

NAMA : DIAH ANGGRAINI HAL 46

Tanggal : 28 Juni 2017 KELAS : 6EA

3.11
RANGKAIAN SISTEM KESELURUHAN ALAT KONTROL KADAR

PH AIR

POLITEKNIK NEGERI

SRIWIJAYA

HIGH PERFORMANCE

DATASHEET

TG18.5 BR

bSolar GmbH
○ Niederlassung Heilbronn, Theresienstraße 2, 74072 Heilbronn, (Tel)+49(0)7131-673353, (Fax)+49(0)7131-672233

 bSolar Ltd.
○ 21 Havaad Haleumi st., Jerusalem 91160, Israel, (Phone/Fax): +972-74-7024797

Monocrystalline Silicon Solar Cell

TG18.5 BR (D200, 156mm x 156mm)

OVERVIEW

Product Monocrystalline P-Type Silicon Solar Cell

Format ; Diameter 156 mm x 156 mm; 200 mm

Description: High performance and premium optical quality and
appearance cell, suitable for all applications including BIPV. (Efficiency
17.5% - 18.39%).

Electrical contacts Front side: grid; 3 busbars

 Back side: 3 busbars

CELL LAYOUT

HIGH PERFORMANCE

DATASHEET

TG18.5 BR

bSolar GmbH
○ Niederlassung Heilbronn, Theresienstraße 2, 74072 Heilbronn, (Tel)+49(0)7131-673353, (Fax)+49(0)7131-672233

 bSolar Ltd.
○ 21 Havaad Haleumi st., Jerusalem 91160, Israel, (Phone/Fax): +972-74-7024797

APPEARANCE AND DIMENSIONS

Material Monocrystalline Silicon

Surface and color Textured, dark blue - black

Dimensions; area 156 mm x 156 mm; 23,895 mm² (±250 mm²)

Cell thickness (related to silicon) 180 µm (±30µm)

Electrical contacts Front side: grid; 3 busbars

 Back side: 3 busbars

Polarity Front side: negative; back side: positive

Cell structure n+ p p+

Antireflective coating Silicon Nitride

ELECTRICAL DATA* BIN 36 BIN 35 BIN 34

Classification voltage ULD (mV) 500 500 500

Voltage at open circuit UOC(mV) 620 618 612

Current at classification voltage IULD (A) 8.60-8.84 8.36-8.60 8.12-8.36

Mean short circuit current ISC (A) 8.88 8.85 8.75

Mean power PMPP (W) 4.39 4.35 4.18

Mean efficiency η (%) 18.39 18.20 17.53

Reverse current IRev12V (A) ≤ 0.5 ≤ 0.5 ≤ 0.5

TEMPERATURE COEFFICIENTS* ABSOLUTE RELATIVE

Voltage at open circuit TKUOC -2.23 mV/K -0.37 %/K

Short circuit current TKISC 3.14 mA/K 0.04 %/K

Power TKP -18.02 mW/K -0.45 %/K

* These values are valid for the following testing conditions: light spectrum AM1.5G; light intensity 100 mW/cm2;

measuring temperature 25°C; accuracy in the range from 25°C to 75°C: ±2.5%

PRODUCT INFORMATION

Working temperature of the cell -50 °C to 80 °C

Stocking conditions Avoid humidity and corrosive atmospheres

Recommended solder Saturated with silver (2-4% Ag)

Specifications subject to technical changes © bSolar GmbH November 2011 / version 005_English

Arduino Mega 2560 Datasheet

Overview
The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet).
It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog
inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a
power jack, an ICSP header, and a reset button. It contains everything needed to support
the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-
to-DC adapter or battery to get started. The Mega is compatible with most shields designed
for the Arduino Duemilanove or Diecimila.

Schematic & Reference Design
EAGLE files: arduino-mega2560-reference-design.zip

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc2549.PDF&sa=D&sntz=1&usg=AFQjCNGeztVhTS8iSRZrY4j22pvCCDbbkg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw

Schematic: arduino-mega2560-schematic.pdf

Summary
Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 54 (of which 14 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

Power
The Arduino Mega can be powered via the USB connection or with an external power supply.
The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or
battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the
board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of
the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than
7V, however, the 5V pin may supply less than five volts and the board may be unstable.
If using more than 12V, the voltage regulator may overheat and damage the board. The
recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-
serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial
converter.

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA

The power pins are as follows:

● VIN. The input voltage to the Arduino board when it's using an external power source
(as opposed to 5 volts from the USB connection or other regulated power source). You
can supply voltage through this pin, or, if supplying voltage via the power jack, access
it through this pin.

● 5V. The regulated power supply used to power the microcontroller and other
components on the board. This can come either from VIN via an on-board regulator,
or be supplied by USB or another regulated 5V supply.

● 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is
50 mA.

● GND. Ground pins.

Memory
The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for
the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the
EEPROM library).

Input and Output
Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode()
, digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or
receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default)
of 20-50 kOhms. In addition, some pins have specialized functions:

● Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX)
and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit
(TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the
ATmega8U2 USB-to-TTL Serial chip.

● External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5),
19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be
configured to trigger an interrupt on a low value, a rising or falling edge, or a change
in value. See the attachInterrupt() function for details.

● PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.
● SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication using the SPI library. The SPI pins are also broken out on the ICSP
header, which is physically compatible with the Uno, Duemilanove and Diecimila.

● LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FEEPROM&sa=D&sntz=1&usg=AFQjCNH6hzoziPBSqVHuPfePIK9lcCgDlA
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FEEPROM&sa=D&sntz=1&usg=AFQjCNH6hzoziPBSqVHuPfePIK9lcCgDlA
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FEEPROM&sa=D&sntz=1&usg=AFQjCNH6hzoziPBSqVHuPfePIK9lcCgDlA
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FEEPROM&sa=D&sntz=1&usg=AFQjCNH6hzoziPBSqVHuPfePIK9lcCgDlA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FPinMode&sa=D&sntz=1&usg=AFQjCNHm__6WzwB5C9LJaUCYAY4ToJ7asg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FPinMode&sa=D&sntz=1&usg=AFQjCNHm__6WzwB5C9LJaUCYAY4ToJ7asg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalWrite&sa=D&sntz=1&usg=AFQjCNHVoqqmZU4b8Cjrk38hVOmRkCub2A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalWrite&sa=D&sntz=1&usg=AFQjCNHVoqqmZU4b8Cjrk38hVOmRkCub2A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalRead&sa=D&sntz=1&usg=AFQjCNFoXOKOJFf3zyoe7hBQTIdvUd_6iw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalRead&sa=D&sntz=1&usg=AFQjCNFoXOKOJFf3zyoe7hBQTIdvUd_6iw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAttachInterrupt&sa=D&sntz=1&usg=AFQjCNGorv155Wh6Oam5QBDeSkjhGcoQVg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAttachInterrupt&sa=D&sntz=1&usg=AFQjCNGorv155Wh6Oam5QBDeSkjhGcoQVg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogWrite&sa=D&sntz=1&usg=AFQjCNEHHqYhHKEKn_Nbi3OXaMt0NZuPRQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogWrite&sa=D&sntz=1&usg=AFQjCNEHHqYhHKEKn_Nbi3OXaMt0NZuPRQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg

value, the LED is on, when the pin is LOW, it's off.
● I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire

library (documentation on the Wiring website). Note that these pins are not in the
same location as the I2C pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024
different values). By default they measure from ground to 5 volts, though is it possible to
change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

● AREF. Reference voltage for the analog inputs. Used with analogReference().
● Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

Communication
The Arduino Mega2560 has a number of facilities for communicating with a computer,
another Arduino, or other microcontrollers. The ATmega2560 provides four hardware UARTs
for TTL (5V) serial communication. An ATmega8U2 on the board channels one of these
over USB and provides a virtual com port to software on the computer (Windows machines
will need a .inf file, but OSX and Linux machines will recognize the board as a COM port
automatically. The Arduino software includes a serial monitor which allows simple textual
data to be sent to and from the board. The RX and TX LEDs on the board will flash when
data is being transmitted via the ATmega8U2 chip and USB connection to the computer (but
not for serial communication on pins 0 and 1).
A SoftwareSerial library allows for serial communication on any of the Mega2560's digital
pins.
The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software
includes a Wire library to simplify use of the I2C bus; see the documentation on the Wiring
website for details. For SPI communication, use the SPI library.

Programming
The Arduino Mega can be programmed with the Arduino software (download). For details,
see the reference and tutorials.
The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows
you to upload new code to it without the use of an external hardware programmer. It

http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogReference&sa=D&sntz=1&usg=AFQjCNEMhKTO3Bd1Ls4OomVPa3rImnN0og
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FSoftwareSerial&sa=D&sntz=1&usg=AFQjCNEYlvmtSHOoYxE3IQ2FAJkgSXrtOg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FSoftwareSerial&sa=D&sntz=1&usg=AFQjCNEYlvmtSHOoYxE3IQ2FAJkgSXrtOg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FSoftwareSerial&sa=D&sntz=1&usg=AFQjCNEYlvmtSHOoYxE3IQ2FAJkgSXrtOg
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FMain%2FSoftware&sa=D&sntz=1&usg=AFQjCNHWee2ER8NChtqAb_cHNGipk_iaEQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FHomePage&sa=D&sntz=1&usg=AFQjCNEx4dZ_EY61dEC539MhVMOoCBnHeQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FHomePage&sa=D&sntz=1&usg=AFQjCNHkINp3saLnDNCfcrmAk3MjaiDngg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FBootloader&sa=D&sntz=1&usg=AFQjCNF7N1BBoJyxvIDuMofK56Zv-P5RLA

communicates using the original STK500 protocol (reference, C header files).
You can also bypass the bootloader and program the microcontroller through the ICSP (In-
Circuit Serial Programming) header; see these instructions for details.

Automatic (Software) Reset
Rather then requiring a physical press of the reset button before an upload, the Arduino
Mega2560 is designed in a way that allows it to be reset by software running on a
connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is
connected to the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this
line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino
software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter
timeout, as the lowering of DTR can be well-coordinated with the start of the upload.
This setup has other implications. When the Mega2560 is connected to either a computer
running Mac OS X or Linux, it resets each time a connection is made to it from software (via
USB). For the following half-second or so, the bootloader is running on the Mega2560. While
it is programmed to ignore malformed data (i.e. anything besides an upload of new code),
it will intercept the first few bytes of data sent to the board after a connection is opened.
If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after
opening the connection and before sending this data.
The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on either
side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may
also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset
line; see this forum thread for details.

USB Overcurrent Protection
The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB
ports from shorts and overcurrent. Although most computers provide their own internal
protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to
the USB port, the fuse will automatically break the connection until the short or overload is
removed.

Physical Characteristics and Shield
Compatibility

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc2525.pdf&sa=D&sntz=1&usg=AFQjCNGrUrCZvIYc5jvlgjv6B2POgx8FEw
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FHacking%2FProgrammer&sa=D&sntz=1&usg=AFQjCNER6QZ8vnnLxFKVmBfuRYZIvjA7Ug
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FHacking%2FProgrammer&sa=D&sntz=1&usg=AFQjCNER6QZ8vnnLxFKVmBfuRYZIvjA7Ug
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FHacking%2FProgrammer&sa=D&sntz=1&usg=AFQjCNER6QZ8vnnLxFKVmBfuRYZIvjA7Ug
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively,
with the USB connector and power jack extending beyond the former dimension. Three
screw holes allow the board to be attached to a surface or case. Note that the distance
between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing
of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the Uno,
Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins),
analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations.
Further the main UART (serial port) is located on the same pins (0 and 1), as are external
interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega2560 and Duemilanove / Diecimila. Please note that I2C is not located on the
same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

PH	meter(SKU:	SEN0161)	

Analog pH Meter Kit SKU: SEN0161

Analog pH Meter Kit SKU: SEN0169

Contents

 1 Introduction
 2 Specification
 3 Precautions
 4 pH Electrode Characteristics
 5 Usage

 5.1 Connecting Diagram
 5.2 Method 1. Software Calibration
 5.3 Method 2. Hardware Calibration through potentiometer

 6 FAQ

Introduction
Need to measure water quality and other parameters but haven't got any low cost pH meter? Find it
difficult to use with Arduino? Here comes an analog pH meter, specially designed for Arduino
controllers and has built-in simple, convenient and practical connection and features. It has an LED
which works as the Power Indicator, a BNC connector and PH2.0 sensor interface. You can just
connect the pH sensor with BNC connector, and plug the PH2.0 interface into any analog input on
Arduino controller to read pH value easily.

Specification

SEN0161 dimension

 Module Power: 5.00V
 Circuit Board Size: 43mm×32mm
 pH Measuring Range: 0-14
 Measuring Temperature: 0-60 Ԩ
 Accuracy: ± 0.1pH (25 Ԩ)
 Response Time: ≤ 1min
 pH Sensor with BNC Connector
 PH2.0 Interface (3 foot patch)
 Gain Adjustment Potentiometer
 Power Indicator LED

Precautions
 Before and after use of the pH electrode every time, you need to use (pure)water to clean it.

 The electrode plug should be kept clean and dry in case of short circuit.

 Preservation: Electrode reference preservation solution is the 3N KCL solution.

 Measurement should be avoided staggered pollution between solutions, so as not to affect the
accuracy of measurement.

 Electrode blub or sand core is defiled which will make PTS decline, slow response. So, it should be
based on the characteristics of the pollutant, adapted to the cleaning solution, the electrode
performance recovery.

 Electrode when in use, the ceramic sand core and liquid outlet rubber ring should be removed, in
order to make salt bridge solution to maintain a certain velocity.

NOTE: Differences between the probes, SEN0161 and SEN0169

Their usages/ specifications are almost the same. The differences locates at

Long-firing Operation: SEN0169 supports, while SEN0161 NOT, i.e. you can not
immerse SEN0161 in water for Continuous Testing.

Life Span: In 25 Ԩ, pure water, do Continuous Testing with them both, SEN0169 can
work two years, while SEN0161 can only last for 6 months. And just for reference, if put
them in turbid, strongly acid and alkali solution, 25Ԩ, the life span would drop to one year
(SEN0169), 1 month(or shorter, SEN0161).
Tempreture, pH, turbidity of the water effect the probe life span a lot.

Waterproof: You can immerse the whole probe SEN0169 into the water, while you can
only immerse the front part of the probe SEN0161, the electrode glass bulb, into water,
the rear part, from the white shell to the cable, MUST NOT be under water.

Strongly Acid and Alkali: SEN0169 are preferred for strongly acid and alkali test. And if
your testing range is usually within pH6~8, then SEN0161 is capable for that.

pH	Electrode	Characteristics
The output of pH electrode is Millivolts, and the pH value of the relationship is shown as follows
(25 Ԩ):

NOTE: It is normal that if your reading is much different with the table since you are not
reading from the electrode directly but from the voltage adapter, it has converted the
original voltage (-5V ~ +5V) to Arduino compatible voltage, i.e. 0 ~ 5V. See the discussion
on Forum.

Usage
Connecting	Diagram	

NOTE:

Before you insert the pH probe into one solution from another, or after you finish using the
sensor, you must wash the pH electrode with pure water everytime (distilled water is the
best)!
The closer power supply to +5.00V, the more accurate pH readings you could get.
You have to immerse the pH probe into stationary solution instead of the running one to
get relative stable pH readings.
How long should it be under the solution? It depends on the pH value, the closer to
neutral solution (pH = 7.00), the longer it will take. As we tested in water pH = 6.0, the
blue one costs 6 minutes, and in standard Acid/ Alkali (4.00/ 10.00) solutions, it only
needs 10 seconds.

Method	1.	Software	Calibration

The software calibration is easier than the next part - Hardware Calibration
through the Potentiometer. Because it writes the calibration values into
Arduino's EEPROM, so you can calibrate once for all if you won't replace your
Arduino. It uses mathematical method that to draw a line using two points, i.e.
using the Acid standard solution, pH = 4.00 and alkaline pH = 10.00 or 9.18 to
draw the linear relation between the voltage and the pH value.

For NOTE 3. Arduino sample sketch "EEPROM Clear"

NOTE:

During the calibration (from step 4 to step 7), power outage should be avoided, or you
will have to start over from step 4.
Software Calibration has nothing to do with the potentiometer on the adapter. Especially
after you finished the calibration, you should never adjust the potentiometer, or you
should start over. Moreover, considering the mechanical vibration might interfere the
potentiometer value, you could seal it by Hot Melt Adhesive.
If you want to try Hardware Calibration, you'd better reset the EEPROM setting by
uploading the Arduino IDE sample sketch "EEPROM Clear" as shown as the right hand
picture.

Steps

1. Wiring the pH probe, pH meter adapter (the little PCB board) and
Arduino UNO as the Diagram section above.

2. Upload the sample code "Software Calibration" below to UNO.
3. Open Serial Monitor, choose command format as “Both NL & CR”and

115200.
4. Send “Calibration” to enter Calibration Mode, and you will see “Enter

Calibration Mode” directly.

5. Acid Calibration
1. Wash your pH probe with pure water (distilled water is best) and dryer it

in case of diluting the standard pH solution. Insert it into standard acid
solution of pH = 4.0. Wait several seconds till the readings get relative
stable.

2. Enter “acid:4.00”(no bland space, lower case), and you will get “Acid
Calibration Successful” notice. Then go on with Alkali Calibration.

6. Alkali Calibration
1. Take out the pH probe out of the acid solution, CLEAN it again as you

did in last step. After this, insert it into the standard alkali solution with
pH = 10 or 9.18. Waiting for the stable readings

2. Enter “alkali:10.00”, and you will see “Alkali Calibration Successful”.

7. Enter “exit” to finish calibration. You will see “Calibration
Successful,Exit Calibration Mode”.

8. Check if the pH meter was calibrated successfully with the solution pH
= 4.00, 9.18, 10.00, if the readings are within the error of 0.1. Congrats!

In Standard acid solution pH = 4.00

In Standard alkali solution pH = 10.00

Sample code: Software Calibration

/***

 This example uses software solution to calibration the ph meter,
not the potentiometer. So it is more easy to use and calibrate.

 This is for SEN0161 and SEN0169.

 Created 2016-8-11

 By youyou from DFrobot <youyou.yu@dfrobot.com>

 GNU Lesser General Public License.

 See <http://www.gnu.org/licenses/> for details.

 All above must be included in any redistribution

 **/

/***********Notice and Troubleshooting***************

 1.Connection and Diagram can be found here http://www.dfrobot.co
m/wiki/index.php/PH_meter%28SKU:_SEN0161%29

 2.This code is tested on Arduino Uno.

 **/

#include <EEPROM.h>

#define EEPROM_write(address, p) {int i = 0; byte *pp = (byte*)&(p
);for(; i < sizeof(p); i++) EEPROM.write(address+i, pp[i]);}

#define EEPROM_read(address, p) {int i = 0; byte *pp = (byte*)&(p
);for(; i < sizeof(p); i++) pp[i]=EEPROM.read(address+i);}

#define ReceivedBufferLength 20

char receivedBuffer[ReceivedBufferLength+1]; // store the serial
command

byte receivedBufferIndex = 0;

#define SCOUNT 30 // sum of sample point

int analogBuffer[SCOUNT]; //store the sample voltage

int analogBufferIndex = 0;

#define SlopeValueAddress 0 // (slope of the ph probe)store at
the beginning of the EEPROM. The slope is a float number,occupies
4 bytes.

#define InterceptValueAddress (SlopeValueAddress+4)

float slopeValue, interceptValue, averageVoltage;

boolean enterCalibrationFlag = 0;

#define SensorPin A0

#define VREF 5000 //for arduino uno, the ADC reference is the pow
er(AVCC), that is 5000mV

void setup()

{

 Serial.begin(115200);

 readCharacteristicValues(); //read the slope and intercept of th
e ph probe

}

void loop()

{

 if(serialDataAvailable() > 0)

 {

 byte modeIndex = uartParse();

 phCalibration(modeIndex); // If the correct calibration c
ommand is received, the calibration function should be called.

 EEPROM_read(SlopeValueAddress, slopeValue); // After cal
ibration, the new slope and intercept should be read ,to update cu
rrent value.

 EEPROM_read(InterceptValueAddress, interceptValue);

 }

 static unsigned long sampleTimepoint = millis();

 if(millis()-sampleTimepoint>40U)

 {

 sampleTimepoint = millis();

 analogBuffer[analogBufferIndex] = analogRead(SensorPin)/1024.
0*VREF; //read the voltage and store into the buffer,every 40ms

 analogBufferIndex++;

 if(analogBufferIndex == SCOUNT)

 analogBufferIndex = 0;

 averageVoltage = getMedianNum(analogBuffer,SCOUNT); // read
the stable value by the median filtering algorithm

 }

 static unsigned long printTimepoint = millis();

 if(millis()-printTimepoint>1000U)

 {

 printTimepoint = millis();

 if(enterCalibrationFlag) // in calibration mode,
print the voltage to user, to watch the stability of voltage

 {

 Serial.print("Voltage:");

 Serial.print(averageVoltage);

 Serial.println("mV");

 }else{

 Serial.print("pH:"); // in normal mode, print th
e ph value to user

 Serial.println(averageVoltage/1000.0*slopeValue+interceptValu
e);

 }

 }

}

boolean serialDataAvailable(void)

{

 char receivedChar;

 static unsigned long receivedTimeOut = millis();

 while (Serial.available()>0)

 {

 if (millis() - receivedTimeOut > 1000U)

 {

 receivedBufferIndex = 0;

 memset(receivedBuffer,0,(ReceivedBufferLength+1));

 }

 receivedTimeOut = millis();

 receivedChar = Serial.read();

 if (receivedChar == '\n' || receivedBufferIndex==ReceivedBuffe
rLength){

 receivedBufferIndex = 0;

 strupr(receivedBuffer);

 return true;

 }

 else{

 receivedBuffer[receivedBufferIndex] = receivedChar;

 receivedBufferIndex++;

 }

 }

 return false;

}

byte uartParse()

{

 byte modeIndex = 0;

 if(strstr(receivedBuffer, "CALIBRATION") != NULL)

 modeIndex = 1;

 else if(strstr(receivedBuffer, "EXIT") != NULL)

 modeIndex = 4;

 else if(strstr(receivedBuffer, "ACID:") != NULL)

 modeIndex = 2;

 else if(strstr(receivedBuffer, "ALKALI:") != NULL)

 modeIndex = 3;

 return modeIndex;

}

void phCalibration(byte mode)

{

 char *receivedBufferPtr;

 static byte acidCalibrationFinish = 0, alkaliCalibrationFinish
= 0;

 static float acidValue,alkaliValue;

 static float acidVoltage,alkaliVoltage;

 float acidValueTemp,alkaliValueTemp,newSlopeValue,newIntercept
Value;

 switch(mode)

 {

 case 0:

 if(enterCalibrationFlag)

 Serial.println(F("Command Error"));

 break;

 case 1:

 receivedBufferPtr=strstr(receivedBuffer, "CALIBRATION");

 enterCalibrationFlag = 1;

 acidCalibrationFinish = 0;

 alkaliCalibrationFinish = 0;

 Serial.println(F("Enter Calibration Mode"));

 break;

 case 2:

 if(enterCalibrationFlag)

 {

 receivedBufferPtr=strstr(receivedBuffer, "ACID:");

 receivedBufferPtr+=strlen("ACID:");

 acidValueTemp = strtod(receivedBufferPtr,NULL);

 if((acidValueTemp>3)&&(acidValueTemp<5)) //typica
l ph value of acid standand buffer solution should be 4.00

 {

 acidValue = acidValueTemp;

 acidVoltage = averageVoltage/1000.0; // mV ->
V

 acidCalibrationFinish = 1;

 Serial.println(F("Acid Calibration Successful"));

 }else {

 acidCalibrationFinish = 0;

 Serial.println(F("Acid Value Error"));

 }

 }

 break;

 case 3:

 if(enterCalibrationFlag)

 {

 receivedBufferPtr=strstr(receivedBuffer, "ALKALI:");

 receivedBufferPtr+=strlen("ALKALI:");

 alkaliValueTemp = strtod(receivedBufferPtr,NULL);

 if((alkaliValueTemp>8)&&(alkaliValueTemp<11)) //
typical ph value of alkali standand buffer solution should be 9.18
or 10.01

 {

 alkaliValue = alkaliValueTemp;

 alkaliVoltage = averageVoltage/1000.0;

 alkaliCalibrationFinish = 1;

 Serial.println(F("Alkali Calibration Successful")
);

 }else{

 alkaliCalibrationFinish = 0;

 Serial.println(F("Alkali Value Error"));

 }

 }

 break;

 case 4:

 if(enterCalibrationFlag)

 {

 if(acidCalibrationFinish && alkaliCalibrationFinish)

 {

 newSlopeValue = (acidValue-alkaliValue)/(acidVoltage
- alkaliVoltage);

 EEPROM_write(SlopeValueAddress, newSlopeValue);

 newInterceptValue = acidValue - (slopeValue*acidVolt
age);

 EEPROM_write(InterceptValueAddress, newInterceptValu
e);

 Serial.print(F("Calibration Successful"));

 }

 else Serial.print(F("Calibration Failed"));

 Serial.println(F(",Exit Calibration Mode"));

 acidCalibrationFinish = 0;

 alkaliCalibrationFinish = 0;

 enterCalibrationFlag = 0;

 }

 break;

 }

}

int getMedianNum(int bArray[], int iFilterLen)

{

 int bTab[iFilterLen];

 for (byte i = 0; i<iFilterLen; i++)

 {

 bTab[i] = bArray[i];

 }

 int i, j, bTemp;

 for (j = 0; j < iFilterLen - 1; j++)

 {

 for (i = 0; i < iFilterLen - j - 1; i++)

 {

 if (bTab[i] > bTab[i + 1])

 {

 bTemp = bTab[i];

 bTab[i] = bTab[i + 1];

 bTab[i + 1] = bTemp;

 }

 }

 }

 if ((iFilterLen & 1) > 0)

 bTemp = bTab[(iFilterLen - 1) / 2];

 else

 bTemp = (bTab[iFilterLen / 2] + bTab[iFilterLen / 2 - 1]) /
2;

 return bTemp;

}

void readCharacteristicValues()

{

 EEPROM_read(SlopeValueAddress, slopeValue);

 EEPROM_read(InterceptValueAddress, interceptValue);

 if(EEPROM.read(SlopeValueAddress)==0xFF && EEPROM.read(SlopeVa
lueAddress+1)==0xFF && EEPROM.read(SlopeValueAddress+2)==0xFF && E
EPROM.read(SlopeValueAddress+3)==0xFF)

 {

 slopeValue = 3.5; // If the EEPROM is new, the recommendat
ory slope is 3.5.

 EEPROM_write(SlopeValueAddress, slopeValue);

 }

 if(EEPROM.read(InterceptValueAddress)==0xFF && EEPROM.read(Int
erceptValueAddress+1)==0xFF && EEPROM.read(InterceptValueAddress+2
)==0xFF && EEPROM.read(InterceptValueAddress+3)==0xFF)

 {

 interceptValue = 0; // If the EEPROM is new, the recommenda
tory intercept is 0.

 EEPROM_write(InterceptValueAddress, interceptValue);

 }

}

Method	2.	Hardware	Calibration	through	potentiometer

If you've taken the Method 1. Software Calibration, you can
ignore this part.

1. Connect according to the graphic, that is, the pH electrode is
connected to the BNC connector on the pH meter board, and
then use the connection lines, the pH meter board is connected
to the analog port 0 of the Arduino controller. When the Arduino
controller gets power, you will see the blue LED on board is on.

2. Upload the sample code to the Arduino controller.
3. Put the pH electrode into the standard solution whose pH value

is 7.00, or directly short circuit the input of the BNC connector.
Open the serial monitor of the Arduino IDE, you can see the pH
value printed to it, and the error does not exceed 0.3. Record
the pH value printed, then compared with 7.00, and the
difference should be changed into the "Offset" in the sample
code. For example, the pH value printed is 6.88, so the
difference is 0.12. You should change the # define Offset 0.00
into # define Offset 0.12 in the sample code.

4. Fine adjustment
 For Acid solution: Put the pH electrode into the pH standard

solution whose value is 4.00. Then wait about a minute, adjust
the Gain Potential device, let the value stabilise at around 4.00.
At this time, the acidic calibration has been completed and you
can measure the pH value of an acidic solution.

 For Alkaline solution: According to the linear characteristics
of pH electrode itself, after the above calibration, you can

directly measure the pH value of the alkaline solution, but if
you want to get a better accuracy, you can recalibrate it with
the standard solution, pH = 9.18. Also adjust the gain potential
device, let the value stabilise at around 9.18. After this
calibration, you can measure the pH value of the alkaline
solution.

Sample Code for Hardware Calibration

/*

 # This sample code is used to test the pH meter V1.0.

 # Editor : YouYou

 # Ver : 1.0

 # Product: analog pH meter

 # SKU : SEN0161

*/

#define SensorPin A0 //pH meter Analog output to Arduin
o Analog Input 0

#define Offset 0.00 //deviation compensate

#define LED 13

#define samplingInterval 20

#define printInterval 800

#define ArrayLenth 40 //times of collection

int pHArray[ArrayLenth]; //Store the average value of the sensor
feedback

int pHArrayIndex=0;

void setup(void)

{

 pinMode(LED,OUTPUT);

 Serial.begin(9600);

 Serial.println("pH meter experiment!"); //Test the serial mon
itor

}

void loop(void)

{

 static unsigned long samplingTime = millis();

 static unsigned long printTime = millis();

 static float pHValue,voltage;

 if(millis()-samplingTime > samplingInterval)

 {

 pHArray[pHArrayIndex++]=analogRead(SensorPin);

 if(pHArrayIndex==ArrayLenth)pHArrayIndex=0;

 voltage = avergearray(pHArray, ArrayLenth)*5.0/1024;

 pHValue = 3.5*voltage+Offset;

 samplingTime=millis();

 }

 if(millis() - printTime > printInterval) //Every 800 milliseco
nds, print a numerical, convert the state of the LED indicator

 {

 Serial.print("Voltage:");

 Serial.print(voltage,2);

 Serial.print(" pH value: ");

 Serial.println(pHValue,2);

 digitalWrite(LED,digitalRead(LED)^1);

 printTime=millis();

 }

}

double avergearray(int* arr, int number){

 int i;

 int max,min;

 double avg;

 long amount=0;

 if(number<=0){

 Serial.println("Error number for the array to avraging!/n");

 return 0;

 }

 if(number<5){ //less than 5, calculated directly statistics

 for(i=0;i<number;i++){

 amount+=arr[i];

 }

 avg = amount/number;

 return avg;

 }else{

 if(arr[0]<arr[1]){

 min = arr[0];max=arr[1];

 }

 else{

 min=arr[1];max=arr[0];

 }

 for(i=2;i<number;i++){

 if(arr[i]<min){

 amount+=min; //arr<min

 min=arr[i];

 }else {

 if(arr[i]>max){

 amount+=max; //arr>max

 max=arr[i];

 }else{

 amount+=arr[i]; //min<=arr<=max

 }

 }//if

 }//for

 avg = (double)amount/(number-2);

 }//if

 return avg;

}

FAQ
Q1. My PH sensor readings are not correct, what did I miss?

Or the module is defective?

A. 1. Check if the pH sensor circuit board is good? Read on the Forum. or on wiki for the

steps. During the transport, there might be crash causing the probe head cracked, please

check if the probe is good or not.

2. If you don't use Arduino as the controller, then please check your ADC module that

whether it converts the 5V analog input to 1024, if it is 4096(or other byte), please re-

determine the equation in the code.

A. There should be NO working electrical device in the container. Any tiny leakage of

electricity will cause the probe working error. Especially, many people bought the EC meter

and put it into the same tank for the test, but then the pH meter cannot work well anymore.

Please seperate them into different containers, or turning off the EC meter when using the

pH meter.

A. The maximum range differs from probe, you have to calibrate it before use if the pH probe

was kept long.

A. Yes, it can be used on any device as long as it could give 5V power supply and accept 5V

analog signal, but as the Rasp pi is only compatible with 3.3V sensor, so an expansion shield

is suggested to use with (please make sure which kind of Pi you use)

For any questions and more cool ideas to share, please visit DFRobot Forum

Q2. Big fluctuations in ph meter readings. When I make measurements in a glass, I have correct,
stable reading. But when I put it inside the aquarium with the pumping system working, the
easurement varies even more than a degree, and it's not stable, if I swicth off the pump the given
value doesn´t oscilate anymore.

Q3. May I know the Maximum range different if we do not calibrate the pH meter.

Q4. I would just like to ask if your pH sensor can be connect to any micro controller aside from
arduino. Would it be compatible with a raspberry pi? Thank You!

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
Powered By DFRobot © 2008-2017

2 CHANNEL 5V 10A RELAY MODULE

Description

The relay module is an electrically operated switch that allows you to turn on or

off a circuit using voltage and/or current much higher than a microcontroller could

handle. There is no connection between the low voltage circuit operated by the

microcontroller and the high power circuit. The relay protects each circuit from each

other.

The each channel in the module has three connections named NC, COM, and

NO. Depending on the input signal trigger mode, the jumper cap can be placed at high

level effective mode which ‘closes’ the normally open (NO) switch at high level input and

at low level effective mode which operates the same but at low level input.

Specifications

 On-board EL817 photoelectric coupler with photoelectric isolating anti-

interference ability strong

 On-board 5V, 10A / 250VAC, 10A / 30VDC relays

 Relay long life can absorb 100000 times in a row

 Module can be directly and MCU I/O link, with the output signal indicator

 Module with diode current protection, short response time

 PCB Size: 45.8mm x 32.4mm

Pin Configuration

1. VCC: 5V DC

2. COM: 5V DC

3. IN1: high/low output

4. IN2: high/low output

5. GND: ground

1
2
3
4
5

Wiring Diagram

Schematic Diagram

1
2

3 4 5

Sample Sketch

void setup(){
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
}

void loop(){
 digitalWrite(5, LOW);
 digitalWrite(6, HIGH);
 delay(4000);
 digitalWrite(5, HIGH);
 digitalWrite(6, LOW);
 delay(4000);
}

How to Test

The components to be used are:

 Microcontroller (any compatible arduino)

 2 channel 5V 10A relay module

 Pin connectors

 Breadboard

 USB cable

1. Connect the components based on the figure shown in the wiring diagram using

pin connectors. VCC and COM pin is connected to the 5V power supply, GND

pin is connected to the GND, IN1 and IN2 pins are connected to the digital I/O

pin. Pin number will be based on the actual program code.

2. After hardware connection, insert the sample sketch into the Arduino IDE.

3. Using a USB cable, connect the ports from the microcontroller to the computer.

4. Upload the program.

Testing Results

The figures below shows an alternate switching of the two relays

every 4 seconds. A tick sound and a red LED would be observed.

