Aini, Nandita (2025) SISTEM MANAJEMEN BATERAI LITHIUM-ION DENGAN METODE LONG SHORT-TERM MEMORY TERHADAP STATE OF CHARGE (SOC) DAN DEPTH OF DISCHARGE (DOD). Diploma thesis, Politeknik Negeri Sriwijaya.
|
Text (Cover)
COVER.pdf - Published Version Download (701kB) | Preview |
|
|
Text (Abstrak)
ABSTRAK.pdf - Published Version Download (252kB) | Preview |
|
![]() |
Text (Bab I)
BAB I.pdf - Published Version Restricted to Repository staff only Download (287kB) | Request a copy |
|
![]() |
Text (Bab II)
BAB II.pdf - Published Version Restricted to Repository staff only Download (993kB) | Request a copy |
|
![]() |
Text (Bab III)
BAB III.pdf - Published Version Restricted to Repository staff only Download (770kB) | Request a copy |
|
![]() |
Text (Bab IV)
BAB IV.pdf - Published Version Restricted to Repository staff only Download (526kB) | Request a copy |
|
![]() |
Text (Bab V)
BAB V.pdf - Published Version Restricted to Repository staff only Download (241kB) | Request a copy |
|
![]() |
Text (Daftar Pustaka)
DAFTAR PUSTAKA.pdf - Published Version Restricted to Repository staff only Download (225kB) | Request a copy |
|
![]() |
Text (Lampiran I)
LAMPIRAN I.pdf - Published Version Restricted to Repository staff only Download (1MB) | Request a copy |
|
![]() |
Text (Lampiran II)
LAMPIRAN II.pdf - Published Version Restricted to Repository staff only Download (1MB) | Request a copy |
|
![]() |
Text (Lampiran III)
LAMPIRAN III.pdf - Published Version Restricted to Repository staff only Download (327kB) | Request a copy |
Abstract
Kendaraan listrik memerlukan sistem manajemen baterai yang tepat untuk mencegah overcharge dan overdischarge yang dapat menurunkan umur baterai hingga 40%. Penelitian ini bertujuan merancang sistem manajemen baterai lithium ion dengan metode Long Short-Term Memory (LSTM) untuk memprediksi State of Charge (SoC) dan Depth of Discharge (DoD) secara akurat. Metode yang digunakan yaitu pengambilan data arus dan tegangan pada baterai 48V 30Ah menggunakan sensor PZEM-017, kemudian diproses menggunakan algoritma LSTM pada Google Colab. Hasil penelitian menunjukkan bahwa sistem mampu memprediksi SoC dan DoD dengan nilai RMSE 1,2% dan MAE 0,8%, serta akurasi prediksi mencapai 98%. Kesimpulannya,penerapan LSTM pada sistem manajemen baterai dapat meningkatkan efisiensi dan keamanan pengelolaan energi pada kendaraan listrik.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Baterai Lithium-Ion, LSTM, SoC, DoD, Manajemen Baterai |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electronic Engineering > Undergraduate Theses |
Depositing User: | Pustaka Teknik Elektro |
Date Deposited: | 14 Aug 2025 02:40 |
Last Modified: | 14 Aug 2025 02:40 |
URI: | http://eprints.polsri.ac.id/id/eprint/18453 |
Actions (login required)
![]() |
View Item |