BAB II TINJAUAN PUSTAKA

2.1. Motor Induksi⁵

Mesin- mesin listrik digunakan untuk mengubah suatu bentuk energi ke energi yang lain, misalnya mesin yang mengubah energi mekanis ke energi listrik disebut generator, dan sebaliknya energi listrik menjadi energi mekanis disebut motor. Masing-masing mesin mempunyai bagian yang diam dan bagian yang bergerak. Bagian yang bergerak dan diam terdiri dari inti besi, dipisahkan oleh celah udara dan membentuk rangkaian magnetik dimana fluksi dihasilkan oleh aliran arus melalui kumparan/belitan yang terletak didalam kedua bagian tersebut.

Pada umumnya mesin-mesin penggerak yang digunakan di Industri mempunyai daya keluaran lebih besar dari 1 HP dan menggunakan motor Induksi Tiga Fasa. Adapun kelebihan dan kekurangan motor induksi bila dibandingkan dengan jenis motor lainnya, adalah:

Kelebihan motor induksi:

- 1. Mempunyai konstruksi yang sederhana.
- 2. Relatif lebih murah harganya bila dibandingkan dengan jenis motor yang lainnya.
- 3. Menghasilkan putaran yang konstan.
- 4. Mudah perawatannya.
- 5. Untuk pengasutan tidak memerlukan motor lain sebagai penggerak mula. Tidak membutuhkan sikat-sikat, sehingga rugi gesekan bisa dikurangi.

Kekurangan motor induksi:

- 1. Putarannya sulit diatur.
- 2. Arus asut yang cukup tinggi, berkisar antara 5 6 kali arus nominal motor

⁵Prih Sumardjati, dkk., Teknik Pemanfaatan Tenaga Listrik Jilid 3 Hal. 408.

2.2 Klasifikasi Motor Induksi⁶

Motor induksi memiliki berbagai jenis yang dapat diklasifikasikan antara lain berdasarkan prinsip kerja, berdasarkan macam arus, dan berdasarkan kecepatan.

2.2.1. Berdasarkan Prinsip Kerja

Berdasarkan prinsip kerja motor induksi dapat diklasifikasikan menjadi dua kelompok yaitu, pertama motor sinkron biasa (tanpa slip ring) dan super (dengan slip ring). Kedua motor asinkron yaitu motor induksi (squirrel cage & slip ring)

2.2.2. Berdasarkan Macam Arus

Berdasarkan macam arus motor induksi dapat diklasifikasikan menjadi dua kelompok, yaitu :

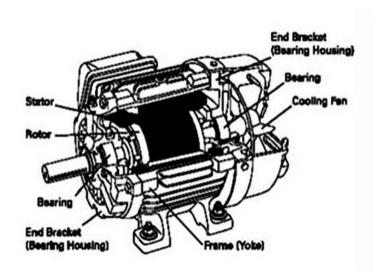
1. Satu phasa

Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fasa, memiliki sebuah rotor sangkar tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian.

2. Tiga phasa

Medan magnet yang berputar dihasilkan oleh pasokan tiga fasa yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki sangkar tupai atau gulungan rotor (walaupun 90% memiliki rotor sangkar tupai) dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, *compressor,belt conveyor*, jaringan listrik dan *grinder*.

⁶Rijono, Yon, Dasar Teknik Tenaga Listrik. (Yogyakarta: Andi Offsett, 1997), hal: 309.



2.2.3. Berdasarkan Kecepatan

- 1. Kecepatan Konstan
- 2. Kecepatan Berubah
- 3. Kecepatan Diatur

2.3. Konstruksi Motor Induksi 3 fasa

Kontruksi motor induksi secara detail terdiri dua bagian, yaitu: bagian stator dan bagian rotor. Dapat di lihat pada Gambar 2.1 dibawah ini.

Gambar 2.1. Fisik Motor Induksi

(Sumber: Buku Teknik Listrik Industri Jilid II, 2008.)

Stator adalah bagian motor yang diam yang terdiri dari badan motor, inti stator, belitan stator, bearing dan terminal box. Sedangkan bagian rotor adalah bagian motor yang berputar, terdiri atas rotor sangkar dan poros rotor. Konstruksi motor induksi tidak ada bagian rotor yang bersentuhan dengan stator, karena dalam motor induksi tidak ada komutator dan sikat arang, selain itu juga kontruksi motor induksi lebih sederhana di bandingkan dengan motor DC, dikarenakan tidak ada komutator dan sikat arang sehingga pemeliharaan motor induksi sangat mudah yaitu di bagian mekanik nya saja, dan kontruksi nya juga begitu sederhana serta motor induksi sangat handal dan jarang sekali rusak secara elektrik. Bagian motor induksi yang perlu di pelihara rutin adalah pelumas bearing, dan

pemeriksaan kekencangan baut-baut kabel pada terminal box apabila terjadi kondor atau lepas akibat pengaruh getaran secara terus menerus.¹

2.3.1. Stator

Pada bagian stator terdapat beberapa slot yang merupakan tempat kawat (konduktor) dari tiga phasa yang disebut kumparan stator, yang masing-masing kumparan mendapatkan suplai arus tiga phasa. Stator terdiri dari pelat-pelat besi yang disusun sama besar dengan rotor dan pada bagian dalam mempunyai banyak alur-alur yang diberi kumparan kawat tembaga yang berisolasi. Lalu akan timbul flux medan putar , karena adanya flux medan putar pada kumparan stator, mengakibatkan rotor berputar karena adanya induksi magnet dengan kecepatan putar sinkron dengan kecepatan putar stator.

Dari bagian stator dapat dibagi menjadi beberapa bagian antara lain sebagai berikut :

1. Bodi Motor (Frame)

Fungsi utama dari rangka adalah sebagai tempat mengalirnya fluks magnet, karena itu ranka mesin di buat dari bahan ferromagnetik. Selain itu rangka befungsi untuk meletakkan alat-alat tertentu dan melindungi bagian-bagian mesin lainnya. Mesin – mesin yangkecil di buat dari besi tuang, sedangkan mesin-mesin yang besar rangkanya di buat dari plat campuran baja yang berbentuk silinder.

2. Inti kutub magnet dan lilitan penguat magnet

Fluks magnet yang terdapat pada mesin motor listrik dihasilkan oleh kutub kutub magnet. Kutub magnet diberi lilitan penguat magnet yang berfungsi untuk tempat aliran arus listrik supaya terjadi proses elektromagnetisme. Pada dasar nya kutub magnet terdiri dari magnet dan sepatu kutub magnet. Karena kutub magnet berfungsi menghasilkan fluks magnet, maka kutub magnet di buat dari bahan ferromagnetik, misalnya campuran baja-silikon. Di samping itu kutub magnet di buat dari bahan berlapis-lapis tipis untuk mengurangi panas karena adanya arus pusar yang terbentuk pada kutub magnet tersebut.

⁷Siswoyo, Teknik Listrik Industri (Jakarta:Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional,2008). Hal. 5-7.

3. Sikat komutator

Fungsi dari sikat adalah sebagai sebagai penghubung untuk aliran arus dari lilitan jangkar ke terminal luar (generator) ke lilitan jangkar (Motor). Karena itu sikat sikat di buat dari bahan konduktor. Di samping itu sikat juga berfungsi untuk terjadinya komutasi bersamasama dengan komutator, bahan sikat harus lebih lunak dari komutator. Supaya hubungan/kontak antara sikat sikat yang diam dengan komutator yang berputar dapat sebaik mungkin, maka sikat memerlukan alat pemegang dan penekan berupa per/pegas yang dapat di atur KomutatorSeperti diketahui komutator berfungsi sebagai alat penyearah mekanik, yang ber-sama-sama dengan sikat membentuk suatu kerjasama yang disebut komutasi. Supaya menghasilkan penyearah yang lebih baik, maka komutator yang digunakan jumlahnya banyak. Karena itu tiap belahan/segmen komutator tidak lagi merupakan bentuk sebagian selinder, tetapi sudah berbentuk lempeng- lempeng. Diantara setiap lempeng/ segmen komutator terdapat bahan isolator. Isolator yang digunakan menentukan kelas dari mesin berdasarkan kemampuan suhu yang timbul dalam mesin tersebut.

4. Jangkar

Jangkar yang umum digunakan dalam mesin arus searah adalah yang berbentuk silinder, yang diberi alur pada bagian permukaannya untuk melilitkan kumparan-kumparan tempat terbentuknya Ggl imbas. Jangkar dibuat dari bahan yang kuat yang mempunyai sifat ferromagnetik dengan permeabilitas yang cukup besar, dengan maksud agar kumparan lilitan jangkar terletak dalam daerah yang imbas magnetnya besar sehingga ggl yang terbentuk dapat bertambah besar.

2.3.2. Rotor

Berdasarkan hukum faraday tentang imbas magnet, maka medan putar yang secara relative merupakan medan magnet yang bergerak terhadap penghantar rotor akan mengimbaskan gaya gerak listrik (ggl). Frekuensi imbas ggl ini sama dengan frekuensi jala-jala (sumber). Besarnya ggl imbas ini berbanding lurus dengan kecepatan relative antara medan putar dan penghantar

rotor. Penghantar —penghantar dalam rotor yang membentuk suatu rangkaian tertutup, merupakan rangkaian pelaju arus rotor dan searah dengan hukum yang berlaku yaitu hukum lenz. Dalam hal ini arus rotor ditimbulkan karena adanya perbedaan kecepatan yang berada diantara fluksi atau medan putar stator dengan penghantar yang diam. Rotor akan berputar dalam arah yang sama dengan arah medan putar stator.

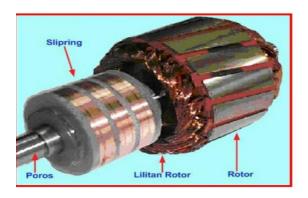
Motor induksi bila ditinjau dari dari rotornya terdiri atas dua tipe yaitu motor rotor sangkar dan motor rotor lilit.

1. Motor Rotor Sangkar⁵

Motor induksi jenis rotor sangkar lebih banyak digunakan dari pada jenis rotor lilit, sebab rotor sangkar mempunyai bentuk yang sederhana. Belitan rotor terdiri atas batang- batang penghantar yang ditempatkan di dalam alur rotor. Batang penghantar ini terbuat dari tembaga, alloy atau alumunium. Ujung- ujung batang penghantar dihubung singkat oleh cincin penghubung singkat, sehingga berbentuk sangkar burung. Motor induksi yang menggunakan rotor ini disebut dengan Motor Induksi Rotor Sangkar. Karena batang penghantar rotor yang telah dihubung singkat, maka tidak dibutuhkan tahanan luar yang dihubungkan seri dengan rangkaian rotor pada saat awal berputar. Alur-alur rotor biasanya tidak dihubungkan sejajar dengan sumbu (poros) tetapi sedikit miring.

Gambar 2.2. Rotor Sangkar

(Sumber: Buku Teknik Pemanfaatan Tenaga Listrik Jilid 3,2008.)


⁵Prih Sumardjati, dkk., Teknik Pemanfaatan Tenaga Listrik Jilid 3,(Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional, 2008), Hal. 410.

2. Motor Rotor Lilit.

Rotor lilit terdiri atas belitan fasa banyak, belitan ini dimasukkan kedalam alur-alur inti rotor. Belitan ini sama dengan belitan stator, tetapi belitan selalu dihubungkan secara bintang. Tiga buah ujung-ujung belitan dihubungkan ke terminal-terminal sikat/cincin seret yang terletak pada poros rotor.

Pada jenis rotor lilit kita dapat mengatur kecepatan motor dengan cara mengatur tahanan belitan rotor tersebut. Pada keadaan kerja normal sikat karbon yang berhubungan dengan cincin seret tadi dihubung singkat. Motor Induksi rotor lilit dikenal dengan sebutan Motor Induksi Slipring atau Motor Induksi Rotor Lilit.

Gambar 2.3. Motor Rotor Lilit

(Sumber : Buku Teknik Pemanfaatan Tenaga Listrik Jilid 3,2008.)

2.4. Prinsip Kerja Motor Induksi⁸

Pada dasarnya ada beberapa prinsip penting pada motor - motor induksi yaitu:

- Apabila sumber tegangan tiga fasa dipasang pada kumparan stator, timbullah medan putar dengan kecepatan.
- 2. Medan putar stator tersebut akan memotong batang konduktor pada rotor.
- 3. Akibatnya pada kumparan rotor timbul induksi (ggl) sebesar :

⁸Zuhal 1991. Dasar Tenaga Listrik. Jakarta, ITB, Bandung. Hal:68

 $E_2 = 4,44. f_2.N_2. \phi_m....(2.1)$

Dimana:

 E_2 = Tegangan Induksi

f₂ = frekuensi jala-jala

 N_2 = banyaknya lilitan

 $\phi_m = fluks \ magnet$

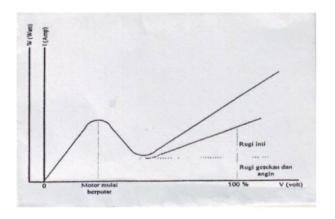
- 4. Karena kumparan rotor merupakan rangkaian yang tertutup, ggl (E) akan menghasilkan arus (I).
- 5. Adanya arus (I) didalam medan magnet menimbulkan gaya (F) pada motor.
- 6. Bila torsi mula dihasilkan oleh gaya (F) pada rotor cukup besar untuk memikul torsi beban, rotor akan berputar searah dengan medan putar stator.
- 7. Tegangan magnet induksi timbul karena terpotongnya batang konduktor (rotor) oleh medan putar stator. Artinya agar tegangan terinduksi diperlukan adanya perbedaan relatif antara kecepatan medan putar stator (Ns) dengan kecepatan berputar rotor (Nr).
- 8. Perbedaan kecepatan antara Nr dan Ns disebut slip (s) dinyatakan dengan

$$S = \frac{Ns - Nr}{Ns} \times 100\% \tag{2.2}$$

Dimana : S = Slip motor (%)

 N_s = Medan putar stator (Rpm)

 $N_r = Medan putar rotor (Rpm)$

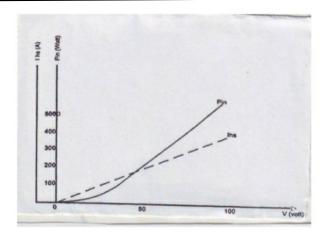

- 9. Bila $N_r = N_s$, tegangan tidak akan terinduksi dan arus tidak mengalir pada kumparan jangkar (rotor), dengan demikian tidak dihasilkan kopel. Kopel motor akan ditimbulkan apabila N_r lebih kecil dari N_s .
- 10. Dilihat dari cara kerjanya maka motor tak serempak disebut juga motor induksi atau motor asinkron.

2.5. Karakteristik Motor Induksi²

Secara umum motor induksi yang baik mempunyai standar bentuk karakteristik tertentu. Tiap-tiap motor mempunyai karakteristik sendiri-sendiri. Dibawah ini disebutkan beberapa karakteristik yang menggambarkan hubungan antara suatu parameter dan mesin yang lain, yaitu:

a. Karakteristik Beban Nol

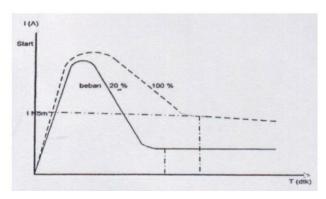
Karakteristik beban nol adalah karakteristik yang menggambarkan hubungan antara tegangan ke motor dengan arus daya $\cos \phi$ motor pada keadaan tanpa beban, seperti yang ditunjukkan pada gambar , jadi putaran mendekati sinkron atau sama.


Gambar 2.4. Karakteristik Beban Nol

b. Karakteristik Rotor yang diblok

Karakteristik motor yang diblok adalah karakteristik yang menggambarkan hubungan antara tegangan masuk dan arus yang masuk, cos φ ,dan daya masuk. Seperti yang ditunjukkan pada (gambar 2.5.) Berikut ini.

²Gunawan, 2008. Efisiensi Motor Induksi 3 phasa pada Mesin Threshing di PT. Musi Banyuasin Indah. Politeknik Negeri Sriwijaya. Palembang. Hal :14

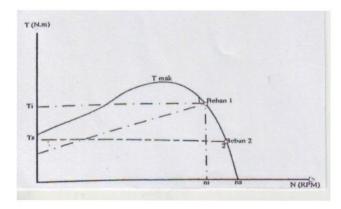


Gambar 2.5. Karakteristik Rotor yang diblok

c. Karakteristik Start

Karakteristik start ini dipakai untuk menggambarkan hubungan antara waktu dan arus. Putaran untuk macam-macam beban pada tegangan masuk konstan. Dari (gambar 2.6.) dibawah berikut dapat dijelaskan bahwa:

- Jika waktu start dari motor induksi makin lama, maka pemanas pada belitan akan lebih besar pula pada elemen pengaman. Hal ini akan berpengaruh terhadap lifetime dari motor.
- 2. Arus akhir ke motor lebih tinggi.
- 3. Putaran akhir motor akan lebih rendah.



Gambar. 2.6. Karakteristik start

d. Karakteristik Kopel dan Putaran

Daerah kerja motor terletak pada daerah perputaran mendekati ns. Kopel lawan beban 1 dan 2 pada waktu start < T_s maka motor dapat distart, masingmasing dengan titik kerja 1 (kopel kerja = T_1 dan putaran kerja n1) dan titik kerja 2. Bila kopel lawan beban pada saat start > T_s maka motor tidak dapat

Distart. Selama motor belum berputar, arus motor tinggi. Seperti yang ditunjukan pada gambar dibawah ini.

Gambar 2.7. Karakteristik kopel dan putaran.

2.6. Gangguan-gangguan Motor Induksi

Seperti halnya dengan mesin listrik yang lain, motor induksi tida lepas dari gangguan gangguan yang dapat merusaknya. Gangguan-gangguan itu dapat datang dari luar motor ataupun dari kondisi buruk motor itu sendiri. Pengaman pada motor induksi bertugas mencegah kerusakan motor bila terjadi gangguan yang sering terjadi pada motor induksi yaitu:

- a. Gangguan arus lebih yang terdiri dari arus lebih hubung singkat dan arus beban lebih. Gangguan ini disebabkan oleh overload atau beban lebih.
- b. Gangguan tegangan kurang atau salah satu fasa hilang, gangguan ini sangat berbahaya sekali karena arus akan naik dengan cepat yang pada.
- c. akhirnya belitan motor akan terbakar bila tidak segera diatasi.

Gangguan dari komponen mekanis motor. Gangguan ini lebih bersifat pada gangguan bearingnya, fan pendingin dan lain-lain, jika dibiarkan dalam waktu yang lama akan sangat berbahaya bagi motor tersebut.

2.7. Cara – Cara Menentukan Rugi-Rugi Pada Motor⁴

Rugi – rugi motor listrik sebagian dapat ditemukan dengan cara konvensional yaitu dengan percobaan beban nol dan percobaan block rotor (hanya untuk motor arus bolak – balik). Percobaan beban nol dapat menentukan rugi – rugi rotasi

⁴Lister, Eugene, Mesin dan Rangkaian Listrik. Edisi Keenam, (Jakarta: Erlangga, 1988). Hal. 227.

motor. Pada keadaan beban nol, seluruh daya listrik input motor digunakan untuk mengatasi rugi – rugi inti dan rugi – rugi mekanik.

Rugi – rugi listrik motor dapat ditentukan yaitu pada tahanan DC, tahanan belitan dapat langsung diukur pada terminal belitan jangkar dan belitan penguat secara pengukuran DC, yaitu dengan mengukur tegangan dan arus dengan sumber DC pada belitan tersebut, atau dengan menggunakan ohm meter (jembatan wheatstone).

Pada motor AC, tahanan equivalen motor dapat ditentukan dengan percobaan block rotor (hubungan singkat), dimana pada keadaan ini rangkaian equivalen motor adalah sama dengan rangkaian equivalen hubung singkat dari suatu transformator. Jadi daya pada keadaan ini merupakan rugi – rugi tahanan atau belitan dan pada keadaan ini rugi – rugi inti dapat diabaikan karena tegangan hubung singkat relatif kecil dibandingkan dengan tegangan nominalnya.

Rugi – rugi stray load adalah rugi – rugi yang paling sulit ditukar dan berubah terhadap beban motor. Rugi – rugi ini ditentukan sebagai rugi – rugi sisa (rugi – rugi pengujian dikurangi rugi – rugi konvensional). Rugi – rugi pengujian adalah daya input dikurangi daya output. Rugi – rugi konvensional adalah jumlah dari rugi – rugi inti, rugi – rugi mekanik, rugi – rugi belitan. Rugi-rugi stray load juga dapat ditentukan dengan anggapan kira-kira 1% dari daya output dengan kapasitas daya 150 KW atau lebih. Dan untuk motor-motor yang lebih kecil dari itu dapat diabaikan.

2.8. Rugi – Rugi Pada Motor Induksi

Motor – motor listrik adalah suatu alat untuk mengkonversikan energi listrik menjadi energi mekanis. Keadaan ideal dalam sistem konversi energi, yaitu mempunyai daya output tepat sama dengan daya input yang dapat dikatakan efesiensi 100%. Tetapi pada keadaan yang sebenarnya, tentu ada kerugian energi yang menyebabkan efesiensi dibawah 100%. Dalam sistem konversi energi elektro mekanik yakni dalam operasi motor – motor listrik terutama pada motor induksi, total daya yang diterima sama dengan daya yang diberikan, ditambah dengan kerugian daya yang terjadi, atau :

 $P_{in} = P_{out} + P_{rugi-rugi}.$ (2.3)

Dimana

P_{in} : Total daya yang diterima motor

P_{out}: Daya yang diterima motor untuk melakukan kerja

P_{rugi-rugi}: Total kerugian daya yang dihasilkam oleh motor

Motor listrik tidak pernah mengkonversikan semua daya yang diterima menjadi daya mekanik, tetapi selalu timbul kerugian daya yang semuannya berubah menjadi energi panas yang terbuang.

Untuk itu perlu diketahui kerugian daya apa saja yang timbul selama motor beroperasi.

- 1. Belitan dalam motor yang dinamakan rugi rugi listrik (rugi rugi belitan).
- 2. Kerugian daya yang timbul langsung arena putaran motor, yang dinamakan rugi
- rugi rotasi. Rugi rugi rotasi ini terbagi menjadi dua jenis, yaitu :
 - a. Rugi rugi mekanis akibat putaran.
 - b. Rugi rugi inti besi akibat kecepatan putaran dan *fluks* medan.

2.8.1. Rugi - rugi inti

Rugi - rugi inti rangkaian terbuka terdiri atas rugi-rugi histeris dan arusedy yang timbul dari perubahan kerapatan fluks pada besi mesin dengan hanya lilitan peneral utama yang diberi tenaga. Pada mesin DC dan mesin serempak, rugi-rugi ini terutama dialami oleh besi armatur, meskipun pembentukan pulsa fluks yang berasal dari mulut celah akan menyebabkan rugi-rugi pada besi medan juga, terutama pada sepatu kutub atau permukaan besi medan. Pada mesin induksi rugi-rugi terdapat terutama pada besi strator. Rugi-rugi inti rangkaian terbuka dapat diperoleh dengan mengukur masukkan pada mesin pada saat bekerja tanpa beban pada kecepatan ukuran atau frekuensi ukuran dan dengan fluks atau tegangan yang semestinya dan kemudian mengurangkan rugi-rugi perlilitan dan gesekan dan jika mesin tersebut bekerja sendiri selama dites, rugi-rugi I²R armature tanpa beban (rugi-rugi I²R stator tanpa beban pada motor induksi). Timbulnya rugi - rugi inti, ketika besi jangkar atau struktur rotor mengalami perubahan *fluks* terhadap waktu. Rugi - rugi ini tidak tergantung pada beban,

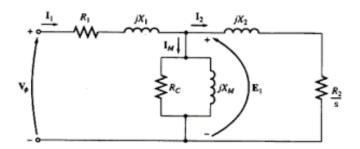
tetapi merupakan fungsi daripada *fluks* dan kecepatan motor. Pada umumnya rugi - rugi inti berkisar antara 20 - 25% dari total kerugian daya motor pada keadaan nominal.

2.8.2. Rugi - rugi mekanik

Rugi-rugi gesekan dan angin adalah energi mekanik yang dipakai dalam motor listrik untuk menanggulangi gesekan bantalan poros, gesekan sikat melawan komutator atau *slip ring*, gesekan dari bagian yang berputar terhadap angin, terutama pada daun kipa pendingin. Kerugian energi ini selalu berubah menjadi panas seperti pada semua rugi-rugi lainnya. Rugi-rugi mekanik dianggap konstan dari beban nol hingga beban penuh, dan ini adalah masuk akal tetapi tidak sepenuhnya tepat seperti halnya pada rugi-rugi inti. Macam-macam ketidaktepatan ini dapat dihitung dalam rugi-rugi *stray load*. Rugi-rugi mekanik biasanya berkisar antara 5-8% dari total rugi-rugi daya motor pada keadaan beban nominal.

2.8.3. Rugi - rugi belitan

Rugi - rugi belitan sering disebut rugi - rugi tembaga tetapi pada saat sekarang sudah tidak begitu banyak motor listrik, terutama motor ukuran sangat kecil diatas 750 W, mempunyai belitan stator dari kawat alumunium yang lebih tepat disebut rugi - rugi I² R yang menunjukan besarnya daya yang berubah menjadi panas oleh tahanan dari konduktor tembaga atau alumunium. Total kerugian I² R adalah jumlah dari rugi - rugi I² R primer (stator) dan rugi - rugi I² R sekunder (rotor). rugi - rugi I² R dalam belitan sebenarnya tidak hanya tergantung pada arus, tetapi juga pada tahanan belitan dibawah kondisi operasi. Sedang tahanan efektif dari belitan selalu berubah dengan perubahan temperatur, skin effect dan sebagainya. Sangat sulit untuk menetukan nlai yang sebenarnya dari tahan belitan dapat dimasukan kedalam kerugian stray load. Pada umumnya rugi - rugi belitan ini berkisar antara 55 - 60% dari total kerugian motor pada keadaan beban nominal.


$$P_{\text{rugi-rugi}}=I^2.R.$$
(2.4)

2.8.4. Rugi - rugi stray load

Kita telah banyak melihat bahwa beberapa macam kerugian selalu dianggap konstan dari keadaan beban nol hingga beban penuh walaupun kita tahu bahwa rugi - rugi tersebt sebenarnya berubah, secara kecil terhadap beban. Sebagai tambahan, kita tidak dapat menghitung berapa besar kerugian ini seperti yang diakibatkan oleh perubahan *fluks* terhadap beban, geometri konduktor sehingga arus terbagi sedikit tidak merata dalam konduktor bertambah, mengakibatkan pertambahan tahanan konduktor dan karena itu rugi - rugi konduktor harus bertambah. Dari semua kerugian yang relatif kecil ini, baik dari sumber yang ketahui maupun yang tidak diketahui, disatukan menjadi rugi - rugi *stray load* yang cenderung bertambah besar apanila beban meningkat (berbanding kuadrat dengan arus beban). Pada mesin DC,rugi-rugi ini masih dapat disebabkan oleh faktor reaksi jangkar, dan arus hubung singkat dalam kumparan pada saat terjadi peristiwa komutasi. Kerugian *stray load* ini sangat sukit ditentukan. Pada umumnya kerugian ini berkisar antara 11-14 % dari total kerugian daya motor pada keadaan beban nol.

2.9. Rangkaian Ekivalen Motor Induksi¹

Motor Induksi 3-fasa ini dapat dianalisa berdasarkan rangkaian ekivalen tanpa harus mengoperasikan motor. Dari rangkaian ekivalen (Gambar 2.8) dibawah ini I_1 merupakan arus yang mengalir pada kumparan stator yang terbagi arus Im dan I_2 , dimana untuk mencari besarnya arus yang mengalir pada saat pembebanan.

Gambar 2.8. Rangkaian Ekivalen Motor induksi

¹Andyk Probo Prasetya dkk. Analisis Perbandingan Sistem Pengasutan Motor Induksi 3 Fasa Sebagai Penggerak Pompa Pada Perusahaan Daerah Air Minum (PDAM) Wendit Malang (Malang: Institute Teknologi Malang, 2012).hlm.225.

 V_{φ} = Tegangan sumber perfasa pada kumparan stator

 R_1 = Resistansi kumparan stator

 jX_1 = Reaktansi Induktif kumparan stator

Rc = Tahanan Inti Besi

 R_2 = Resistansi kumparan rotor dilihat dari sisi stator

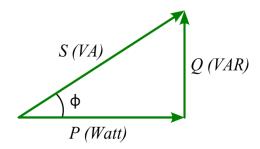
 jX_2 = Reaktansi Induktir rotor dilihat dari sisi stator

jXm = Reaktansi magnet pada Motor

 $I_I = \text{Arus kumparan stator}$

 I_2 = Arus pada kumparan rotor dilihat dari sisi stator saat motor distart.

2.10. Pengertian Daya


Daya dalam tegangan AC pada setiap saat sama dengan perkalian dari harga arus dan tegangan pada saat itu. Jika arus dan tegangan bolak-balik satu fasa, maka daya dalam satu periode sama dengan perkalian dari arus dan tegangan efetif. Tetapi jika ada reaktansi dalam rangkaian arus dan tegangan tidak satu fasa sehingga selama siklusnya biasa terjadi arus negatif dan tegangan positif.

Secara teoritis daya terdiri dari tiga yaitu daya aktif, daya reaktif, dan daya semu yang pengertiannya adalah sebagai berikut :

- a. Daya aktif (P) adalah daya yang diubah menjadi energy, persatuan waktu atau dengan kata lain adalah daya yang benar-benar terpakai yang dihasilkan oleh komponen resistif, satuannya adaah Watt (W).
- b. Daya reaktif (Q) adalah daya yang ditimbulkan oleh komponen reaktansi. Daya reaktif ditentukan dari reaktansi yang menimbulkannya, dapat berupa reaktansi induktif (X_L) dan reaktasi kapasitif (X_c) , satuannya adalah Volt Ampere Reaktif (VAR).
- c. Daya semu (S) adalah jumlah secara vektoris daya aktif dan daya reaktif yang memiliki satuan Volt Ampere (VA).

Untuk lebih jelas dapat dilihat pada gambar sistem segitiga daya berikut ini :

Gambar 2.9. Segitiga daya

Daya memiliki hubungan dengan usaha yaitu daya merupakan usaha yang dilakukan dalam satuan waktu, atau dengan kata lain daya berbanding terbalik dengan waktu sehingga dapat dirumuskan sebagai berikut:

 $Q = \sqrt{3.V_1} I_1$(2.10)

$$P = \frac{W}{t} \tag{2.11}$$

Dimana, P = Daya mekanik (W)

W= Usaha (joule)

t = Waktu(s)

2.11. Sifat – Sifat Beban Listrik³

Dalam sistem arus bolak-balik arus dapat berbeda dengan tegangan yang disebabkan oleh jenis bebannya. Harga arus yang mengalir dalam rangkaian untuk suatu tegangan tertentu yang diberikan seluruhnya ditentukan oleh tahanan

³Linsley, Trevor.2004. Instalasi Listrik Tingkat Lanjut. Jakarta. Hal: 124.

rangkaian. Harga arus bolak-balik yang mengalir dalam rangkaian tidak hanya bergantung pada rangkaian tetapi juga bergantung pada induktansi dan kapasitansi rangkaian. Tahanan memberikan jenis perlawananyang sama terhadap aliran arus bolak-balik terhadap arus searah.

Pada motor induksi terjadi perubahan energy listrik menjadi energy mekanik dalam bentuk putaran rotor. Pada motor induksi daya mekanik yang dihasilkan digunakan untuk berbagai keperluan sesuai dengan yang diinginkan.

Daya pada motor listrik dapat dihitung menggunakan perhitungan perfasa maupun perhitungan tiga fasa dan dapat dirumuskan sebagai berikut:

 $P_{1\phi}=V_PI_P.\cos\phi \qquad (2.12)$ Atau, $P_{3\phi}=3.P_1. \qquad (2.13)$ $P_{3\phi}=3.V_PI_P.\cos\phi \qquad (2.14)$ Harga tegangan phasa (V_P) adalah: Dimana; $V_P=\frac{Vl}{\sqrt{3}} \qquad (2.15)$

Dengan mensubstitusi persamaan 2.9 ke persamaan 2.8 maka diperoleh rumus sebagai berikut:

$$P_{3\phi} = \sqrt{3} \cdot V_{l.} I_{l.} \cos \phi$$
....(2.16)

Keterangan:

 $P_{1\phi}$ = daya pada 1 fasa(watt)

 $P_{3\phi}$ = daya pada 3 fasa(watt)

 $V_P = tegangan per fasa(volt)$

 V_L = tegangan line to line(volt)

I = arus line (ampere)

cos = faktor daya

2.12. Efisiensi³

Di dalam setiap mesin daya keluaran yang tersedia adalah lebih rendah dari pada daya masukannya karena terjadinya rugi - rugi didalam mesin bersangkutan. Rugi - rugi ini dapat terjadi karena adanya gesekan pada bantalan, tahanan udara dari bagian - bagian mesinyang begerak, panas ataupun getaran.

Motor listrik tidak pernah mengkonversikan semua daya yang diterima menjadi daya mekanik, tetapi selalu timbul kerugian daya yang semuanya berubah menjadi energi panas yang terbuang.

Perbandingan dari besarnya daya keluaran terhadap daya yang dikenal sebagai efisiensi mesin yang disimbolkan dengan huruf latin 'eta' atau jadi:

Efisiensi(
$$\eta$$
)= $\frac{Pout}{Pin}$ (2.17)

Karena efisiensi biasanya dinyatakan dalam persen, maka rumusan umum yang digunakan ialah:

$$\eta \frac{Pout}{Pin} \times 100\%.$$
(2.18)

Dimana:

 η = Efisiensi (%)

 P_{out} = Daya keluaran (Watt)

 P_{in} = Daya masukan (Watt)

³Linsley, Trevor.2004. Instalasi Listrik Tingkat Lanjut. Jakarta. Hal: 137

Pada sebuah motor induksi 3 phasa didapat data pada nameplate sebagai berikut :

Tabel 2.3 Data Motor

Motor Induksi 3 Phasa	
Туре	Loher D-
	94099
Daya	8,6 KW
Poles	2
Hz	50
Arus	14,9 A
Tegangan	380
Rpm	2955
Ip	55
Ambient Temprature	40°
Insulation Class	F
$Cos \theta$	0,85

Berapa besar efisiensi dari motor tersebut?

• Perhitungan daya masukan (*input*) pada motor d ari data *nameplate*.

Poutput =
$$\sqrt{3}$$
.V.I.Cos Θ
= $\sqrt{3}$.380.14,9.0,85
= 8.335,8 Watt
= 83,358 Kw

• Perhitungan daya output (*keluaran*) pada motor.

Perhitungan daya masukan (*input*) pada motor induks 3 phasa ini dilakukan dengan menggunakan persamaan dibawah ini. Namun terlebih dahulu kita harus menghitung rugi - rugi total dengan menggunakan persamaan sebagai berikut :

$$P_{\text{rugi-rugi}} = I^2.R$$

= $(14,9)^2$. 1,5
= 333 Watt

= 0,333 kW

Sehingga nilai daya keluaran (out*put*) dapat dihitung dengan persamaan seperti dibawah ini.

$$P_{out}$$
 = $P_{in} - P_{rugi-rugi}$
= $8.335, 8 - 333$
= $8002, 8$ Watt
= $80,028$ kW

Jadi nilai daya keluaran (out*put*) yang didapatkan pada motor adalah sebesar 80,028 kW.

Perhitungan efisiensi motor untuk waktu pengukuran pada tanggal 1
 Juli 2019.

Efisiensi
$$= \frac{Pout}{Pin} \times 100\%$$
$$= \frac{80,028}{83,358} \times 100\%$$
$$= 0.96 \times 100\%$$
$$= 96 \%$$

Jadi nilai efisiensi yang didapat dari hasil perhitungan adalah Efisiensi = 96%

