

Page 1 of 3

ROBOTICS & CNC / ROBOTICS

Lock-style Solenoid - 12VDC

PRODUCT ID: 1512

Page 2 of 3

DESCRIPTION -

Solenoids are basically electromagnets: they are made of a big coil of copper wire with an

armature (a slug of metal) in the middle. When the coil is energized, the slug is pulled into

the center of the coil. This makes the solenoid able to pull from one end.

This solenoid in particular is nice and strong, and has a slug with a slanted cut and a good

mounting bracket. It's basically an electronic lock, designed for a basic cabinet or safe or

door. Normally the lock is active so you can't open the door because the solenoid slug is in

the way. It does not use any power in this state. When 9-12VDC is applied, the slug pulls in

so it doesn't stick out anymore and the door can be opened.

The solenoids come with the slanted slug as shown above, but you can open it with the two

Phillips-head screws and turn it around so its rotated 90, 180 or 270 degrees so that it

matches the door you want to use it with.

To drive a solenoid you will a power transistor and a diode, check this diagram for how to

wire it to an Arduino or other microcontroller. You will need a fairly good power supply to

drive a solenoid, as a lot of current will rush into the solenoid to charge up the electro-

magnet, about 500mA, so don't try to power it with a 9V

Page 3 of 3

battery!

Adafruit Optical Fingerprint Sensor

Created by lady ada

Last updated on 2018-11-14 05:50:07 PM UTC

 Guide Contents

Guide Contents 2

Overview 3

Enrolling vs. Searching 5

Enrolling New Users with Windows 6

Searching with the Software 11

Wiring for use with Arduino 12

Arduino UNO & Compatible Wiring 12

Hardware Serial Wiring 13

Soft & Hard Serial 14

Upload 14

Enrolling with Arduino 16

CircuitPython 17

Installing Library 17

Usage 18
Enrolling Prints 22

Finding Prints 22

Deleting Fingerprints 23

Python Docs 24

Downloads 25

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 2 of 25

Overview

Secure your project with biometrics - this all-in-one optical fingerprint sensor will make adding fingerprint detection

and verification super simple. These modules are typically used in safes - there's a high powered DSP chip that does

the image rendering, calculation, feature-finding and searching. Connect to any microcontroller or system with TTL

serial, and send packets of data to take photos, detect prints, hash and search. You can also enroll new fingers

directly - up to 162 finger prints can be stored in the onboard FLASH memory.

We like this particular sensor because not only is it easy to use, it also comes with fairly straight-forward Windows

software that makes testing the module simple - you can even enroll using the software and see an image of the

fingerprint on your computer screen. But, of course, we wouldn't leave you a datasheet and a "good luck!" - we wrote

a full Arduino library so that you can get running in under 10 minutes. The library can enroll and search so its perfect

for any project (https://adafru.it/aRz). We've also written a detailed tutorial on wiring and use (https://adafru.it/clz). This

is by far the best fingerprint sensor you can get.

Supply voltage: 3.6 - 6.0VDC
Operating current: 120mA max
Peak current: 150mA max
Fingerprint imaging time: <1.0 seconds
Window area: 14mm x 18mm
Signature file: 256 bytes
Template file: 512 bytes
Storage capacity: 162 templates
Safety ratings (1-5 low to high safety)
False Acceptance Rate: <0.001% (Security level 3)
False Reject Rate: <1.0% (Security level 3)
Interface: TTL Serial
Baud rate: 9600, 19200, 28800, 38400, 57600 (default is 57600)
Working temperature rating: -20C to +50C
Working humidy: 40%-85% RH

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 3 of 25

https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library
https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library

Full Dimensions: 56 x 20 x 21.5mm
Exposed Dimensions (when placed in box): 21mm x 21mm x 21mm triangular
Weight: 20 grams

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 4 of 25

Enrolling vs. Searching

There are basically two requirements for using the optical fingerprint sensor. First is you'll need to enroll fingerprints

- that means assigning ID #'s to each print so you can query them later. Once you've enrolled all your prints, you can

easily 'search' the sensor, asking it to identify which ID (if any) is currently being photographed.

You can enroll using the Windows software (easiest and neat because it shows you the photograph of the print) or

with the Arduino sketch (good for when you don't have a Windows machine handy or for on-the-road enrolling).

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 5 of 25

Enrolling New Users with Windows

The easiest way to enroll a new fingerprint is to use the Windows software. The interface/test software is unfortunately

windows-only but you only need to use it once to enroll, to get the fingerprint you want stored in the module.

First up, you'll want to connect the sensor to the computer via a USB-serial converter. The easiest way to do this is to

connect it directly to the USB/Serial converter in the Arduino. To do this, you'll need to upload a 'blank sketch' this

one works well for "traditional" Arduinos, like the Uno and the Mega:

// this sketch will allow you to bypass the Atmega chip
// and connect the fingerprint sensor directly to the USB/Serial

// chip converter.

// Red connects to +5V

// Black connects to Ground
// White goes to Digital 0
// Green goes to Digital 1

void setup() {}
void loop() {}

The "blank" sketch won't work for "native USB" based Arduinos like the Leonardo, Micro, Zero, etc! Use

the Leo_passthru sketch instead!

If you're using a Leonardo, Micro, Yun, Zero, or other native-USB device like ATSAMD21 or ATmega32U4-

based controller, use the Leo_passthru sketch instead of the "blank" sketch.

//Leo_passthru
// Allows Leonardo to pass serial data between fingerprint reader and Windows.

//
// Red connects to +5V

// Black connects to Ground
// Green goes to Digital 0
// White goes to Digital 1

void setup() {

// put your setup code here, to run once:

Serial1.begin(57600); Serial.begin(57600);

}

void loop() {

while (Serial.available())

Serial1.write(Serial.read());
while (Serial1.available())

Serial.write(Serial1.read());
}

Wire up the sensor as described in the sketch comments after uploading the sketch. Since the sensor wires are so thin and

short, we stripped the wire a bit and melted some solder on so it made better contact but you may want to solder the wires to

header or similar if you're not getting good contact. When you plug in the power, you may see the LED

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 6 of 25

blink to indicate the sensor is working.

If your sensor has all the same-color wires, The first

wire from the left is ground, then the two data pins, then

power. You'll have to cut, strip and solder the wires.

RX is the same as the White wire
TX is the same as the Green wire

If your sensor has different wires, The first wire from

the left should be the black wire ground, then the two

data pins, RX is the white wire, TX is the green wire

then the red power wire. You'll have to cut, strip and

solder the wires.

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 7 of 25

Start up the SFGDemo software and click Open Device from the bottom left corner. Select the COM port used by

the Arduino.

And press OK when done. You should see the following, with a blue success message and some device statistics in

the bottom corner. You can change the baud rate in the bottom left hand corner, as well as the "security level" (how

sensitive it is) but we suggest leaving those alone until you have everything running and you want to experiment.

They should default to 57600 baud and security level 3 so set them if they're wrong

If you get an error when you Open Device, check your wiring, try swapping the RX and TX wires on

the sensor, that's a common mixup!

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 8 of 25

Lets enroll a new finger! Click the Preview checkbox and press the Enroll button next to it (Con Enroll means

'Continuous' enroll, which you may want to do if you have many fingers to enroll). When the box comes up, enter in

the ID # you want to use. You can use up to 162 ID numbers.

The software will ask you to press the finger to the sensor

You can then see a preview (if you cliecked the preview checkbox) of the fingerprint.

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 9 of 25

You will then have to repeat the process, to get a second clean print. Use the same finger!

On success you will get a notice.

If there's a problem such as a bad print or image, you'll have to do it again.

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 10 of 25

Searching with the Software

Once you have the finger enrolled, it's a good idea to do a quick test to make sure it can be found in the database.
Click on the Search button on the right hand side.

When prompted, press a different/same finger to the sensor.

If it is the same finger, you should get a match with the ID #

If it is not a finger in the database, you will get a failure notice.

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 11 of 25

Wiring for use with Arduino

Once you've tested the sensor, you can now use it within a sketch to verify a fingerprint. We'll need to rewire the

sensor. Disconnect the green and white wires and plug the green wire into digital 2 and the white wire to digital 3. (For

ESP8266 use 4 & 5, for devices with Hardware UART use 0 & 1)

It is normal for the sensor to blink the LED quickly once powered, after that the LED may stay off until

you've started to request data from it

If your sensor has different wires, The first wire from

the left should be the black wire ground, then the two

data pins, RX is the white wire, TX is the green wire

then the red power wire. You'll have to cut, strip and

solder the wires.

If your sensor has all the same-color wires, The first

wire from the left is ground, then the two data pins, then

power. You'll have to cut, strip and solder the wires.

RX is the same as the White wire
TX is the same as the Green wire

Arduino UNO & Compatible Wiring

This example sketch uses pins 2 and 3 for software serial (on ATmega328P type boards by default) - Not all boards

support Software Serial on all pins so check board documentation! For example on ESP8266 we used 4 & 5

You can power the sensor from 3.3V or 5V

In the diagrams below we show the wires plugged directly into the Arduino. However, this does not work well

because the wires are so thin and they dont make contact. You should solder thicker solid core wires to each

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 12 of 25

wire, to make good contact

Hardware Serial Wiring

If you have a device with hardware serial, you should use that instead. Often this is pins #0 and #1

Next, you'll need to install the Adafruit Fingerprint sensor library (also available from github) (https://adafru.it/aRz).

Open up the Arduino Library Manager:

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 13 of 25

https://github.com/adafruit/Adafruit-Fingerprint-Sensor-Library

Type in Fingerprint until you see the Adafruit Fingerprint library show up!

Click Install! That's it. Now you should be able to select the File→Examples→Adafruit_Fingerprint→fingerprint

example sketch.

Soft & Hard Serial

By default the sketch uses software serial (Arduino UNO & compatibles). If you are using a device with Hardware

Serial, e.g does not have a USB-Serial converter chip, use that instead! Usually those are on pins 0 & 1

// On Leonardo/Micro or others with hardware serial, use those! #0 is green wire, #1 is white

// uncomment this line:
#define mySerial Serial1

// For UNO and others without hardware serial, we must use software serial...
// pin #2 is IN from sensor (GREEN wire)

// pin #3 is OUT from arduino (WHITE wire)
// comment these two lines if using hardware serial
//#include <SoftwareSerial.h>
//SoftwareSerial mySerial(2, 3);

If necessary, uncomment/comment lines for hardware serial support

Upload

Upload it to your Arduino as usual. Open up the serial monitor at 9600 baud and when prompted place your finger

against the sensor that was already enrolled.

You should see the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 14 of 25

The 'confidence' is a score number (from 0 to 255) that indicates how good of a match the print is, higher is

better. Note that if it matches at all, that means the sensor is pretty confident so you don't have to pay attention to

the confidence number unless it makes sense for high security applications.

Of course you have to have enrolled a fingerprint first! If you did this using the Windows program, that's good to go. If
you have not yet, you should at least have gotten a printout. You can go ahead to the next step

to enroll fingerprints.

If you get Did not find fingerprint sensor :(check your wiring, maybe swap the RX and TX wire as that's a common issue

If you want to have a more detailed report, change the loop() to run getFingerprintID() instead of getFingerprintIDez() -

that will give you a detailed report of exactly what the sensor is detecting at each point of the search process.

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 15 of 25

Found fingerprint sensor!

Enrolling with Arduino

We did put together a simple sketch for enrolling a new finger via Arduino - its not as easy to use as the

Windows program but it does work!

Run the File→Examples→Adafruit_Fingerprint→enroll sketch and upload it to the Arduino, use the same

wiring as above.

When you open up the serial monitor, it will ask for you to type in the ID to enroll - use the box up top to type in

a number and click Send.

Then go through the enrollment process as indicated. When it has successfully enrolled a finger, it will print Stored!

Don't forget to do a search test when you're done enrolling to make sure its all good!

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 16 of 25

CircuitPython

If your sensor has different wires, The first wire from

the left should be the black wire ground, then the two

data pins, RX is the white wire, TX is the green wire

then the red power wire. You'll have to cut, strip and

solder the wires.

If your sensor has all the same-color wires, The first

wire from the left is ground, then the two data pins, then

power. You'll have to cut, strip and solder the wires.

RX is the same as the White wire
TX is the same as the Green wire

Every CircuitPython board has a hardware UART.

Check the product page or look for RX and TX written

on the board. Remember that the RX from the sensor

goes to the TX on the board! If you have problems try

swapping them, its a common mistake

Installing Library

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 17 of 25

To use the Fingerprint sensor you'll need to install the Adafruit CircuitPython Fingerprint (https://adafru.it/C4A)

library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great

page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non -express boards like the Trinket M0 or Feather M0 Basic, you'll need to manually install

the necessary libraries from the bundle:

adafruit_fingerprint.mpy

You can also download the adafruit_fingerprint.mpy from its releases page on Github (https://adafru.it/C4B).

Before continuing make sure your board's lib folder or root filesystem has the adafruit_fingerprint.mpy file

copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the CircuitPython >>> prompt.

Usage

To demonstrate the usage of the sensor, we'll use the example python script included with the library. This sensor

is fairly complex so its hard to run it just from the REPL.

Once you've installed the library, run this main.py example on your CircuitPython board.

import time
import board
import busio
from digitalio import DigitalInOut, Direction
import adafruit_fingerprint

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=57600)

If using with a computer such as Linux/RaspberryPi, Mac, Windows...
#import serial

#uart = serial.Serial("/dev/ttyUSB0", baudrate=57600, timeout=1)

finger = adafruit_fingerprint.Adafruit_Fingerprint(uart)

def get_fingerprint():

"""Get a finger print image, template it, and see if it matches!"""
print("Waiting for image...")
while finger.get_image() != adafruit_fingerprint.OK:

pass
print("Templating...")
if finger.image_2_tz(1) != adafruit_fingerprint.OK:

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 18 of 25

https://github.com/adafruit/Adafruit_CircuitPython_Fingerprint
file:///F:/welcome-to-circuitpython/installing-circuitpython
file:///F:/welcome-to-circuitpython/circuitpython-libraries
file:///F:/welcome-to-circuitpython/circuitpython-libraries
file:///F:/welcome-to-circuitpython/circuitpython-libraries
https://github.cohttps/github.com/adafruit/Adafruit_CircuitPython_Fingerprint/releases
file:///F:/welcome-to-circuitpython/the-repl

return False
print("Searching...")
if finger.finger_fast_search() != adafruit_fingerprint.OK:

return False
return True

pylint: disable=too-many-branches def

get_fingerprint_detail():

"""Get a finger print image, template it, and see if it matches!

This time, print out each error instead of just returning on failure"""
print("Getting image...", end="", flush=True)
i = finger.get_image()
if i == adafruit_fingerprint.OK:

print("Image taken")
else:

if i == adafruit_fingerprint.NOFINGER:
print("No finger detected")

elif i == adafruit_fingerprint.IMAGEFAIL:
print("Imaging error")

else:
print("Other error")

return False

print("Templating...", end="", flush=True)
i = finger.image_2_tz(1)
if i == adafruit_fingerprint.OK:

print("Templated")
else:

if i == adafruit_fingerprint.IMAGEMESS:
print("Image too messy")

elif i == adafruit_fingerprint.FEATUREFAIL:
print("Could not identify features")

elif i == adafruit_fingerprint.INVALIDIMAGE:
print("Image invalid")

else:
print("Other error")

return False

print("Searching...", end="", flush=True)
i = finger.finger_fast_search()
pylint: disable=no-else-return

This block needs to be refactored when it can be tested. if i ==

adafruit_fingerprint.OK:

print("Found fingerprint!") return

True

else:
if i == adafruit_fingerprint.NOTFOUND: print("No

match found")

else:
print("Other error") return

False

pylint: disable=too-many-statements
def enroll_finger(location):

"""Take a 2 finger images and template it, then store in 'location'"""
for fingerimg in range(1, 3):

if fingerimg == 1:
print("Place finger on sensor...", end="", flush=True)

else:
print("Place same finger again...", end="", flush=True)

© Adafruit Industries

https://learn.adafruit.com/adafruit-optical-fingerprint-sensor

Page 19 of 25

while True:
i = finger.get_image()
if i == adafruit_fingerprint.OK:

print("Image taken")
break

elif i == adafruit_fingerprint.NOFINGER:
print(".", end="", flush=True)

elif i == adafruit_fingerprint.IMAGEFAIL:
print("Imaging error")
return False

else:
print("Other error")
return False

print("Templating...", end="", flush=True)
i = finger.image_2_tz(fingerimg) if i ==

adafruit_fingerprint.OK:

print("Templated")

else:
if i == adafruit_fingerprint.IMAGEMESS:

print("Image too messy")

elif i == adafruit_fingerprint.FEATUREFAIL: print("Could

not identify features")

elif i == adafruit_fingerprint.INVALIDIMAGE: print("Image

invalid")

else:
print("Other error") return

False

if fingerimg == 1:

print("Remove finger")
time.sleep(1)
while i != adafruit_fingerprint.NOFINGER:

i = finger.get_image()

print("Creating model...", end="", flush=True)
i = finger.create_model()
if i == adafruit_fingerprint.OK:

print("Created")
else:

if i == adafruit_fingerprint.ENROLLMISMATCH:
print("Prints did not match")

else:
print("Other error")

return False

print("Storing model #%d..." % location, end="", flush=True)
i = finger.store_model(location) if i ==

adafruit_fingerprint.OK:

print("Stored")
else:

if i == adafruit_fingerprint.BADLOCATION: print("Bad

storage location")

elif i == adafruit_fingerprint.FLASHERR: print("Flash

storage error")

else:
print("Other error") return

False

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 20 of 25

return True

def get_num():

"""Use input() to get a valid number from 1 to 127. Retry till success!"""
i = 0
while (i > 127) or (i < 1):

try:
i = int(input("Enter ID # from 1-127: ")) except

ValueError:

pass
return i

while True:

print("----------------")
if finger.read_templates() != adafruit_fingerprint.OK:

raise RuntimeError('Failed to read templates')
print("Fingerprint templates:", finger.templates)
print("e) enroll print")
print("f) find print")
print("d) delete print")
print("----------------")
c = input("> ")

if c == 'e':

enroll_finger(get_num())
if c == 'f':

if get_fingerprint():
print("Detected #", finger.finger_id, "with confidence", finger.confidence)

else:
print("Finger not found")

if c == 'd':
if finger.delete_model(get_num()) == adafruit_fingerprint.OK:

print("Deleted!")
else:

print("Failed to delete")

It's fairly long but it will help you set-up and test your sensor!

When you first start up, you should get something like this:

If you get an error like RuntimeError: Failed to read data from sensor it means something went wrong - check your wiring

and baud rate!

This menu system is fairly simple, you have three things you can do

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 21 of 25

Enroll print - you will use your finger to take images and 'store' the model in the sensor
Find print - determine whether a fingerprint is known and stored
Delete print - clear out a model

Enrolling Prints

Enrolling a finger print is easy. Type e to start the process. You'll need to select a location. The sensor can store up

to 127 print locations. Pick a valid number, then place your finger twice to enroll.

Note that after success, the Fingerprint templates: [...] printout will include the new template id.

If an error occurs, the sensor will give you an error, such as if the two prints don't match, or if it failed to store

or generate a model:

Finding Prints

Once you've enrolled fingerprints you can then test them. Run the find command, and try various fingers! Once

the fingerprint id identified it will tell you the location number, in this case #5

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 22 of 25

Deleting Fingerprints

If you made a mistake you can remove fingerprint models from the database. For example, here's how to delete

#5. Note the Fingerprint templates: [...] printout changes!

© Adafruit Industries https://learn.adafruit.com/adafruit-optical-fingerprint-sensor Page 23 of 25

Arduino Mega 2560 Datasheet

Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet).
It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog
inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a
power jack, an ICSP header, and a reset button. It contains everything needed to support
the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-
to-DC adapter or battery to get started. The Mega is compatible with most shields designed
for the Arduino Duemilanove or Diecimila.

Schematic & Reference Design

EAGLE files: arduino-mega2560-reference-design.zip

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc2549.PDF&sa=D&sntz=1&usg=AFQjCNGeztVhTS8iSRZrY4j22pvCCDbbkg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-reference-design.zip&sa=D&sntz=1&usg=AFQjCNHiCZ9RpESKSlq5Psy7AOtmBijEqw

Schematic: arduino-mega2560-schematic.pdf

Summary

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 14 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Power

The Arduino Mega can be powered via the USB connection or with an external power supply.
The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or
battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the
board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers
of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than
7V, however, the 5V pin may supply less than five volts and the board may be unstable.
If using more than 12V, the voltage regulator may overheat and damage the board.
The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-
to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-
serial converter.

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-mega2560-schematic.pdf&sa=D&sntz=1&usg=AFQjCNFp4HOL_-BThcM5MRYU4M09-bsTbA

The power pins are as follows:

// VIN. The input voltage to the Arduino board when it's using an external power source
(as opposed to 5 volts from the USB connection or other regulated power source).
You can supply voltage through this pin, or, if supplying voltage via the power jack,
access it through this pin.

// 5V. The regulated power supply used to power the microcontroller and other
components on the board. This can come either from VIN via an on-board
regulator, or be supplied by USB or another regulated 5V supply.

// 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is
50 mA.

// GND. Ground pins.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for
the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with
the EEPROM library).

Input and Output

Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode()
// digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can
provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected
by default) of 20-50 kOhms. In addition, some pins have specialized functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX)
and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit
(TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the
ATmega8U2 USB-to-TTL Serial chip.

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5),
19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be
configured to trigger an interrupt on a low value, a rising or falling edge, or a change
in value. See the attachInterrupt() function for details.

 PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.
 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication using the SPI library. The SPI pins are also broken out on the ICSP
header, which is physically compatible with the Uno, Duemilanove and Diecimila.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FEEPROM&sa=D&sntz=1&usg=AFQjCNH6hzoziPBSqVHuPfePIK9lcCgDlA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FPinMode&sa=D&sntz=1&usg=AFQjCNHm__6WzwB5C9LJaUCYAY4ToJ7asg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalWrite&sa=D&sntz=1&usg=AFQjCNHVoqqmZU4b8Cjrk38hVOmRkCub2A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDigitalRead&sa=D&sntz=1&usg=AFQjCNFoXOKOJFf3zyoe7hBQTIdvUd_6iw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAttachInterrupt&sa=D&sntz=1&usg=AFQjCNGorv155Wh6Oam5QBDeSkjhGcoQVg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAttachInterrupt&sa=D&sntz=1&usg=AFQjCNGorv155Wh6Oam5QBDeSkjhGcoQVg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogWrite&sa=D&sntz=1&usg=AFQjCNEHHqYhHKEKn_Nbi3OXaMt0NZuPRQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg

value, the LED is on, when the pin is LOW, it's off.
// I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire

library (documentation on the Wiring website). Note that these pins are not in the
same location as the I2C pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024

different values). By default they measure from ground to 5 volts, though is it possible to
change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

// AREF. Reference voltage for the analog inputs. Used with analogReference().
// Reset. Bring this line LOW to reset the microcontroller. Typically used to add a

reset button to shields which block the one on the board.

Communication

The Arduino Mega2560 has a number of facilities for communicating with a computer,
another Arduino, or other microcontrollers. The ATmega2560 provides four hardware UARTs
for TTL (5V) serial communication. An ATmega8U2 on the board channels one of these over
USB and provides a virtual com port to software on the computer (Windows machines will
need a .inf file, but OSX and Linux machines will recognize the board as a COM port
automatically. The Arduino software includes a serial monitor which allows simple textual
data to be sent to and from the board. The RX and TX LEDs on the board will flash when

data is being transmitted via the ATmega8U2 chip and USB connection to the computer
(but not for serial communication on pins 0 and 1).
A SoftwareSerial library allows for serial communication on any of the Mega2560's digital
pins.
The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software
includes a Wire library to simplify use of the I2C bus; see the documentation on the
Wiring website for details. For SPI communication, use the SPI library.

Programming

The Arduino Mega can be programmed with the Arduino software (download). For
details, see the reference and tutorials.
The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows you

to upload new code to it without the use of an external hardware programmer. It

http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FAnalogReference&sa=D&sntz=1&usg=AFQjCNEMhKTO3Bd1Ls4OomVPa3rImnN0og
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FSoftwareSerial&sa=D&sntz=1&usg=AFQjCNEYlvmtSHOoYxE3IQ2FAJkgSXrtOg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FSoftwareSerial&sa=D&sntz=1&usg=AFQjCNEYlvmtSHOoYxE3IQ2FAJkgSXrtOg
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Fwiring.org.co%2Freference%2Flibraries%2FWire%2Findex.html&sa=D&sntz=1&usg=AFQjCNEo2UmbI2CoqNU5n78WfRqBqVE9nw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FSPI&sa=D&sntz=1&usg=AFQjCNEbvxC058h4VzvBZikxYLKgSwkywg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FMain%2FSoftware&sa=D&sntz=1&usg=AFQjCNHWee2ER8NChtqAb_cHNGipk_iaEQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FHomePage&sa=D&sntz=1&usg=AFQjCNEx4dZ_EY61dEC539MhVMOoCBnHeQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FHomePage&sa=D&sntz=1&usg=AFQjCNHkINp3saLnDNCfcrmAk3MjaiDngg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FBootloader&sa=D&sntz=1&usg=AFQjCNF7N1BBoJyxvIDuMofK56Zv-P5RLA

communicates using the original STK500 protocol (reference, C header files).
You can also bypass the bootloader and program the microcontroller through the ICSP
(In-Circuit Serial Programming) header; see these instructions for details.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino
Mega2560 is designed in a way that allows it to be reset by software running on a
connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is
connected to the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this
line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino
software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter
timeout, as the lowering of DTR can be well-coordinated with the start of the upload.
This setup has other implications. When the Mega2560 is connected to either a computer

running Mac OS X or Linux, it resets each time a connection is made to it from software (via

USB). For the following half-second or so, the bootloader is running on the Mega2560. While it is

programmed to ignore malformed data (i.e. anything besides an upload of new code), it will

intercept the first few bytes of data sent to the board after a connection is opened.
If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after
opening the connection and before sending this data.
The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on
either side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN".
You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to
the reset line; see this forum thread for details.

USB Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB ports
from shorts and overcurrent. Although most computers provide their own internal
protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to
the USB port, the fuse will automatically break the connection until the short or overload is
removed.

Physical Characteristics and Shield
Compatibility

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc2525.pdf&sa=D&sntz=1&usg=AFQjCNGrUrCZvIYc5jvlgjv6B2POgx8FEw
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Favr061.zip&sa=D&sntz=1&usg=AFQjCNE7FfUuxf6X18cS9jghtKxA7ceg0Q
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FHacking%2FProgrammer&sa=D&sntz=1&usg=AFQjCNER6QZ8vnnLxFKVmBfuRYZIvjA7Ug
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fcgi-bin%2Fyabb2%2FYaBB.pl%3Fnum%3D1213719666%2Fall&sa=D&sntz=1&usg=AFQjCNHQm-zZRKMet813Pe3YOjxRos27dg

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively,

with the USB connector and power jack extending beyond the former dimension. Three
screw holes allow the board to be attached to a surface or case. Note that the distance
between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing
of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the Uno,
Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins),

analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations.
Further the main UART (serial port) is located on the same pins (0 and 1), as are external
interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega2560 and Duemilanove / Diecimila. Please note that I2C is not located on the
same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

REV1.0 GSM GPRS SIM900A MODEM

GPRS /GSM SIM900A MODEM

USER MANUAL

www.researchdesignlab.com Page 1

REV1.0 GSM GPRS SIM900A MODEM

Contents

Overview ... 4

GSM GPRS SIM900A Modem .. 4

Features ... 5

Datasheets .. 5

GSM Utility Software .. 6

Basic AT Commands for Testing ... 7

GSM AT Commands:... Error! Bookmark not defined.

GPRS Commands: .. Error! Bookmark not defined.

MODULE SETUP ... 9

POWER MODES ... 12

Power down mode .. 12

Minimum Functionality Mode .. 12

Sleep mode... 12

Wake up SIM900A from sleep mode .. 12

PINS OF GSM SIM900A Modem .. 13

NARATION OF GSM SIM900A MODEM ... 14

BLOCK DIAGRAMS .. 15

INTERFACING UNO AND GSM SHIELD .. 15

INTERFACING RASPBERRY AND GSM SHIELD .. 16

INTERFACING BEAGLEBOARD AND GSM SHIELD .. 17

INTERFACING MICROCONTROLLER WITH GSM SHIELD ... 18

CODES .. 19

ARM CODE .. 19

ATMEL CODE .. 19

PIC CODE ... 19

ARDUNIO CODE ... 19

RASPBERRY PI CODE .. 19

BEAGLEBONE CODE.. 19

MSP430 CODE .. 19

www.researchdesignlab.com Page 2

REV1.0 GSM GPRS SIM900A MODEM

GSM POWER SAVING ATMEL CODE ... 19

GSM POWER SAVING PIC CODE .. 19

MODULE HANDLING ... 20

DO'S AND DONT'S .. 20

www.researchdesignlab.com Page 3

REV1.0 GSM GPRS SIM900A MODEM

Overview

GSM GPRS SIM900A Modem

GSM/GPRS Modem-RS232 is built with Dual Band GSM/GPRS engine- SIM900A,

works on frequencies 900/ 1800 MHz. The Modem is coming with RS232 interface, which

allows you connect PC as well as microcontroller with RS232 Chip(MAX232). The baud rate is

configurable from 9600-115200 through AT command. The GSM/GPRS Modem is having

internal TCP/IP stack to enable you to connect with internet via GPRS. It is suitable for SMS,

Voice as well as DATA transfer application in M2M interface. The onboard Regulated Power

supply allows you to connect wide range unregulated power supply . Using this modem, you can

make audio calls, SMS, Read SMS, attend the incoming calls and internet through simple AT

commands

www.researchdesignlab.com Page 4

REV1.0 GSM GPRS SIM900A MODEM

Features

 Dual-Band GSM/GPRS 900/ 1800 MHz.
 RS232 interface for direct communication with computer or MCU kit.
 Configurable baud rate.
 Power controlled using 29302WU IC.
 ESD Compliance.
 Enable with MIC and SPeaker socket.
 With slid in SIM card tray.
 With Stub antenna and SMA connector.
 Input Voltage: 12V DC.

Datasheets

// AT Commands datasheet

https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnTkJwSll3dnhK

bTg/edit?usp=sharing

// FTP Commands datasheet

https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnVkhacjUtY2tIU

2c/edit?usp=sharing

// TCP/IP Commands datasheet

https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnUHRCQlJwUjd

WTVU/edit?usp=sharing

www.researchdesignlab.com Page 5

https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnTkJwSll3dnhKbTg/edit?usp=sharing
https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnTkJwSll3dnhKbTg/edit?usp=sharing
https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnVkhacjUtY2tIU2c/edit?usp=sharing
https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnVkhacjUtY2tIU2c/edit?usp=sharing
https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnUHRCQlJwUjdWTVU/edit?usp=sharing
https://drive.google.com/a/researchdesignlab.com/file/d/0BzrGD4zr88GnUHRCQlJwUjdWTVU/edit?usp=sharing

REV1.0 GSM GPRS SIM900A MODEM

GSM Utility Software

 Bulk Message sending
 AT command testing terminal
 Provides step by step GPRS setup

To download GSM/GPRS Utility software ,click on the link below

// https://docs.google.com/file/d/0BzrGD4zr88GnYll6dlFJT2NFY2s/edit
// http://www.4shared.com/file/rwyHmtGOba/GSM_GPRS_utility.html

www.researchdesignlab.com Page 6

https://docs.google.com/file/d/0BzrGD4zr88GnYll6dlFJT2NFY2s/edit
http://www.4shared.com/file/rwyHmtGOba/GSM_GPRS_utility.html

REV1.0 GSM GPRS SIM900A MODEM

Basic AT Commands for Testing

GSM AT Commands:

 TO CHECK THE MODEM: AT ↲

OK

 TO CHANGE SMS SENDING MODE: AT+CMGF=1 ↲

OK

 TO SEND NEW SMS:
AT+CMGS=”MOBILE NO.” ↲

<MESSAGE

{CTRL+Z}
 TO RECEIVE SMS

AT+CMGD=1 ↲ {to delete the message in buffer} AT+CMGR=1 ↲ {to receive first message AT+CMGR=1}
{to receive second message AT+CMGR=2 and so on}

+CMGL: 1,"REC
READ","+85291234567",,"07/05/01,08:00:15+32",145,37 <MESSAGE

 PREFERRED SMS MESSAGE STORAGE: AT+CPMS=? ↲

+CPMS: (“SM”),(“SM”),(“SM”)

OK AT+CPMS? ↲

+CPMS: “SM”,19,30,”SM”,19,30,”SM”,19,30

 TO MAKE A VOICE CALL:

 TO REDIAL LAST NO: ATDL ↲
 TO RECEIVE INCOMING CALL: ATA ↲
 TO HANGUP OR DISCONNECT A CALL: ATH ↲

 TO SET A PARTICULAR BAUDRATE:

 OPERATOR SELECTION: AT+COPS=? ↲

OK AT+COPS? ↲

+COPS: 0,0,”AirTel”

OK

www.researchdesignlab.com Page 7

REV1.0 GSM GPRS SIM900A MODEM

 AT+CRC SET CELLULAR RESULT CODES FOR INCOMING CALL INDICATION: AT+CRC=? ↲

+CRC: (0-1)

OK AT+CRC? ↲
+CRC: 0
OK AT+CRC=1 ↲

OK

+CRING: VOICE

 READ OPERATOR NAMES.
AT+COPN=? ↲

OK
AT+COPN ↲
+COPN: “472001″,”DHIMOBILE”

+COPN: “60500

+COPN: “502012″,”maxis mobile”

+COPN:

+COPN: “502013″,”TMTOUCH”

+COPN
+COPN: “502016″,”DiGi”

+COPN: “502017″,”TIMECel”"

+COPN: “502019″,”CELCOM GSM”

GPRS Commands:

Command Description

AT+CGATT ↲ ATTACH/DETACH FROM GPRS SERVICE

AT+CGDCONT ↲ DEFINE PDP CONTEXT

AT+CGQMIN ↲ QUALITY OF SERVICE PROFILE (MINIMUM ACCEPTABLE)

AT+CGQREQ ↲ QUALITY OF SERVICE PROFILE (REQUESTED)

AT+CGACT ↲ PDP CONTEXT ACTIVATE OR DEACTIVATE

AT+CGDATA ↲ ENTER DATA STATE

AT+CGPADDR ↲ SHOW PDP ADDRESS

AT+CGCLASS ↲ GPRS MOBILE STATION CLASS

AT+CGEREP ↲ CONTROL UNSOLICITED GPRS EVENT REPORTING

AT+CGREG ↲ NETWORK REGISTRATION STATUS

AT+CGSMS ↲ SELECT SERVICE FOR MO SMS MESSAGES

AT+CGCOUNT ↲ GPRS PACKET COUNTERS

www.researchdesignlab.com Page 8

REV1.0 GSM GPRS SIM900A MODEM

MODULE SETUP

step 1 : Insert SIMcard into the SIM slot.

step 2 : Plug in 12V -2A DC power adapter, power led is lit (place jumper between PWRkey and

on pin for only to turn ON automatically).

www.researchdesignlab.com Page 9

REV1.0 GSM GPRS SIM900A MODEM

step 3 : Press and hold power button (To turn on manually without jumper)

step 4 : Connect to PC through RS232 cable

www.researchdesignlab.com Page 10

REV1.0 GSM GPRS SIM900A MODEM

step 5 : open GSM/GPRS utility software ,choose appropriate COM port and use AT commands

listed in this manual for basic testing GPRS GSM/messaging and voice calling.

www.researchdesignlab.com Page 11

REV1.0 GSM GPRS SIM900A MODEM

POWER MODES

Power down mode
SIM900A is set power down mode by “AT+CPOWD=0”

There are two methods for the module to enter into low current consumption status

Minimum Functionality Mode

Minimum functionality mode reduces the functionality of the module to a minimum and thus
minimizes the current consumption to the lowest level.
If SIM900A has been set to minimum functionality by “AT+CFUN=0” If

SIM900A has been set to full functionality by “AT+CFUN=1”

If SIM900A is set “AT+CFUN=4” to disable both the above functionality.

Sleep mode

We can control SIM900A module to enter or exit the SLEEP mode in customer

applications through DTR signal. When DTR is in high level and there is no on air and hardware

interrupt (such as GPIO interrupt or data on serial port), SIM900A will enter SLEEP mode

automatically. In this mode, SIM900A can still receive paging or SMS from network but the

serial port is not accessible.

Wake up SIM900A from sleep mode

 Enable DTR pin to wake up SIM900A. If DTR pin is pulled down to a low level

 This signal will wake up SIM900A from power saving mode. The serial port will be

active after DTR changed to low level for about 50ms.
 Receiving a voice or data call from network to wake up SIM900A.
 Receiving a SMS from network to wake up SIM900A.

www.researchdesignlab.com Page 12

REV1.0 GSM GPRS SIM900A MODEM

PINS OF GSM SIM900A Modem

www.researchdesignlab.com Page 13

REV1.0 GSM GPRS SIM900A MODEM

NARATION OF GSM SIM900A MODEM

www.researchdesignlab.com Page 14

REV1.0 GSM GPRS SIM900A MODEM

BLOCK DIAGRAMS

INTERFACING UNO AND GSM SHIELD

www.researchdesignlab.com Page 15

REV1.0 GSM GPRS SIM900A MODEM

INTERFACING RASPBERRY AND GSM SHIELD

www.researchdesignlab.com Page 16

REV1.0 GSM GPRS SIM900A MODEM

INTERFACING BEAGLEBOARD AND GSM SHIELD

www.researchdesignlab.com Page 17

REV1.0 GSM GPRS SIM900A MODEM

INTERFACING MICROCONTROLLER WITH GSM SHIELD

www.researchdesignlab.com Page 18

REV1.0 GSM GPRS SIM900A MODEM

CODES

ARM CODE
http://researchdesignlab.com/gsm-modem-arm-code

ATMEL CODE
http://researchdesignlab.com/gsm-modem-atmel-code

PIC CODE

http://forum.researchdesignlab.com/GSM%20SIM900/PIC/SIM900.c

ARDUNIO CODE
http://researchdesignlab.com/arduino-gsm2-code

RASPBERRY PI CODE
SENDING CODE

http://researchdesignlab.com/gsm-raspberry-code

RECEIVING CODE

http://researchdesignlab.com/gsm-raspberry-receiving-code.html

BEAGLEBONE CODE
SENDING CODE

http://researchdesignlab.com/gsm-beaglebone-send-code

RECEIVING CODE

http://researchdesignlab.com/gsm-beaglebone-receiving-code.html

MSP430 CODE
http://forum.researchdesignlab.com/MSP430/MSP/GSM.zip

GSM POWER SAVING ATMEL CODE
http://researchdesignlab.com/gsm-power-atmel-code.html

GSM POWER SAVING PIC CODE
http://researchdesignlab.com/gsm-power-pic-code.html

www.researchdesignlab.com Page 19

http://researchdesignlab.com/gsm-modem-arm-code
http://researchdesignlab.com/gsm-modem-atmel-code
http://forum.researchdesignlab.com/GSM%20SIM900/PIC/SIM900.c
http://researchdesignlab.com/arduino-gsm2-code
http://researchdesignlab.com/gsm-raspberry-code
http://researchdesignlab.com/gsm-raspberry-receiving-code.html
http://researchdesignlab.com/gsm-beaglebone-send-code
http://researchdesignlab.com/gsm-beaglebone-receiving-code.html
http://forum.researchdesignlab.com/MSP430/MSP/GSM.zip
http://researchdesignlab.com/gsm-power-atmel-code.html
http://researchdesignlab.com/gsm-power-pic-code.html

REV1.0 GSM GPRS SIM900A

MODEM

MODULE HANDLING

DO'S AND DONT'S

www.researchdesignlab.com Page 20

