameter

AT+ RMAAD OK -

23. Search Authenticated Device

Command Respond Parameter

AT+FSAD=<Param> 1. OK

2. FAIL

Param: Device address

24. Get Authenticated Device Count

Command Respond Parameter

AT+ADCN? +ADCN：<Param>

OK

Param: Device Count

25. Most Recently Used Authenticated Device

Command Respond Parameter

AT+MRAD? + MRAD：<Param>

OK

Param: Recently

Authenticated Device

Address

26. Get the module working state

Command Respond Parameter

HC-05 Bluetooth module iteadstudio.com 06.18.2010

11
 Tech Support: info@iteadstudio.com

AT+ STATE? + STATE：<Param>

OK

Param:

“INITIALIZED”

“READY”

“PAIRABLE”

“PAIRED”

“INQUIRING”

“CONNECTING”

“CONNECTED”

“DISCONNECTED”

“NUKNOW”

27. Initialize the SPP profile lib

Command Respond Parameter

AT+INIT 1. OK

2. FAIL

-

28. Inquiry Bluetooth Device

Command Respond Parameter

AT+INQ +INQ: <Param1>， <Param2>，

<Param3>

….

OK

Param1：Address

Param2：Device Class

Param3 ： RSSI Signal

strength

Example:

AT+INIT\r\n

OK

AT+IAC=9e8b33\r\n

OK

AT+CLASS=0\r\n

AT+INQM=1,9,48\r\n

At+INQ\r\n

+INQ:2:72:D2224,3E0104,FFBC

+INQ:1234:56:0,1F1F,FFC1

+INQ:1234:56:0,1F1F,FFC0

+INQ:1234:56:0,1F1F,FFC1

+INQ:2:72:D2224,3F0104,FFAD

+INQ:1234:56:0,1F1F,FFBE

+INQ:1234:56:0,1F1F,FFC2

+INQ:1234:56:0,1F1F,FFBE

+INQ:2:72:D2224,3F0104,FFBC

OK

28. Cancel Inquiring Bluetooth Device

Command Respond Parameter

AT+ INQC OK -

HC-05 Bluetooth module iteadstudio.com 06.18.2010

12
 Tech Support: info@iteadstudio.com

29. Equipment Matching

Command Respond Parameter

AT+PAIR=<Param1>,<Param2> 1. OK

2. FAIL

Param1：Device Address

Param2：Time out

30. Connect Device

Command Respond Parameter

AT+LINK=<Param> 1. OK

2. FAIL

Param：Device Address

Example:

AT+FSAD=1234,56,abcdef\r\n

OK

AT+LINK=1234,56,abcdef\r\n

OK

31. Disconnect

Command Respond Parameter

AT+DISC 1. +DISC:SUCCESS

 OK

2. +DISC:LINK_LOSS

 OK

3. +DISC:NO_SLC

 OK

4. +DISC:TIMEOUT

 OK

5. +DISC:ERROR

 OK

Param：Device Address

32. Energy-saving mode

Command Respond Parameter

AT+ENSNIFF=<Param> OK Param：Device Address

33. Exerts Energy-saving mode

Command Respond Parameter

AT+ EXSNIFF =<Param> OK Param：Device Address

HC-05 Bluetooth module iteadstudio.com 06.18.2010

13
 Tech Support: info@iteadstudio.com

Revision History

Rev. Description Release date
v1.0 Initial version 7/18/2010

Email: info@sunrom.com or sunrom@gmail.com

 Visit us at http://www.sunrom.com

Document: Datasheet Date: 28-Jul-08 Model #: 3190 Product’s Page: www.sunrom.com/p-510.html

Light Dependent Resistor - LDR
Two cadmium sulphide(cds) photoconductive cells with spectral responses
similar to that of the human eye. The cell resistance falls with increasing light
intensity. Applications include smoke detection, automatic lighting control,
batch counting and burglar alarm systems.

Applications
Photoconductive cells are used in many different types of circuits and
applications.

Analog Applications

• Camera Exposure Control
• Auto Slide Focus - dual cell
• Photocopy Machines - density of toner
• Colorimetric Test Equipment
• Densitometer
• Electronic Scales - dual cell
• Automatic Gain Control – modulated light

source
• Automated Rear View Mirror

Digital Applications

• Automatic Headlight Dimmer
• Night Light Control
• Oil Burner Flame Out
• Street Light Control
• Absence / Presence (beam breaker)
• Position Sensor

Electrical Characteristics
Parameter Conditions

Min Typ Max Unit

Cell resistance 1000 LUX
10 LUX

-
-

400
9

-
-

Ohm
K Ohm

Dark Resistance - - 1 - M Ohm
Dark Capacitance - - 3.5 - pF
Rise Time 1000 LUX

10 LUX
-
-

2.8
18

-
-

ms
ms

Fall Time 1000 LUX
10 LUX

-
-

48
120

-
-

ms
ms

Voltage AC/DC Peak - - 320 V max
Current - - 75 mA max
Power Dissipation 100 mW max
Operating
Temperature

 -60 - +75 Deg. C

mailto:info@sunrom.com
mailto:sunrom@gmail.com
http://www.sunrom.com
http://www.sunrom.com/p-510.html

Sunrom Technologies Your Source for Embedded Systems Visit us at www.sunrom.com

2

Guide to source illuminations
Light source Illumination LUX
Moonlight 0.1
60W Bulb at 1m 50
1W MES Bulb at 0.1m 100
Fluorescent Lighting 500
Bright Sunlight 30,000

Sensitivity
The sensitivity of a photodetector is the relationship between the light falling on the device and the
resulting output signal. In the case of a photocell, one is dealing with the relationship between the
incident light and the corresponding resistance of the cell.

FIGURE 2 RESISTANCE AS FUNCTION OF ILLUMINATION

Spectral Response
Figure 3 Spectral response

Like the human eye, the relative sensitivity of a
photoconductive cell is dependent on the
wavelength (color) of the incident light. Each
photoconductor material type has its own unique
spectral response curve or plot of the relative
response of the photocell versus wavelength of
light.

FIGURE 1 CIRCUIT SYMBOL

R1
LDR SUNROM #3190

http://www.sunrom.com

Sunrom Technologies Your Source for Embedded Systems Visit us at www.sunrom.com

3

Dimensions

Typical Application Circuits

http://www.sunrom.com

Sunrom Technologies Your Source for Embedded Systems Visit us at www.sunrom.com

4

http://www.sunrom.com

APPLICATION NOTE

TEMPERATURE COMPENSATION
WITH pH MEASUREMENT

Is there a temperature compensation table for pH measurement in samples?

The temperature coefficient of a sample is normally not known. Therefore no table exists correlating sample
pH with temperature, as known from pH buffer solutions. That is why no exact temperature compensation
can be made with sample measurements.

In order to correct the pH value of a sample to the calibration temperature, the following formula is
commonly used in pH meter software.

S(T sample) = S(T cal) *

T(sample) +
273.15

T(cal) = 273.15
S = slope
T = temperature °C
cal = calibration

With the new calculated slope S(T sample) from the mV signal, the pH of the sample can be calculated at
sample temperature T(sample). A linear relationship is assumed between sample pH and temperature.

Example:

Calibration was done with pH buffers 4.01 and 7.00 at 24°C. The samples have been stored cool and now the
measurement is done at 10°C.

The corrected pH value is calculated with slope (24°C) = -58,0 mV/pH and offset = 0.0mV:
Slope (10°C) = slope(24°C) * (10 + 273.15) / (24 + 273.15)
Slope (10°C) = -58.0 * (283.15) / (297.15)
Slope (10°C) = -55.28 mV/pH

pH value of the sample (measured potential +100 mV)
= 7 – 100 mV / -58.0 mV/pH = pH 5.28 (not corrected),
= 7 – 100 mV / -55.28 mV/pH = pH 5.19 (corrected)

The difference of 0.09 pH shows how important it is to precisely measure and correct for temperature.

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING:
Tel: 800-227-4224 | E-Mail: techhelp@hach.com
To locate the HACH office or distributor serving you, visit: www.hach.com

LIT2007
© Hach Company, 2013. All rights reserved.
In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

PH meter temperature compensation

Since there is no temperature sensor in the PH meter KIT, this temperature compensation is

just a theoretical formula.

It hasn't been verified by the specialized equipment.

/* pHConversion: converts the voltage value into a pH value updating

the sensitivity

 * in function of the temperature change

 * Parameters: float input : voltage measured at the sensor

output

 * float cal_1 : voltage measured with the

10.0pH calibration solution

 * float cal_2 : voltage measured with the

7.0pH calibration solution

 * float cal_3 : voltage measured with the

4.0pH calibration solution

 * float temp : temperature of the test

solution

 * float temp_cal : temperature of the

calibration solutions

 * Return: float value : the pH of the solution

 * - -1 : wrong

temperature introduced

 * - -2 : wrong

calibration temperature introduced

 *

 */

float WaspSensorSW::pHConversion(float input, float cal_1, float cal_2,

float cal_3, float temp, float temp_cal)

{

 float value;

 float zero_value;

 float sensitivity;

 if((temp < 0)||(temp > 100))

 {

 return -1.0;

 }

 if((temp_cal < 0)||(temp_cal > 100))

 {

 return -2.0;

 }

 // The value at pH 7.0 is taken as reference

 zero_value = cal_2;

 // The sensitivity is calculated using the other two calibration

values

 sensitivity = (cal_3-cal_1)/6;

 // Add the change in the conductivity owed to the change in

temperature

 sensitivity = sensitivity + (temp - temp_cal)*0.0001984;

 // pH value calculated from the calibration values

 value = 7.0 + (zero_value-input)/sensitivity;

 return value;

}

PH meter self-checking

This part will tell you how to check whether you get a fault ph meter. note: it is only suitable

for V1.

1. Make sure the power supply is standard 5.0V (Some computer can't provide enough power

supply with 5V, generally it will be 4.8V or 4.9V)

2. Power the ph convert board, follow the picture and measure the voltage of two

capacitances. It should be close to 5V. (purple)

Analog pH Meter Kit V1

3.Short current the BNC connector, like what I did in the photo. If you have a multimeter,

measure its analog pin, it should be 2V. If you don't have multimeter. Connect the adapter to

Arduino board, run the sample code. it should output PH:7 in the serial monitor.

https://www.dfrobot.com/wiki/index.php/File:Self-checking.PNG

Analog pH Meter Kit V1

4.If everything goes well. It should work well. But don't forget to calibration.

Note:

 Please keep PH convert board clear, and leave it far away from the water. It is not a
wateproof device.

 It is a chemical device, the output value will exist some delay time when you plug it in the
solution. pleas wait 30s. waiting its stable state.

 Random value: please check the BNC connector, when the connector is not well, it will
output random signal.

https://www.dfrobot.com/wiki/index.php/File:Self-checking.jpG

//motor DC

// kabel hitam motor bertemu dengan pin 6 kabel hitam motor 14

int kananA = 8; // 15

int kananB = 9; //10

int kiriA = 10; //7

int kiriB = 11;//2

#define SensorPin A0 //pH meter Analog output to Arduino Analog Input 0

#define Offset 0.00 //deviation compensate

#define LED 13

#define samplingInterval 20

#define printInterval 800

#define ArrayLenth 40 //times of collection

int pHArray[ArrayLenth]; //Store the average value of the sensor feedback

int pHArrayIndex=0;

void setup()

{

 Serial.begin(9600);

 pinMode(kananA,OUTPUT);

 pinMode(kananB,OUTPUT);

 pinMode(kiriA,OUTPUT);

 pinMode(kiriB,OUTPUT);

 pinMode(LED,OUTPUT);

 Serial.begin(9600);

 Serial.println("pH meter experiment!"); //Test the serial monitor

}

void loop()

{

 if (digitalRead(7) == HIGH) { // check if the input is HIGH (button released)

analogWrite(kananA,255);//maju

 analogWrite(kananB,0);

 analogWrite(kiriA,255);

 analogWrite(kiriB,0);

 delay (1000);}

 if (digitalRead(6) == HIGH) { // check if the input is HIGH (button released)

analogWrite(kananA,0); //mundur

 analogWrite(kananB,255);

 analogWrite(kiriA,0);

 analogWrite(kiriB,255);

 delay (1000); }

 if (digitalRead(5) == HIGH){ // check if the input is HIGH (button released)

 analogWrite(kananA,255); //kanan

 analogWrite(kananB,0);

 analogWrite(kiriA,0);

 analogWrite(kiriB,255);

 delay (1000); }

 if (digitalRead(4) == HIGH) { // check if the input is HIGH (button released)

analogWrite(kananA,0); //kiri

 analogWrite(kananB,255);

 analogWrite(kiriA,255);

 analogWrite(kiriB,0);

 delay (1000); }

 else {

 analogWrite(kananA,0);//maju

 analogWrite(kananB,0);

 analogWrite(kiriA,0);

 analogWrite(kiriB,0);

 }

 static unsigned long samplingTime = millis();

 static unsigned long printTime = millis();

 static float pHValue,voltage;

 if(millis()-samplingTime > samplingInterval)

 {

 pHArray[pHArrayIndex++]=analogRead(SensorPin);

 if(pHArrayIndex==ArrayLenth)pHArrayIndex=0;

 voltage = avergearray(pHArray, ArrayLenth)*5.0/1024;

 pHValue = 3.5*voltage+Offset;

 samplingTime=millis();

 }

 if(millis() - printTime > printInterval) //Every 800 milliseconds, print a numerical, convert the state of

the LED indicator

 {

 Serial.print("Voltage:");

 Serial.print(voltage,2);

 Serial.print(" pH value: ");

 Serial.println(pHValue,2);

 digitalWrite(LED,digitalRead(LED)^1);

 printTime=millis();

 }

}

double avergearray(int* arr, int number){

 int i;

 int max,min;

 double avg;

 long amount=0;

 if(number<=0){

 Serial.println("Error number for the array to avraging!/n");

 return 0;

 }

 if(number<5){ //less than 5, calculated directly statistics

 for(i=0;i<number;i++){

 amount+=arr[i];

 }

 avg = amount/number;

 return avg;

 }else{

 if(arr[0]<arr[1]){

 min = arr[0];max=arr[1];

 }

 else{

 min=arr[1];max=arr[0];

 }

 for(i=2;i<number;i++){

 if(arr[i]<min){

 amount+=min; //arr<min

 min=arr[i];

 }else {

 if(arr[i]>max){

 amount+=max; //arr>max

 max=arr[i];

 }else{

 amount+=arr[i]; //min<=arr<=max

 }

 }//if

 }//for

 avg = (double)amount/(number-2);

 }//if

 return avg;

}

	PH meter temperature compensation
	PH meter self-checking

